

Mastering ElasticSearch

Extend your knowledge on ElasticSearch, and querying
and data handling, along with its internal workings

Rafał Kuć

Marek Rogoziński

BIRMINGHAM - MUMBAI

Mastering ElasticSearch

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-143-5

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

Credits

Authors
Rafał Kuć

Marek Rogoziński

Reviewers
Ravindra Bharathi

Surendra Mohan

Marcelo Ochoa

Acquisition Editor
James Jones

Lead Technical Editor
Arun Nadar

Technical Editors
Iram Malik

Krishnaveni Nair

Shruti Rawool

Project Coordinator
Shiksha Chaturvedi

Proofreader
Mario Cecere

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Authors

Rafał Kuć is a born team leader and a Software Developer. Working as a
Consultant and a Software Engineer at Sematext Group, Inc., he concentrates
on open source technologies such as Apache Lucene, Solr, ElasticSearch,
and Hadoop stack. He has more than 11 years of experience in various software
branches—from banking software to e-commerce products. He is mainly focused
on Java, but open to every tool and programming language that will make the
achievement of his goal easier and faster. He is also one of the founders of the
solr.pl site, where he tries to share his knowledge and help people to resolve
their problems with Solr and Lucene. He is also a speaker for various conferences
around the world such as Lucene Eurocon, Berlin Buzzwords, ApacheCon,
and Lucene Revolution.

Rafał began his journey with Lucene in 2002 and it wasn't love at first sight.
When he came back to Lucene in late 2003, he revised his thoughts about the
framework and saw the potential in search technologies. Then Solr came and
this was it. He started working with ElasticSearch in the middle of 2010.
Currently, Lucene, Solr, ElasticSearch, and information retrieval are his main
points of interest.

Rafał is also an author of Solr 3.1 Cookbook, the update to it—Solr 4.0 Cookbook,
and is a co-author of ElasticSearch Server all published by Packt Publishing.

The book you are holding in your hands was something that I wanted to write after
finishing the ElasticSearch Server book and I got the opportunity. I wanted not to jump
from topic to topic, but concentrate on a few of them and write about what I know and
share the knowledge. Again, just like the ElasticSearch Server book, I couldn't include all
topics I wanted, and some small details that are more or less important, depending on
the use case, had to be left aside. Nevertheless, I hope that by reading this book you'll
be able to easily get into all the details about ElasticSearch and underlying Apache
Lucene, and I also hope that it will let you get the desired knowledge easier and faster.

I would like to thank my family for their support and patience
during all those days and evenings when I was sitting in front
of a screen instead of being fully with them.

I would also like to thank all the people I'm working with at
Sematext, especially Otis, who took his time and convinced
me that Sematext is the right company for me.

Finally, I would like to thank all the people involved in creating,
developing, and maintaining ElasticSearch and Lucene projects
for their work and passion. Without them this book wouldn't be
written and open source search would have been less powerful.

Once again, thank you.

Marek Rogoziński is a Software Architect and a Consultant with more than
10 years of experience. His specialization involves solutions based on open source
search engines such as Solr and ElasticSearch and software stack for big data
analytics including Hadoop, Hbase, and Twitter Storm.

He is also a co-founder of the solr.pl site which publishes information and tutorials
about Solr and Lucene library and is the co-author of the ElasticSearch Server book
published by Packt Publishing.

He currently holds a position of Chief Technology Officer in a company building
products based on the processing and analysis of large streams of input data.

Just like the previous book, writing Mastering ElasticSearch was a difficult task.
To tell the truth, it was much harder not only because of more advanced topics
covered in this book, but also because of the constantly introduced changes in
the ElasticSearch codebase. The development of it is not going to slow down and
literally speaking, every day brings something new. Please remember that this
book should be treated as a continuation of the previous book. This means,
we have tried to omit all the topics that we had covered before, and we wanted
to add everything that was omitted. You can see if you have succeeded yourself.
Now it's time to thank everyone.

Thanks to all the people who have created ElasticSearch, Lucene,
and all of those libraries and modules published around
these projects.

I would also like to thank the team working on this book. First of all,
to the ones who worked on the extermination of all my errors, typos,
and ambiguities.

Last but not the least, thanks to all the friends, who withstood me
during this time.

About the Reviewers

Ravindra Bharathi has worked in the software industry for over a decade
in various domains such as education, Digital Media Marketing/Advertising,
Enterprise Search, and Energy Management Systems. He has a keen interest in
search-based applications that involve data visualization, mashups, and dashboards.
He blogs at http://ravindrabharathi.blogspot.com.

I wish to thank my wife, Vidya, for her support in all my endeavors.

Surendra Mohan is currently serving as a Drupal Consultant cum Drupal
Architect at a well-known Software Consulting Ltd. organization in India. Prior to
joining this organization, he served a few Indian MNCs and a couple of startups in
varied roles such as Programmer, Technical Lead, Project Lead, Project Manager,
Solution Architect, and Service Delivery Manager. He has around nine years of
work experience in web technologies covering media and entertainment, real estate,
travel and tours, publishing, e-learning, enterprise architecture, and so on. He is also
a well-known speaker who delivers talks on Drupal, Open Source, PHP, Moodle,
and so on, along with organizing and delivering TechTalks in Drupal meetups
and Drupal Camps in Mumbai, India.

He also reviewed other technical books such as Drupal 7 Multi Site Configuration,
by Matt Butcher, Drupal Search Engine Optimization, by Ric Shreves, Building e-commerce
Sites with Drupal Commerce Cookbook, by Richard Carter. In addition to technical
reviewing activities, he is also writing a book on Apache Solr which is scheduled
to be published by the end of October, 2013.

I would like to thank my family and friends who supported and
encouraged me in completing my reviews on time with good quality.

Marcelo Ochoa works at the System Laboratory of Facultad de Ciencias Exactas
of the Universidad Nacional del Centro de la Provincia de Buenos Aires and is the
CTO at Scotas.com, a company specialized in Near Real Time Search solutions
using Apache Solr and Oracle. He divides his time between University jobs and
external projects related to Oracle and big data technologies. He has worked in
several Oracle-related projects such as translation of Oracle manuals and multimedia
CBTs. His background is in database, network, web, and Java technologies. In the
XML world he is known as the developer of DB Generator for the Apache Cocoon project,
the open source projects DBPrism and DBPrism CMS, the Lucene-Oracle integration
by using Oracle JVM Directory implementation and in the Restlet.org project the
Oracle XDB Restlet Adapter, an alternative to write native REST web services inside
the database-resident JVM.

Since 2006, he is a part of the Oracle ACE program; Oracle ACEs are known for their
strong credentials as Oracle community enthusiasts and advocates, with candidates
nominated by ACEs in the Oracle Technology and Applications communities.

He is the author of Chapter 17, 360-Degree Programming the Oracle Database of the
book, Oracle Database Programming Using Java and Web Services, by Kuassi Mensah,
at Digital Press and Chapter 21, DB Prism: A Framework to Generate Dynamic XML from
a Database of the book Professional XML Databases, by Kevin Williams, at Wrox Press.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Introduction to ElasticSearch	 7

Introducing Apache Lucene	 8
Getting familiar with Lucene	 8
Overall architecture	 8
Analyzing your data	 10

Indexing and querying	 11
Lucene query language	 11

Understanding the basics	 12
Querying fields	 13
Term modifiers	 13
Handling special characters	 14

Introducing ElasticSearch	 15
Basic concepts	 15

Index	 15
Document	 15
Mapping	 16
Type	 16
Node	 16
Cluster	 16
Shard	 17
Replica	 17
Gateway	 17

Key concepts behind ElasticSearch architecture	 17
Working of ElasticSearch	 18

The boostrap process	 18
Failure detection	 19
Communicating with ElasticSearch	 20

Summary	 23

Table of Contents

[ii]

Chapter 2: Power User Query DSL	 25
Default Apache Lucene scoring explained	 26

When a document is matched	 26
The TF/IDF scoring formula	 27

The Lucene conceptual formula	 27
The Lucene practical formula	 28

The ElasticSearch point of view	 29
Query rewrite explained	 29

Prefix query as an example 	 29
Getting back to Apache Lucene	 32
Query rewrite properties	 33

Rescore	 35
Understanding rescore	 35
Example Data	 35
Query	 36
Structure of the rescore query	 36
Rescore parameters	 38
To sum up	 39

Bulk Operations	 39
MultiGet	 39
MultiSearch	 41

Sorting data	 43
Sorting with multivalued fields	 44
Sorting with multivalued geo fields	 45
Sorting with nested objects	 47

Update API	 48
Simple field update	 49
Conditional modifications using scripting	 50
Creating and deleting documents using the Update API	 50

Using filters to optimize your queries	 51
Filters and caching	 52

Not all filters are cached by default	 53
Changing ElasticSearch caching behavior	 54
Why bother naming the key for the cache?	 55
When to change the ElasticSearch filter caching behavior	 55

The terms lookup filter	 55
How does it work?	 58
Performance considerations	 59
Loading terms from inner objects	 59
Terms lookup filter cache settings	 60

Filter and scopes in ElasticSearch faceting mechanism	 60
Example data	 61

Table of Contents

[iii]

Faceting and filtering	 61
Filter as a part of the query	 63
The Facet filter	 65
Global scope	 67

Summary	 69
Chapter 3: Low-level Index Control	 71

Altering Apache Lucene scoring	 71
Available similarity models	 72
Setting per-field similarity	 73

Similarity model configuration	 74
Choosing the default similarity model	 75
Configuring the chosen similarity models	 76

Configuring TF/IDF similarity	 76
Configuring Okapi BM25 similarity	 77
Configuring DFR similarity	 77
Configuring IB similarity	 78

Using codecs	 78
Simple use cases	 78
Let's see how it works	 79
Available posting formats	 81
Configuring the codec behavior	 82

Default codec properties	 83
Direct codec properties	 83
Memory codec properties	 83
Pulsing codec properties	 83
Bloom filter-based codec properties	 84

NRT, flush, refresh, and transaction log	 85
Updating index and committing changes	 86

Changing the default refresh time	 86
The transaction log	 87

The transaction log configuration	 88
Near Real Time GET	 89

Looking deeper into data handling	 90
Input is not always analyzed	 90
Example usage	 94
Changing the analyzer during indexing	 95
Changing the analyzer during searching	 96
The pitfall and default analysis	 97

Segment merging under control	 97
Choosing the right merge policy	 98

The tiered merge policy	 99
The log byte size merge policy	 99
The log doc merge policy	 100

Table of Contents

[iv]

Merge policies configuration	 100
The tiered merge policy	 100
The log byte size merge policy	 101
The log doc merge policy	 102

Scheduling	 103
The concurrent merge scheduler	 103
The serial merge scheduler	 104
Setting the desired merge scheduler	 104

Summary	 104
Chapter 4: Index Distribution Architecture	 105

Choosing the right amount of shards and replicas	 106
Sharding and over allocation	 106
A positive example of over allocation	 108
Multiple shards versus multiple indices	 108
Replicas	 108

Routing explained	 109
Shards and data	 109
Let's test routing	 110

Indexing with routing	 112
Indexing with routing	 114

Querying	 115
Aliases	 117
Multiple routing values	 118

Altering the default shard allocation behavior	 119
Introducing ShardAllocator	 119
The even_shard ShardAllocator	 119
The balanced ShardAllocator	 120
The custom ShardAllocator	 121
Deciders	 121

SameShardAllocationDecider	 121
ShardsLimitAllocationDecider	 122
FilterAllocationDecider	 122
ReplicaAfterPrimaryActiveAllocationDecider	 122
ClusterRebalanceAllocationDecider	 122
ConcurrentRebalanceAllocationDecider	 123
DisableAllocationDecider	 123
AwarenessAllocationDecider	 123
ThrottlingAllocationDecider	 124
RebalanceOnlyWhenActiveAllocationDecider	 124
DiskThresholdDecider	 124

Adjusting shard allocation	 125
Allocation awareness	 126

Forcing allocation awareness	 128

Table of Contents

[v]

Filtering	 128
But what those properties mean?	 129

Runtime allocation updating	 130
Index-level updates	 130
Cluster-level updates	 130

Defining total shards allowed per node	 131
Inclusion	 132
Requirements	 133
Exclusion	 134

Additional shard allocation properties	 135
Query execution preference	 136

Introducing the preference parameter	 137
Using our knowledge	 139

Assumptions	 139
Data volume and queries specification	 140

Configuration	 142
Node-level configuration	 143
Indices configuration	 143
The directories layout	 143
Gateway configuration	 143
Recovery	 144
Discovery	 144
Logging slow queries	 145
Logging garbage collector work	 145
Memory setup	 146
One more thing	 146

Changes are coming	 147
Reindexing	 147
Routing	 148
Multiple Indices	 148

Summary	 149
Chapter 5: ElasticSearch Administration	 151

Choosing the right directory implementation – the store module	 151
Store type	 152

The simple file system store	 152
The new IO filesystem store	 152
The MMap filesystem store	 153
The memory store	 153
The default store type	 154

Discovery configuration	 155
Zen discovery	 155

Multicast	 156
Unicast	 157
Minimum master nodes	 157
Zen discovery fault detection	 158

Table of Contents

[vi]

Amazon EC2 discovery	 158
EC2 plugin's installation	 159
Gateway and recovery configuration	 161
Gateway recovery process	 161
Configuration properties	 162
Expectations on nodes	 163

Local gateway	 163
Backing up the local gateway	 164

Recovery configuration	 164
Cluster-level recovery configuration	 165
Index-level recovery settings	 166

Segments statistics	 166
Introducing the segments API	 167

The response	 167
Visualizing segments information	 170

Understanding ElasticSearch caching	 170
The filter cache	 171

Filter cache types	 171
Index-level filter cache configuration	 172
Node-level filter cache configuration	 173

The field data cache	 173
Index-level field data cache configuration	 174
Node-level field data cache configuration	 174
Filtering	 175

Clearing the caches	 180
Index, indices, and all caches clearing	 181
Clearing specific caches	 181
Clearing fields-related caches	 182

Summary	 182
Chapter 6: Fighting with Fire	 183

Knowing the garbage collector	 184
Java memory	 184

The life cycle of Java object and garbage collections	 185
Dealing with garbage collection problems	 186

Turning on logging of garbage collection work	 186
Using JStat	 187
Creating memory dumps	 189
More information on garbage collector work	 189
Adjusting garbage collector work in ElasticSearch	 190

Avoiding swapping on Unix-like systems	 191
When it is too much for I/O – throttling explained	 193

Controlling I/O throttling	 193
Configuration	 193

Throttling type	 193
Maximum throughput per second	 194

Table of Contents

[vii]

Node throttling defaults	 194
Configuration example	 194

Speeding up queries using warmers	 196
Reason for using warmers	 196
Manipulating warmers	 197

Using the PUT Warmer API	 197
Adding warmers during index creation	 198
Adding warmers to templates	 199
Retrieving warmers	 199
Deleting warmers	 200
Disabling warmers	 200

Testing the warmers	 201
Querying without warmers present	 202
Querying with warmer present	 203

Very hot threads	 204
Hot Threads API usage clarification	 205
Hot Threads API response	 206

Real-life scenarios	 207
Slower and slower performance	 207
Heterogeneous environment and load imbalance	 210
My server is under fire	 212

Summary	 213
Chapter 7: Improving the User Search Experience	 215

Correcting user spelling mistakes	 216
Test data	 216
Getting into technical details	 217

Suggesters	 218
Using the _suggest REST endpoint	 218
Including suggestions requests in a query	 221
The term suggester	 224
The phrase suggester	 227

Completion suggester	 237
The logic behind completion suggester	 238
Using completion suggester	 238

Improving query relevance	 243
The data	 244
The quest for improving relevance	 246

The standard query	 247
The Multi match query	 248
Phrases comes into play	 250
Let's throw the garbage away	 254
And now we boost	 256
Making a misspelling-proof search	 257
Drill downs with faceting	 260

Summary	 264

Table of Contents

[viii]

Chapter 8: ElasticSearch Java APIs	 265
Introducing the ElasticSearch Java API	 266
The code	 267
Connecting to your cluster	 268

Becoming the ElasticSearch node	 268
Using the transport connection method	 270
Choosing the right connection method	 271

Anatomy of the API	 272
CRUD operations	 274

Fetching documents	 274
Handling errors	 276

Indexing documents	 276
Updating documents	 279
Deleting documents	 282

Querying ElasticSearch	 284
Preparing a query	 284
Building queries	 285

Using the match all documents query	 287
The match query	 287
Using the geo shape query	 288

Paging	 289
Sorting	 290
Filtering	 290
Faceting	 292
Highlighting	 292
Suggestions	 293
Counting	 294
Scrolling	 295

Performing multiple actions	 295
Bulk	 296
The delete by query	 296
Multi GET	 296
Multi Search	 297

Percolator	 297
ElasticSearch 1.0 and higher	 298

The explain API	 299
Building JSON queries and documents	 300
The administration API	 302

The cluster administration API	 302
The cluster and indices health API	 302
The cluster state API	 303
The update settings API	 303
The reroute API	 303

Table of Contents

[ix]

The nodes information API	 304
The node statistics API	 304
The nodes hot threads API	 305
The nodes shutdown API	 305
The search shards API	 305

The Indices administration API	 306
The index existence API	 306
The Type existence API	 306
The indices stats API	 306
Index status	 307
Segments information API	 307
Creating an index API	 307
Deleting an index	 308
Closing an index	 308
Opening an index	 308
The Refresh API	 308
The Flush API	 309
The Optimize API	 309
The put mapping API	 309
The delete mapping API	 310
The gateway snapshot API	 310
The aliases API	 310
The get aliases API	 311
The aliases exists API	 311
The clear cache API	 311
The update settings API	 312
The analyze API	 312
The put template API	 312
The delete template API	 313
The validate query API	 313
The put warmer API	 314
The delete warmer API	 314

Summary	 314
Chapter 9: Developing ElasticSearch Plugins	 315

Creating the Apache Maven project structure	 316
Understanding the basics	 316
Structure of the Maven Java project	 317
The idea of POM	 317
Running the build process	 319
Introducing the assembly Maven plugin	 319

Creating a custom river plugin	 322
Implementation details	 322

Implementing the URLChecker class	 324
Implementing the JSONRiver class	 327
Implementing the JSONRiverModule class	 329
Implementing the JSONRiverPlugin class	 329
Informing ElasticSearch about the JSONRiver plugin class	 330

Table of Contents

[x]

Testing our river	 331
Building our river	 331
Installing our river	 331
Initializing our river	 332
Checking if our JSON river works	 333

Creating custom analysis plugin	 333
Implementation details	 334

Implementing TokenFilter	 335
Implementing the TokenFilter factory	 336
Implementing custom analyzer	 337
Implementing analyzer provider	 338
Implementing analysis binder	 339
Implementing analyzer indices component	 340
Implementing analyzer module	 342
Implementing analyzer plugin	 342
Informing ElasticSearch about our custom analyzer	 343

Testing our custom analysis plugin	 343
Building our custom analysis plugin	 344
Installing the custom analysis plugin	 344
Checking if our analysis plugin works	 345

Summary	 346
Index	 347

Preface
Welcome to the world of ElasticSearch and to the Mastering ElasticSearch book.
While reading the book you'll be taken through different topics, all connected
to ElasticSearch. We will start with the introduction to Apache Lucene and
ElasticSearch, because even if you are familiar with it, it is crucial to have the
background in order to fully understand what is going on when you form a
cluster, send a document for indexing, or make a query.

You will learn how Apache Lucene scoring works, how to influence it, and how
to tell ElasticSearch to choose different scoring algorithms. The book will show
you what query rewriting is and why it happens. Apart from that, you'll see how
to change your queries to leverage ElasticSearch caching capabilities and make
maximum use of it.

After that we will focus on index control. We will learn the way to change how
index fields are written, by using different posting formats. We will discuss
segments merging, why it is important, and how to adjust it when there is a need.
We'll take a deeper look at shard allocation mechanism and routing, and finally
we'll learn what to do when data and query number grows.

The book can't omit garbage collector description—how it works and where to start
and when you need to tune its behavior. In addition to that, it covers functionalities
that allow us to troubleshoot ElasticSearch, such as describing how segments merging
works, how to see what ElasticSearch does beneath its high-level interface, and how to
limit the I/O operations. But the book doesn't only pay attention to low-level aspects
of ElasticSearch; it includes user search experience improvements tips, such as dealing
with spelling mistakes, highly effective autocomplete feature, and a tutorial on how
you can deal with query related improvements.

In addition to this, the book you are holding will guide you through ElasticSearch Java
API, showing how to use it, not only when it comes to CRUD operations but also when
it comes to cluster and indices maintenance and manipulation. Finally, we will take
a deep look at ElasticSearch extensions by developing a custom river plugin for data
indexing and a custom analysis plugin for data analysis during query and index time.

Preface

[2]

What this book covers
Chapter 1, Introduction to ElasticSearch, will guide you through how Apache Lucene
works and will reintroduce you to the world of ElasticSearch describing the basic
concepts and showing how ElasticSearch works internally.

Chapter 2, Power User Query DSL, describes how Apache Lucene scoring works,
why ElasticSearch rewrites queries, and how query rescore mechanism works.
In addition to that, it explains the batch APIs available in ElasticSearch and
shows how to use filters to optimize your queries.

Chapter 3, Low-level Index Control, describes how to alter Apache Lucene scoring and
how to alter fields' structure by using different posting formats. It also covers NRT
searching and indexing, transaction log usage, allows you to understand segments
merging, and tune it for your use case.

Chapter 4, Index Distribution Architecture, covers techniques for choosing the right
number of shards and replicas, how routing works, and describes deeply how shard
allocation works and how to alter its behavior. In this chapter, we also discuss how
to configure your ElasticSearch cluster in the beginning and what to do when the
data and query number increases.

Chapter 5, ElasticSearch Administration, describes how to choose the right directory
implementation for your use case, what are the Discovery, Gateway, and Recovery
modules, how to configure them, and why you should bother. We also describe how
to look at the segments' information provided by ElasticSearch and how to tune and
use ElasticSearch caching mechanism.

Chapter 6, Fighting with Fire, covers how JVM garbage collector works, why it is so
important, and how to start tuning it. It also describes how to control the amount
of I/O operations ElasticSearch is using, what warmers are and how to use them,
and how to diagnose problems with ElasticSearch.

Chapter 7, Improving the User Search Experience, introduces you to the world of
suggesters, which allows us to correct user query spelling mistakes and
build efficient autocomplete mechanisms. In addition to that you'll see,
on real-life example, how to improve query relevance by using different
queries and ElasticSearch functionalities.

Chapter 8, ElasticSearch Java APIs, covers ElasticSearch Java API, from basics such as
connecting to ElasticSearch, through indexing documents both one by one and in
batches and retrieving them afterwards. It also describes different methods exposed
by ElasticSearch Java API that allow us to control the cluster.

Preface

[3]

Chapter 9, Developing ElasticSearch plugins, covers ElasticSearch plugins development by
showing and deeply describing how to write your own river and language plugin.

What you need for this book
This book was written using ElasticSearch server 0.90.x; all the examples and
functions should work with it. In addition to that, you'll need a command that
allows sending HTTP requests, such as curl, which is available for most operating
systems. Please note that all the examples in this book use the mentioned curl
tool. If you want to use another tool, please remember to format the request in
an appropriate way that is understood by the tool of your choice.

In addition to that, to run examples in Chapter 8, ElasticSearch Java APIs and Chapter 9,
Developing ElasticSearch Plugins, you will need a JDK (Java Development Kit)
installed and an editor that will allow you to develop your code (or Java IDE such
as Eclipse). In both the mentioned chapters we are also using Apache Maven to
build the code.

Who this book is for
This book was written for ElasticSearch users and enthusiasts who are already
familiar with the basics concepts of this great search server and want to extend
their knowledge when it comes to ElasticSearch itself, but it also deals with topics
such as how Apache Lucene or JVM garbage collector works. In addition to
that, readers who want to see how to improve their query relevancy, how to use
ElasticSearch Java API, and how to extend ElasticSearch with their own plugin,
may find this book interesting and useful.

If you are new to ElasticSearch and you are not familiar with basic concepts such
as querying and data indexing, you may find it hard to use this book as most of the
chapters assume that you have this knowledge already. In such cases, we suggest
looking at our previous book about ElasticSearch—the ElasticSearch Server book
from Packt Publishing.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"What we would like to do is, use the BM25 similarity model for the name field and
the contents field."

A block of code is set as follows:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{
 "settings" : {
 "index" : {
 "similarity" : {
 "default" : {
 "type" : "default",
 "discount_overlaps" : false
 }
 }
 }
 },
 ...
}

Preface

[5]

Any command-line input or output is written as follows:

curl -XPOST localhost:9200/test/test/1 -d '{ "title": "test" }'

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Dear reader, refer to http://www.elasticsearchserverbook.com from time
to time, where you'll be able to find the newest errata dedicated to the book and
additional articles extending it.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Introduction to ElasticSearch
We hope that by reading this book you want to extend and build on basic
ElasticSearch knowledge. We have assumed that you already know how to
index data to ElasticSearch using single requests as well as bulk indexing.
You should also know how to send queries to get the documents you are
interested in, how to narrow down the results of your queries by using filtering,
and how to calculate statistics for your data with the use of the faceting/
aggregation mechanism. However, before getting to the exciting functionality
that ElasticSearch offers, we think that we should start with a quick tour of
Apache Lucene, the full text search library that ElasticSearch uses to build
and search its indices, as well as the basic concepts that ElasticSearch is built
on. In order to move forward and extend our learning, we need to ensure we
don't forget the basics. It is easy to do. We also need to make sure that we
understand Lucene correctly as Mastering ElasticSearch requires this
understanding. By the end of this chapter we will have covered:

•	 What Apache Lucene is
•	 What overall Lucene architecture looks like
•	 How the analysis process is done
•	 What Apache Lucene query language is and how to use it
•	 What are the basic concepts of ElasticSearch
•	 How ElasticSearch communicates internally

Introduction to ElasticSearch

[8]

Introducing Apache Lucene
In order to fully understand how ElasticSearch works, especially when it comes
to indexing and query processing, it is crucial to understand how Apache Lucene
library works. Under the hood, ElasticSearch uses Lucene to handle document
indexing. The same library is also used to perform search against the indexed
documents. In the next few pages we will try to show you the basics of Apache
Lucene, just in case you've never used it.

Getting familiar with Lucene
You may wonder why ElasticSearch creators decided to use Apache Lucene instead
of developing their own functionality. We don't know for sure, because we were not
the ones that made the decision, but we assume that it was because Lucene is mature,
highly performing, scalable, light, and yet, very powerful. Its core comes as a single
file of Java library with no dependencies, and allows you to index documents and
search them with its out of the box full text search capabilities. Of course there are
extensions to Apache Lucene that allows different languages handling, enables
spellchecking, highlighting, and much more; but if you don't need those features,
you can download a single file and use it in your application.

Overall architecture
Although I would like to jump straight to Apache Lucene architecture, there are
some things we need to know first in order to fully understand it, and those are:

•	 Document: It is a main data carrier used during indexing and search,
containing one or more fields, which contain the data we put and get
from Lucene

•	 Field: It is a section of the document which is built of two parts, the name
and the value

•	 Term: It is a unit of search representing a word from text
•	 Token: It is an occurrence of a term from the text of the field. It consists of

term text, start and end offset, and a type

Chapter 1

[9]

Apache Lucene writes all the information to the structure called inverted index. It is
a data structure that maps the terms in the index to the documents, not the other way
around like the relational database does. You can think of inverted index as a data
structure where data is term oriented rather than document oriented. Let's see how a
simple inverted index can look. For example, let's assume that we have the documents
with only title field to be indexed and they look like this:

•	 ElasticSearch Server (document 1)
•	 Mastering ElasticSearch (document 2)
•	 Apache Solr 4 Cookbook (document 3)

So the index (in a very simple way) could be visualized as follows:

4

Cookbook

ElasticSearch

Mastering

Server

Solr

Term Count Docs

1

1

1

2

11

1

1

Apache

As you can see, each term points to the number of documents it is present in.
This allows for very efficient and fast search, such as the term-based queries.
In addition to that each term has a number connected to it: the count,
telling Lucene how often it occurs.

Of course, the actual index created by Lucene is much more complicated
and advanced, because term vectors (a small inverted index for a single
field, which allows getting all tokens for that particular field) can be stored,
original values of the fields can be stored, markers about deleted documents
can be written, and so on. But all you need to know is how the data is
organized, not what is exactly stored.

Each index is divided into multiple write once and read many time segments.
When indexing, after a single segment was written to disk it can't be updated.
For example, the information about deleted documents is are stored in a
separate file, but the segment itself is not updated.

Introduction to ElasticSearch

[10]

However, multiple segments can be merged together in a process called segments
merge. After forcing segments merge, or after Lucene decides it is time for merging
to be performed, segments are merged together by Lucene to create larger ones.
This can be I/O demanding, however it is needed to clean up some information,
because during that time some information that is not needed anymore is deleted;
for example, the deleted documents. In addition to this, searching with the use of
one larger segment is faster than searching against multiple smaller ones holding
the same data. However, once again, remember that segments merge is I/O
demanding operation and you shouldn't force merging, just configure your
merge policy carefully.

If you want to know what files are building the segments and what
information is stored inside them, please take a look at Apache
Lucene documentation available at http://lucene.apache.org/
core/4_5_0/core/org/apache/lucene/codecs/lucene45/
package-summary.html.

Analyzing your data
Of course the question arises, how the data passed in the documents is transformed
into the inverted index and how the query text is changed into terms to allow
searching. The process of transforming this data is called analysis.

Analysis is done by the analyzer, which is built of tokenizer and zero or more filters,
and can also have zero or more character mappers.

A tokenizer in Lucene is used to divide the text into tokens, which are basically
terms with additional information, such as its position in the original text, and its
length. The results of the tokenizer work is so called token stream where the tokens
are put one by one and are ready to be processed by filters.

Apart from tokenizer, Lucene analyzer is built of zero or more filters that are used
to process tokens in the token stream. For example, it can remove tokens from the
stream, change them, or even produce new ones. There are numerous filters and
you can easily create new ones. Some examples of filters are:

•	 Lowercase filter: It makes all the tokens lowercased
•	 ASCII folding filter: It removes non ASCII parts from tokens

http://lucene.apache.org/core/4_5_0/core/org/apache/lucene/codecs/lucene45/package-summary.html
http://lucene.apache.org/core/4_5_0/core/org/apache/lucene/codecs/lucene45/package-summary.html
http://lucene.apache.org/core/4_5_0/core/org/apache/lucene/codecs/lucene45/package-summary.html

Chapter 1

[11]

•	 Synonyms filter: It is responsible for changing one token to another on
the basis of synonym rules

•	 Multiple language stemming filters: These are responsible for reducing
tokens (actually the text part that they provide) into their root or base
forms, the stem

Filters are processed one after another, so we have almost unlimited analysis
possibilities with adding multiple filters one after another.

The last thing is the character mappings, which is used before tokenizer and is
responsible for processing text before any analysis is done. One of the examples
of character mapper is HTML tags removal process.

Indexing and querying
We may wonder how that all affects indexing and querying when using Lucene and
all the software that is built on top of it. During indexing, Lucene will use analyzer
of your choice to process contents of your document; of course different analyzer
can be used for different fields, so the title field of your document can be analyzed
differently compared to the description field.

During query time, if you use one of the provided query parsers, your query will
be analyzed. However, you can also choose the other path and not analyze your
queries. This is crucial to remember, because some of the ElasticSearch queries are
being analyzed and some are not. For example, the prefix query is not analyzed
and the match query is analyzed.

What you should remember about indexing and querying analysis is that the index
should be matched by the query term. If they don't match, Lucene won't return the
desired documents. For example, if you are using stemming and lowercasing during
indexing, you need to be sure that the term in the query are also lowercased and
stemmed, or your queries will return no results at all.

Lucene query language
Some of the query types provided by ElasticSearch support Apache Lucene query
parser syntax. Because of that, let's go deeper into Lucene query language and
describe it.

Introduction to ElasticSearch

[12]

Understanding the basics
A query is divided by Apache Lucene into terms and operators. A term, in Lucene,
can be a single word or a phrase (group of words surrounded by double quote
characters). If the query is set to be analyzed, the defined analyzer will be used on
each of the terms that form the query.

A query can also contain Boolean operators that connect terms to each other forming
clauses. The list of Boolean operators is as follows:

•	 AND: It means that the given two terms (left and right operand) need to match
in order for the clause to be matched. For example, we would run a query,
such as apache AND lucene, to match documents with both apache and
lucene terms in a document.

•	 OR: It means that any of the given terms may match in order for the clause to
be matched. For example, we would run a query, such as apache OR lucene,
to match documents with apache or lucene (or both) terms in a document.

•	 NOT: It means that in order for the document to be considered a match,
the term appearing after the NOT operator must not match. For example,
we would run a query lucene NOT elasticsearch to match documents
that contain lucene term, but not elasticsearch term in the document.

In addition to that, we may use the following operators:

•	 +: It means that the given term needs to be matched in order for the
document to be considered as a match. For example, in order to find
documents that match lucene term and may match apache term,
we would run a query, such as +lucene apache.

•	 -: It means that the given term can't be matched in order for the document
to be considered a match. For example, in order to find document with
lucene term, but not elasticsearch term we would run a query, such as
+lucene -elasticsearch.

When not specifying any of the previous operators, the default OR operator will
be used.

In addition to all these, there is one more thing; you can use parenthesis to group
clauses together. For example, with something like this:

elasticsearch AND (mastering OR book)

Chapter 1

[13]

Querying fields
Of course, just like in ElasticSearch, in Lucene all your data is stored in fields that
build the document. In order to run a query against a field, you need to provide
the field name, add the colon character, and provide the clause that should be run
against that field. For example, if you would like to match documents with the term
elasticsearch in the title field, you would run a query like this:

title:elasticsearch

You can also group multiple clauses to a single field. For example, if you would
like your query to match all the documents having the elasticsearch term and
the mastering book phrase in the title field, you could run a query like this:

 title:(+elasticsearch +"mastering book")

Of course, the previous query can also be expressed in the following way:

+title:elasticsearch +title:"mastering book"

Term modifiers
In addition to the standard field query with a simple term or clause, Lucene allows us
to modify the terms we pass in the query with modifiers. The most common modifiers,
which you are surely familiar with, are wildcards. There are two wildcards supported
by Lucene the ? and *. The first one will match any character and the second one will
match multiple characters.

Please note by default these wildcard characters can't be used as the
first character in a term because of the performance reasons.

In addition to that, Lucene supports fuzzy and proximity searches with the use
of ~ character and an integer following it. When used with a single word term,
it means that we want to search for terms that are similar to the one we've
modified (so, called fuzzy search). The integer after the ~ character specifies
the maximum number of edits that can be done to consider the term similar.
For example, if we ran a query, such as writer~2, both the terms writer
and writers would be considered a match.

When the ~ character is used on a phrase, the integer number we provide is telling
Lucene how much distance between words is acceptable. For example, let's take the
following query:

title:"mastering elasticsearch"

Introduction to ElasticSearch

[14]

It would match the document with the title field containing mastering
elasticsearch, but not mastering book elasticsearch. However, if we
ran a query, such as title:"mastering elasticsearch"~2, it would result
in both example documents matched.

In addition to that we can use boosting in order to increase our term importance by
using the ^ character and providing a float number. The boost lower than one would
result in decreasing the importance, boost higher than one will result in increasing the
importance, and the default boost value is 1. Please refer to the Default Apache Lucene
scoring explained section in Chapter 2, Power User Query DSL, for further reference what
boosting is and how it is taken into consideration during document scoring.

In addition to all these, we can use square and curly brackets to allow range searching.
For example, if we would like to run a range search on a numeric field we could run
the following query:

price:[10.00 TO 15.00]

The above query would result in all documents with the price field between 10.00
and 15.00 inclusive.

In case of string based fields, we also can run a range query, for example:

name:[Adam TO Adria]

The previous query would result in all documents containing all the terms between
Adam and Adria in the name field including them.

If you would like your range bound or bounds to be exclusive, use curly brackets
instead of the square ones. For example, in order to find documents with the price
field between 10.00 inclusive and 15.00 exclusive, we would run the following query:

price:[10.00 TO 15.00}

Handling special characters
In case you want to search for one of the special characters (which are +, -, &&, ||, !, (,
), { }, [], ^, ", ~, *, ?, :, \, /), you need to escape it with the use of the backslash (\)
character. For example, to search for abc"efg term you need to do something like this:

abc\"efg

Chapter 1

[15]

Introducing ElasticSearch
If you hold this book in your hands, you are probably familiar with ElasticSearch,
at least the core concepts and basic usage. However, in order to fully understand
how this search engine works, let's discuss it briefly.

As you probably know ElasticSearch is production-ready software for building
search-oriented applications. It was originally started by Shay Banon and published
in February 2010. After that it has rapidly gained popularity just within a few years,
and became an important alternative to other open source and commercial solutions.
It is one of the most downloaded open source projects, hitting more than 200,000
downloads a month.

Basic concepts
Let's go through the basic concepts of ElasticSearch and its features.

Index
ElasticSearch stores its data in one or more indices. Using analogies from the SQL
world, index is something similar to a database. It is used to store the documents
and read them from it. As we already mentioned, under the hood, ElasticSearch
uses Apache Lucene library to write and read the data from the index. What one
should remember about is that a single ElasticSearch index may be built of more
than a single Apache Lucene index, by using shards and replicas.

Document
Document is the main entity in the ElasticSearch world (and also in Lucene world).
At the end, all use cases of using ElasticSearch can be brought to a point where
it is all about searching for documents. Document consists of fields and each
field has a name and one or many values (in this case, field is called multi-valued).
Each document may have a different set of fields; there is no schema or imposed
structure. It should look familiar (these are the same rules as for Lucene documents).
In fact, ElasticSearch documents are stored as Lucene documents. From the
client point of view, document is a JSON object (see more about JSON format at
http://en.wikipedia.org/wiki/JSON).

Introduction to ElasticSearch

[16]

Mapping
As you already read in the Introducing Apache Lucene section, all documents are
analyzed before being stored. We can configure how the input text is divided
into tokens, which tokens should be filtered out, or what additional processing,
such as removing HTML tags, is needed. In addition, various features are offered
by ElasticSearch, such as sorting needs information about fields contents. This is
where mapping comes to play: it holds all of these information. Besides the fact that
ElasticSearch can automatically discover field type by looking at its value, sometimes
(in fact usually always) we will want to configure the mappings ourselves to avoid
unpleasant surprises.

Type
Each document in ElasticSearch has its type defined. This allows us to store
various document types in one index and have different mappings for different
document types.

Node
The single instance of the ElasticSearch server is called a node. A single node
ElasticSearch deployment can be sufficient for many simple use cases, but when
you have to think about fault tolerance or you have lots of data that cannot fit in
a single server, you should think about multi-node ElasticSearch cluster.

Cluster
Cluster is a set of ElasticSearch nodes that work together to handle the load bigger
than single instance can handle (both in terms of handling queries and documents).
This is also the solution which allows us to have uninterrupted work of application
even if several machines (nodes) are not available due to outage or administration
tasks, such as upgrade. The ElasticSearch provides clustering almost seamlessly.
In our opinion, this is one of the major advantages over competition; setting up
a cluster in ElasticSearch world is really easy.

Chapter 1

[17]

Shard
As we said previously, clustering allows us to store information volumes that exceed
abilities of a single server. To achieve this requirement, ElasticSearch spread data
to several physical Lucene indices. Those Lucene indices are called shards and the
process of this spreading is called sharding. ElasticSearch can do this automatically
and all parts of the index (shards) are visible to the user as one-big index. Note that
besides this automation, it is crucial to tune this mechanism for particular use case
because the number of shard index is built or is configured during index creation
and cannot be changed later, at least currently.

Replica
Sharing allows us to push more data into ElasticSearch that is possible for a single
node to handle. Replicas can help where load increases and a single node is not
able to handle all the requests. The idea is simple: create additional copy of a shard,
which can be used for queries just as original, primary shard. Note that we get safety
for free. If the server with the shard is gone, ElasticSearch can use replica and no
data is lost. Replicas can be added and removed at any time, so you can adjust their
numbers when needed.

Gateway
During its work, ElasticSearch collects various information about cluster state,
indices settings, and so on. This data is persisted in the gateway.

Key concepts behind ElasticSearch
architecture
ElasticSearch was built with few concepts in mind. The development team wanted to
make it easy to use and scalable, and these core features are visible in every corner of
ElasticSearch. From the architectural perspective, the main features are:

•	 Reasonable default values that allow the user to start using ElasticSearch
just after installing it, without any additional tuning. This includes built-in
discovery (for example, field types) and auto configuration.

•	 Working in distributed mode by default. Nodes assume that there are or
will be a part of the cluster, and during setup nodes try to automatically
join the cluster.

Introduction to ElasticSearch

[18]

•	 Peer-to-peer architecture without single point of failure (SPOF).
Nodes automatically connect to other machines in the cluster for
data interchange and mutual monitoring. This covers automatic
replication of shards.

•	 Easily scalable both in terms of capacity and the number of data by adding
new nodes to cluster.

•	 ElasticSearch does not impose restriction on data organization in the index.
This allows users to adjust to existing data model. As we noted in type
description, ElasticSearch supports multiple data types in a single index
and adjustment to business model includes handling relation between
documents (although, this functionality is rather limited).

•	 Near Real Time (NRT) searching and versioning. Because of distributed
nature of ElasticSearch, there is no possibility to avoid delays and temporary
differences between data located on the different nodes. ElasticSearch tries to
reduce these issues and provide additional mechanisms as versioning.

Working of ElasticSearch
Let's now discuss briefly how ElasticSearch works.

The boostrap process
When the ElasticSearch node starts, it uses multicast (or unicast, if configured) to
find the other nodes in the same cluster (the key here is the cluster name defined
in the configuration) and connect to them. You can see the process illustrated in
the following figure:

Chapter 1

[19]

In the cluster, one of the nodes is elected as the master node. This node is responsible
for managing the cluster state and process of assigning shards to nodes in reaction of
changes in cluster topology.

Note that a master node in ElasticSearch has no importance from the user
perspective, which is different from other systems available (such as the
databases). In practice you do not need to know which node is a master
node; all operations can be sent to any node, and internally ElasticSearch
will do all the magic. If necessary, any node can send subqueries parallel
to other nodes and merge responses to return the full response to the user.
All of this is done without accessing master node (nodes operate in
peer-to-peer architecture).

The master node reads the cluster state and if necessary, goes into recovery process.
During this state, it checks which shards are available and decides which shards
will be the primary shards. After this the whole cluster enters into yellow state.

This means that a cluster is able to run queries but full throughput and all
possibilities are not achieved yet (it basically means that all primary shard
are allocated, but replicas are not). The next thing to do is find duplicated
shards and treat them as replicas. When a shard has too few replicas,
the master node decides where to put missing shards and additional replica
are created based on a primary shard. If everything went well, the cluster
enters into a green state (which means that all primary shard and replicas
are allocated).

Failure detection
During normal cluster work, the master node monitors all the available nodes and
checks if they are working. If any of them are not available for configured amount of
time, the node is treated as broken and process of handling failure starts. This may
mean rebalancing of the cluster—shards, which were present on the broken node
are gone and for each such shard other nodes have to take responsibility. In other
words, for every lost primary shard, a new primary shard should be elected from the
remaining replicas of this shard. The whole process of placing new shards and replicas
can (and usually should) be configured to match our needs. More information about it
can be found in Chapter 4, Index Distribution Architecture.

Introduction to ElasticSearch

[20]

Just to illustrate how it works, let's take an example of three nodes cluster, there will
be a single master node and two data nodes. The master node will send the ping
requests to other nodes and wait for the response. If the response won't come
(actually how many ping requests may fail depends on the configuration), such a
node will be removed from the cluster.

ElasticSearch
Master Node

ElasticSearch
Node 1

ElasticSearch
Node 2

ElasticSearch Cluster

Ping Response

Ping Request

Ping
Request

Communicating with ElasticSearch
We talked about how ElasticSearch is built, but after all, the most important part
for us is how to feed it with data and how to build your queries. In order to do
that ElasticSearch exposes a sophisticated API. The primary API is REST based
(see http://en.wikipedia.org/wiki/Representational_state_transfer)
and is easy to integrate with practically any system that can send HTTP requests.

ElasticSearch assumes that data is sent in the URL, or as the request body as JSON
document (http://en.wikipedia.org/wiki/JSON). If you use Java or language
based on JVM, you should look at Java API, which in addition to everything that
is offered by the REST API has built-in cluster discovery.

It is worth mentioning that Java API is also used internally by the ElasticSearch
itself to do all the node to node communication. You will find more about Java API
in Chapter 8, ElasticSearch Java APIs, but for now let's briefly look on the possibilities
and functionality exposed by this API. Note that we treat this as a little reminder
(this book assumes that you have used these elements already). If not, we strongly
suggest reading about this, for example, our ElasticSearch Server book covers all
this information.

Chapter 1

[21]

Indexing data
ElasticSearch has four ways of indexing data. The easiest way is using the index API,
which allows you to send one document to a particular index. For example, by using
the curl tool (see http://curl.haxx.se/), we can create a new document by using
the following command:

curl -XPUT http://localhost:9200/blog/article/1 -d '{"title": "New

version of Elastic Search released!", "content": "...", "tags":

["announce", "elasticsearch", "release"] }'

The second and third way allows us to send many documents using the bulk API
and the UDP bulk API. The difference between methods is the connection type.
Common bulk command sends documents by HTTP protocol and UDP bulk sends
these using connectionless datagram protocol. This is faster but not so reliable.
The last method uses plugins, called rivers. The river runs on the ElasticSearch
node and is able to fetch data from the external systems.

One thing to remember is that the indexing only takes place on the primary shard,
not on the replica. If the indexing request will be sent to a node, which doesn't have
the correct shard or contains replica, it will be forwarded to the primary shard.

Application

Shard 1
primary

Shard 2
primary

ElasticSearch Node

ElasticSearch Node

Shard 1
replica

Shard 2
replica

ElasticSearch Cluster

Indexing request

F
o

rw
a

rd
to

le
a

d
e

r

Introduction to ElasticSearch

[22]

Querying data
Query API is a big part of ElasticSearch API. Using the Query DSL (JSON based
language for building complex queries), we can:

•	 Use various query types including: simple term query, phrase, range,
boolean, fuzzy, span, wildcard, spatial, and other query

•	 Build complex queries with the use of simple queries combined together
•	 Filter documents, throwing away ones, which does not match selected

criteria without influencing the scoring
•	 Find documents similar to given document
•	 Find suggestions and corrections of a given phrase
•	 Build dynamic navigation and calculate statistics using faceting
•	 Use prospective search and find queries matching given document

When talking about querying, the important thing is that query is not a simple,
single stage process. In general, the process can be divided into two phases,
the scatter phase and the gather phase. The scatter phase is about querying all
the relevant shards of your index. The gather phase is about gathering the results
from the relevant shards, combining them, sorting, processing, and returning to
the client.

Shard 2

Chapter 1

[23]

You can control the scatter and gather phases by specifying
the search type to one of the six values currently exposed by
ElasticSearch. We've talked about query scope in our previous
book ElasticSearch Server, by Packt Publishing.

Index configuration
We already talked about automatic index configuration and ability to guess document
field types and structure. Of course, ElasticSearch gives us the possibility to alter this
behavior. We may, for example, configure our own document structure with the use
of mappings, set the number of shards and replicas index will be built of, configure the
analysis process, and so on.

Administration and monitoring
The administration and monitoring part of API allows us to change the cluster
settings, for example, to tune the discovery mechanism or change index placement
strategy. You can find various information about cluster state or statistics regarding
each node and index. The API for the cluster monitoring is very comprehensive and
example usage will be discussed in Chapter 5, ElasticSearch Administration.

Summary
In this chapter we've looked at the general architecture of Apache Lucene, how it
works, how the analysis process is done, and how to use Apache Lucene query
language. In addition to that we've discussed the basic concepts of ElasticSearch,
its architecture, and internal communication.

In the next chapter you'll learn about the default scoring formula Apache Lucene
uses, what the query rewrite process is, and how it works. In addition to that we'll
discuss some of the ElasticSearch functionality, such as query rescore, multi near
real-time get, and bulk search operations. We'll also see how to use the update API
to partially update our documents, how to sort our data, and how to use filtering to
improve performance of our queries. Finally, we'll see how we can leverage the use
of filters and scopes in the faceting mechanism.

Power User Query DSL
In the previous chapter, we looked at what Apache Lucene is, how its architecture
looks, and how the analysis process is handled. In addition to that we've seen
what Lucene query language is and how to use it. We also discussed ElasticSearch,
its architecture, and core concepts. In this chapter, we will dive deep into ElasticSearch
focusing on the Query DSL. We will first go through how Lucene scoring formula
works before turning to advanced queries. By the end of this chapter we will
have covered:

•	 How default Apache Lucene scoring formula works
•	 What query rewrite is
•	 How does query rescore work
•	 How to send multiple near real-time get operations in a single request
•	 How to send multiple queries in a single request
•	 How to sort our data including nested documents and multivalued fields
•	 How to update our documents that are already indexed
•	 How to use filters to optimize our queries
•	 How to use filters and scopes in ElasticSearch faceting mechanism

Power User Query DSL

[26]

Default Apache Lucene scoring explained
One important thing when talking about query relevance is how the score of the
document is calculated for a query. What is the score? The score is a parameter
that describes how well the document matched the query. In this section, we'll look
at the default Apache Lucene scoring mechanism: the TF/IDF (term frequency/
inverse document frequency) algorithm and how it affects the returned document.
Knowing how this works is valuable when designing complicated queries and
choosing which queries parts should be more relevant than others.

When a document is matched
When a document is returned by Lucene it means that it matched the query we sent.
In this case, the document is given a score. The higher the score value, the more
relevant the document is, at least at the Apache Lucene level and from the scoring
formula point of view. Naturally, the score calculated for the same document on two
different queries will be different and comparing scores between queries usually
doesn't make much sense. One should remember that not only should we avoid
comparing the scores of individual documents returned by different queries, but we
should also avoid comparing the maximum score calculated for different queries.
This is because the score depends on multiple factors, not only the boosts and query
structure, but also on how many terms were matched, in which fields, and the type of
matching that was used on query normalization, and so on. In extreme cases, a similar
query may result in totally different scores for a document, only because we've used a
custom score query or the number of matched terms increased dramatically.

For now, let's get back to the scoring. In order to calculate the score property for a
document, multiple factors are taken into account:

•	 Document boost: It is the boost value given for a document during indexing.
•	 Field boost: It is the boost value given for a field during querying.
•	 Coord: It is the coordination factor that is based on the number of terms the

document has. It is responsible for giving more value to the documents that
contain more search terms compared to other documents.

•	 Inverse document frequency: It is a term based factor telling the scoring
formula how rare the given term is. The lower the inverse document
frequency is, the rarer the term is. The scoring formula uses this factor to
boost documents that contain rare terms.

Chapter 2

[27]

•	 Length norm: It is a field based factor for normalization based on the
number of terms a given field contains (calculated during indexing
and stored in the index). The longer the field, the lesser boost this factor
will give, which means that Apache Lucene scoring formula will favor
documents with fields containing lower terms.

•	 Term frequency: It is a term based factor describing how many times given
term occurs in a document. The higher the term frequency the higher the
score of the document will be.

•	 Query norm: It is a query based normalization factor that is calculated as
sum of a squared weight of each of the query terms. Query norm is used to
allow score comparison between queries, which we said is not always easy
and possible.

The TF/IDF scoring formula
Now let's look at how the scoring formula looks. Keep in mind, that in order to
adjust your query relevance, you don't need to understand that, but it is very
important to at least know how it works.

The Lucene conceptual formula
The conceptual version of the TF/IDF formula looks like:

The previous presented formula is a representation of Boolean model of Information
Retrieval combined with Vector Space Model of Information Retrieval. Let's not
discuss it and let's just jump into the practical formula, which is implemented by
Apache Lucene and is actually used.

The information about Boolean model and Vector Space Model of
Information Retrieval are far beyond the scope of this book. If you would
like to read more about it, start with http://en.wikipedia.org/
wiki/Standard_Boolean_model and http://en.wikipedia.org/
wiki/Vector_Space_Model.

http://en.wikipedia.org/wiki/Standard_Boolean_model
http://en.wikipedia.org/wiki/Standard_Boolean_model
http://en.wikipedia.org/wiki/Vector_Space_Model
http://en.wikipedia.org/wiki/Vector_Space_Model

Power User Query DSL

[28]

The Lucene practical formula
Now let's look at the practical formula Apache Lucene uses:

As you may be able to see, the score factor for the document is a function of query
q and document d. There are two factors that are not dependent directly on query
terms, the coord and queryNorm. These two elements of the formula are multiplied
by the sum calculated for each term in the query.

The sum, on the other hand, is calculated by multiplying the term frequency for the
given term, its inverse document frequency, term boost, and the norm, which is the
length norm we've discussed previously.

Sounds a bit complicated, right? Don't worry, you don't need to remember all of
that. What you should be aware of is what matters when it comes to document
score. Basically there are a few rules which come from the previous equations:

•	 The more rare the term matched is, the higher the score the document
will have

•	 The smaller the document fields are (contain less terms), the higher the score
the document will have

•	 The higher the boost (both given during indexing and querying), the higher
the score the document will have

As we can see, Lucene will give the highest score for the documents that have many
uncommon query terms matched in the document contents, have shorter fields
(less terms indexed), and will also favor rarer terms instead of the common ones.

If you want to read more about the Apache Lucene TF/IDF scoring formula,
please visit Apache Lucene Javadocs for the TFIDFSimilarity class
available at http://lucene.apache.org/core/4_5_0/core/org/
apache/lucene/search/similarities/TFIDFSimilarity.html.

http://lucene.apache.org/core/4_5_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://lucene.apache.org/core/4_5_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Chapter 2

[29]

The ElasticSearch point of view
On top of all this is ElasticSearch which leverages Apache Lucene and thankfully
allows us to change the default scoring algorithm (more about this can be found
in the Altering Apache Lucene scoring section, Chapter 3, Low-level Index Control).
But remember, ElasticSearch is more than just Lucene, because we are not bound
to only rely on Apache Lucene scoring. We have different types of queries where
we can strictly control how the score of the documents is calculated (such as the
custom_boost_factor query, constant_score query, and custom_score query),
we are allowed to use scripting to alter score of the documents, we can use the
rescore functionality introduced in ElasticSearch 0.90 to recalculate the score of the
returned documents, by another query run against top N documents, and so on.

For more information about the queries from Apache Lucene point
of view, please refer to Javadocs, for example, the one available at
http://lucene.apache.org/core/4_5_0/queries/org/
apache/lucene/queries/package-summary.html.

Query rewrite explained
If you ever used queries, such as the prefix query and the wildcard query,
basically any query that is said to be multiterm, you've probably heard about
query rewriting. ElasticSearch (actually Apache Lucene to be perfectly clear)
does that because of the performance reasons. The rewrite process is about
changing the original, expensive query to a set of queries that are far less
expensive from Lucene's point of view.

Prefix query as an example
The best way to illustrate how the rewrite process is done internally is to look at an
example and see what terms are used instead of the original query term. Let's say,
we have the following data in our index:

curl -XPUT 'localhost:9200/clients/client/1' -d
'{
 "id":"1", "name":"Joe"
}'
curl -XPUT 'localhost:9200/clients/client/2' -d
'{
 "id":"2", "name":"Jane"
}'

http://lucene.apache.org/core/4_5_0/queries/org/apache/lucene/queries/package-summary.html
http://lucene.apache.org/core/4_5_0/queries/org/apache/lucene/queries/package-summary.html

Power User Query DSL

[30]

curl -XPUT 'localhost:9200/clients/client/3' -d
'{
 "id":"3", "name":"Jack"
}'
curl -XPUT 'localhost:9200/clients/client/4' -d
'{
 "id":"4", "name":"Rob"
}'
curl -XPUT 'localhost:9200/clients/client/5' -d
'{
 "id":"5", "name":"Jannet"
}'

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

What we would like is to find all the documents that start with the j letter. Simple as
that, we run the following query against our clients index:

curl -XGET 'localhost:9200/clients/_search?pretty' -d '{
 "query" : {
 "prefix" : {
 "name" : "j",
 "rewrite" : "constant_score_boolean"
 }
 }
}'

We've used a simple prefix query; we've said that we would like to find all the
documents with the j letter in the name field. We've also used the rewrite property
to specify the query rewrite method, but let's skip it for now as we will discuss the
possible values of this parameter in the later part of this section.

As the response to the previous query, we've got the following:

{
 ...
 "hits" : {
 "total" : 4,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "clients",

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[31]

 "_type" : "client",
 "_id" : "5",
 "_score" : 1.0, "_source" : {"id":"5", "name":"Jannet"}
 }, {
 "_index" : "clients",
 "_type" : "client",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"id":"1", "name":"Joe"}
 }, {
 "_index" : "clients",
 "_type" : "client",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"id":"2", "name":"Jane"}
 }, {
 "_index" : "clients",
 "_type" : "client",
 "_id" : "3",
 "_score" : 1.0, "_source" : {"id":"3", "name":"Jack"}
 }]
 }
}

As you can see, in response we've got the three documents that have the contents of
the name field starting with the desired character. We didn't specify the mappings
explicitly, so ElasticSearch has guessed the name field mapping and have set it to
string-based and analyzed. You can check that by running the following command:

curl -XGET 'localhost:9200/clients/client/_mapping?pretty'

ElasticSearch's response will be similar to the following code:

{
 "client" : {
 "properties" : {
 "id" : {
 "type" : "string"
 },
 "name" : {
 "type" : "string"
 }
 }
 }
}

Power User Query DSL

[32]

Getting back to Apache Lucene
Now let's take a step back and look at Apache Lucene again. If you recall what Lucene
inverted index is built of, you can tell that it contains a term, count, and document
pointer (if you don't recall, please refer to the Introduction to Apache Lucene section in
Chapter 1, Introduction). So, let's see how the simplified view of the index may look for
the previous data we've put to the clients index:

What you see in the column with the term text is quite important. If we look at
ElasticSearch and Apache Lucene internals, you can see that our prefix query was
rewritten to the following Lucene query:

ConstantScore(name:jack name:jane name:joe)

This means that our prefix query was rewritten to a constant score query, that consists
of Boolean query, which is built of three terms queries. What Apache Lucene did
was enumerating the terms from the index and constructing a new query using
this information. Of course, if we would be allowed to compare a query that is not
rewritten to a rewritten one, we would see a performance increase with the rewritten
query, especially on indices with a larger amount of distinct terms.

If we would like to construct the rewritten query manually, we could run a query
something similar to the following code (we've put the contents of this query in
constant_score_query.json file):

{
 "query" : {
 "constant_score" : {
 "query" : {
 "bool" : {
 "should" : [
 {
 "term" : {
 "name" : "jack"
 }
 },

Chapter 2

[33]

 {
 "term" : {
 "name" : "jane"
 }
 },
 {
 "term" : {
 "name" : "joe"
 }
 }
]
 }
 }
 }
 }
}

Now let's look at the possibilities of configuring the behavior of query rewriting.

Query rewrite properties
As we already said we can use the rewrite parameter of any multiterm query
(such as the ElasticSearch prefix and wildcard queries) to control how we want
the query to be rewritten, we place the rewrite parameter inside the JSON object
responsible for the actual query, for example, like the following code:

{
 "query" : {
 "prefix" : {
 "name" : "j",
 "rewrite" : "constant_score_boolean"
 }
 }
}

Power User Query DSL

[34]

Now, let's look at what options we have when it comes to the value of this parameter:

•	 scoring_boolean: This rewrite method translates each generated term into a
Boolean should clause in Boolean query. This query rewrite method may be
CPU intensive (because the score for each term is calculated and kept), and for
queries that have many terms may exceed the Boolean query limit, which is set
to 1024. Also, this query keeps the computed score. The default Boolean query
limit can be changed by setting the index.query.bool.max_clause_count
property in the elasticsearch.yml file. However, please remember that the
more Boolean queries are produced, the lower the query performance may be.

•	 constant_score_boolean: This rewrite method is similar to the
scoring_boolean rewrite method described previously, but less
CPU demanding because scoring is not computed and instead of
that, each term receives a score equal to the query boost, which is
one by default, and can be set using the boost property. Similar to
the scoring_boolean rewrite method, this method can also hit
the maximum Boolean clauses limit.

•	 constant_score_filter: As Apache Lucene Javadocs state, this rewrite
method rewrites the query by creating a private filter by visiting each term
in a sequence and marking all documents for that term. Matching documents
are given a constant score equal to the query boost. This method is faster than
the scoring_boolean and constant_score_boolean methods, when the
number of matching terms or documents is not small.

•	 top_terms_N: A rewrite method that translates each generated term into
a Boolean should be a clause in a Boolean query and keeps the scores as
computed by the query. However, unlike the scoring_boolean rewrite
method, it only keeps the N number of top scoring terms to avoid hitting
the maximum Boolean clauses limit.

•	 top_terms_boost_N: It is a rewrite method similar to the top_terms_N one,
but the scores are only computed as the boost, not the query.

When the rewrite property is set to constant_score_auto
value or not set at all, the value of constant_score_filter or
constant_score_boolean will be used depending on the query
and how it is constructed.

Chapter 2

[35]

Let's go through one more example. If we would like our example query to use the
top_terms_N with N equal to 10, our query would look like this:

{
 "query" : {
 "prefix" : {
 "name" : "j",
 "rewrite" : "top_terms_10"
 }
 }
}

Before we finish the query rewrite section of this chapter, we should ask ourselves one
last question: when to use which rewrite types? The answer to this question greatly
depends on your use case, but to summarize, if you can live with lower precision
(but higher performance), you can go for the top N rewrite method. If you need high
precision (but lower performance), choose the Boolean approach.

Rescore
Sometimes it is handy to change the ordering of documents already returned by
the query. The reasons for such behavior can vary. One of the reasons may be
performance, for example, calculating target ordering is very costly in terms of
performance and we would like to do this on the subset of documents returned
by the original query. You can imagine that rescoring gives us many great
opportunities for business use cases. Now let's look at this functionality and
how it can be useful for us.

Understanding rescore
Rescore in the ElasticSearch is the process of recalculation of the score for
a defined number of documents returned by the query. This means that
ElasticSearch takes first N documents for given query and calculates their
score using provided rescore definition.

Example Data
Our example data is stored in the documents.json file (provided with the book)
and can be indexed with the following command:

curl -XPOST localhost:9200/_bulk?pretty --data-binary @documents.json

Power User Query DSL

[36]

Query
Let's start with a simple query that looks like this:

{
 "fields" : ["title", "available"],
 "query" : {
 "match_all" : {}
 }
}

It returns all the documents from the index. Every document returned by the query
will have the score equal to 1.0, because of the match_all query type. This is enough
to show how rescore affects our result set. One more thing about the query is that
we've specified which fields we want in the results for each document: title
and available.

Structure of the rescore query
The example query with rescore looks like this:

{
 "fields" : ["title", "available"],
 "query" : {
 "match_all" : {}
 },
 "rescore" : {
 "query" : {
 "rescore_query" : {
 "custom_score" : {
 "query" : {
 "match_all" : {}
 },
 "script" : "doc['year'].value"
 }
 }
 }
 }
}

Chapter 2

[37]

In the previous example, in the rescore object you can see a query object. When this
book was written query was the only option, but in the future versions we may expect
other ways to affect the resulting score. In our case, we use a simple query that
returns all the documents and every document has score equal to value of year field
(please, don't even ask about the business sense of this query!).

If we save this query in the query.json file and send it using the command curl
localhost:9200/library/book/_search?pretty -d @query.json, we should
see the following documents (we omit the structure of the response):

"_score" : 1962.0,
"title" : "Catch-22",
"available" : false
"_score" : 1937.0,
"title" : "The Complete Sherlock Holmes",
"available" : false
"_score" : 1930.0,
"title" : "All Quiet on the Western Front",
"available" : true
"_score" : 1887.0,
"title" : "Crime and Punishment",
"available" : true

As we can see, ElasticSearch found all the documents from the original query.
Now look at the score of the documents. ElasticSearch took the first N documents
and applied the second query to them. In the result, the score of those documents
is the sum of the score from the first and the second query.

As you know, scripts execution can be demanding when it comes to performance;
that's why we've used it as the second query. If our initial, match_all, query (used
in the previous example) would return thousands of results, calculating script based
scoring for all those can affect query performance. Rescore gave us the possibility
to only calculate such scoring on the top N documents and thus reduce the
performance impact.

Now let's see how to tune this behavior and what parameters are available.

Power User Query DSL

[38]

Rescore parameters
In the query under the rescore object, we may use the following parameters:

•	 window_size (defaults to sum of the from and size parameters): It gives
the information connected with the N documents mentioned previously.
The window_size parameter is the number of documents used for
rescoring on every shard.

•	 query_weight (defaults to one): The resulting score of the original query will
be multiplied by this value before adding the score generated by rescore.

•	 rescore_query_weight (defaults to one): The resulting score of the rescore
will be multiplied by this value before adding the score generated by the
original query.

•	 rescore_mode (defaults to total): Introduced in ElasticSearch 0.90.3
(before 0.90.3 ElasticSearch behaved like this parameter would be
set to total), it defines how the score of the rescored documents are
calculated. The possible values are total, max, min, avg, and multiply.
When setting this parameter to total, the final score of the document
will be equal to the sum of original query score and the rescore query
score. When setting this parameter to max, the maximum of original
query score and rescore query score will be given to the document.
Similar to max, when setting the rescore_mode to min, the minimum
value of the original query score and rescore query score will be given
to the document. You can guess that when choosing avg, the average
of both query scores will be given to the document, and when setting
this parameter to multiply, those scores will be multiplied.

For example, the target score for the document when using rescore_mode equal
to total is equal to:

original_query_score * query_weight + rescore_query_score *
 rescore_query_weight

Please remember that the rescore_mode parameter is not available until
ElasticSearch 0.90.3. In the versions prior to ElasticSearch 0.90.3, the rescore
mechanism acts as the default value of total would be used.

Chapter 2

[39]

To sum up
Sometimes we want to show results, where the ordering of the first documents on the
page is affected by some additional rules. Unfortunately, this cannot be achieved by
the rescore functionality. The first idea points to the window_size parameter, but this
parameter, in fact, is not connected with the first documents on the result list, but with
number of results returned on every shard. In addition, window_size cannot be less
than the page size. (If it is less, ElasticSearch silently uses page size). Also, one very
important thing, rescoring cannot be combined with sorting, because sorting is done
before the changes to the documents score are done by rescoring, and thus sorting
won't take the newly calculated score into consideration.

The previously mentioned limitations and the lack of possibility of using several
different rescorings (for example, one rescore definition for first three positions
on the result list and the second for the following five) limits the usefulness of
this functionality, and should be remembered before using this functionality.

Bulk Operations
In several examples present in this book, you are holding the present sample data
in bulk indexing format, which allows us to effectively send data to ElasticSearch.
However, ElasticSearch exposes batch functionality for fetching the data and also for
searching. It is worth mentioning that similar to bulk indexing, these solutions allows
us to group several request together, where each request may have its own target
index and type. Let's look at the possibilities of those.

MultiGet
The MultiGet operation is available via the _mget endpoint and allows fetching
several documents using a single request. Similar to the RealTime Get functionality
documents are fetched in real-time fashion, ElasticSearch will return documents that
were sent to indexing regardless of whether they are already available for searching
or are still waiting to be visible for queries. Let's look at the example command:

curl localhost:9200/library/book/_mget?fields=title -d '{
 "ids" : [1,3]
}'

Power User Query DSL

[40]

It fetches two documents with given identifiers from the index and type defined in
the URL. In the previous example, we've also set the list of fields that we would like
to be returned (with the use of the field request parameter). ElasticSearch returns
the list of documents in the following form:

{
 "docs" : [{
 "_index" : "library",
 "_type" : "book",
 "_id" : "1",
 "_version" : 1,
 "exists" : true,
 "fields" : {
 "title" : "All Quiet on the Western Front"
 }
 }, {
 "_index" : "library",
 "_type" : "book",
 "_id" : "3",
 "_version" : 1,
 "exists" : true,
 "fields" : {
 "title" : "The Complete Sherlock Holmes"
 }
 }]
}

Our example can also be rewritten into more compact form:

curl localhost:9200/library/book/_mget?fields=title -d '{
 "docs" : [{ "_id" : 1}, { "_id" : 3}]
}'

This form is handier for fetching documents from various indices and types, or when
we want to return various sets of fields. In this case, the information contained in the
address is treated as default value. For example, let's look at the following query:

curl localhost:9200/library/book/_mget?fields=title -d '{
 "docs" : [
 { "_index": "library_backup", "_id" : 1, "fields": ["otitle"]},
 { "_id" : 3}
]
}'

Chapter 2

[41]

This query returns two documents with identifiers equal to 1 and 3, but the first of
them is fetched from the library_backup index and second one is fetched from the
library index (because the library index is defined in the URL and thus is taken
as the default value). In addition to that, in case of the first document, we limit the
returned fields to one named otitle.

With the release of ElasticSearch 1.0, the MultiGet API will allow us to
specify the version of the document that we want to operate on. If the
version of the document won't match the one provided in the request,
ElasticSearch will not perform the MultiGet operation. The additional
parameters are version, which allows us to pass the version we are
interested in; the second parameter is called version_type and
supports two values: internal and external.

MultiSearch
Similar to MultiGet, the MultiSearch functionality allows us to group several search
requests into one package. However, the grouping is slightly different, more similar
to how bulk indexing looks. ElasticSearch parses the input as lines, where every pair
of lines contains information about the target index along with additional parameters
and a query itself. Look at the following, simple example:

curl localhost:9200/library/books/_msearch?pretty --data-binary '
{ "type" : "book" }
{ "filter" : { "term" : { "year" : 1936} }}
{ "search_type": "count" }
{ "query" : { "match_all" : {} }}
{ "index" : "library-backup", "type" : "book" }
{ "sort" : ["year"] }
'

Power User Query DSL

[42]

As you can see, the request was sent to _msearch endpoint. The index and type given
in the path is optional and is used as the default value for odd lines, which define
target index and type for the query. These lines can contain information about type of
the search (search_type) and information about routing or hints for query execution
(preference). Because each of these parameters is not obligatory, in the special case,
line can contain empty object ({}) or even an empty line. The even lines of the request
are responsible for carrying the actual queries. Now let's look at the result for the
previous request:

{
 "responses" : [{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 ...
 }]
 }
 },
 ...
 {
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 4,
 "max_score" : null,
 "hits" : [{
 ...
 }]
 }
 }]
}

Chapter 2

[43]

The returned JSON contains results response object with array of particular
responses from queries from batch. As we said earlier, MultiSearch allows us
to group totally independent queries together, so documents returned by each
query (omitted in example) may have different structure according to the data
placed in the particular index.

Note that like in bulk indexing, request does not allow any additional
indentation. Every line has clear defined purpose: control information or
query. So make sure that every line is followed by appropriate new line
character and the tool used for sending query does not change anything
in data send. This is why, in the curl command, we use --data-binary
instead of -d, which does not preserve new line characters.

Sorting data
When you send your query to ElasticSearch, the returned documents list is by
default sorted by calculated document score (we already talked about it in the
Default Apache Lucene scoring explained section in this chapter). This is usually
exactly what we want: the first document from the results is the one that the
query wanted to capture. However, there are times when we want to change
this ordering. It is very easy in our example, because we've used single term
string data. Let's look at the following example:

{
 "query" : {
 "terms" : {
 "title" : ["crime", "front", "punishment"],
 "minimum_match" : 1
 }
 },
 "sort" : [
 { "section" : "desc" }
]
}

The previous query returns all documents with at least one of the mentioned terms
in the title field and sorts those results on the basis of the section field.

We can also define sorting behavior for documents that doesn't have the value in the
section field by adding the missing property to the sort section. For example,
the sort section of the previous query could look like this:

{ "section" : { "order" : "asc", "missing" : "_last" }}

Power User Query DSL

[44]

Sorting with multivalued fields
With versions prior to 0.90, ElasticSearch had problems with sorting on the field that
had multiple values in their contents. Attempts to sort on this field resulted in an error
similar to the following one: [Can't sort on string types with more than one
value per doc, or more than one token per field]. In fact, sorting on such
fields doesn't make much sense as ElasticSearch doesn't know which value to choose
from the ones that were indexed. However, with the introduction of ElasticSearch
0.90, we are allowed to sort on a multivalued field. For example, let's say that our data
contains the release_dates field that can have multiple release dates for a movie
(for example, in different countries). If we are using ElasticSearch 0.90, we could
send the following query:

{
 "query" : {
 "match_all" : {}
 },
 "sort" : [
 {"release_dates" : { "order" : "asc", "mode" : "min" }}
]
}

Note that in our case, the query section is redundant and assumed by default, so in
the next example we will omit it.

In this case, ElasticSearch will choose the minimal value from the release_dates
field for every document and sort on the basis of that value. The mode parameter
can be set to the following values:

•	 min: It is the default value for ascending sorting. ElasticSearch takes
the lowest value from available tokens for each document.

•	 max: It is the default value for descending sorting. ElasticSearch takes
the greatest value from tokens for each document.

•	 avg: ElasticSearch takes an average from tokens in the field for
each document.

•	 sum: ElasticSearch takes sum of all the values from the field for
each document.

Note that the last two can be only used with numeric fields. However, the current
implementation accepts avg and sum for text fields, but the results are not as you
would expect and it is not recommended for usage.

Chapter 2

[45]

Sorting with multivalued geo fields
ElasticSearch version 0.90.0RC2 introduces the possibility of sorting one field with
multiple coordinates. This feature works exactly the same as previously mentioned
sorting, of course from the user's perspective. Let's look at this a little bit closer
by using a real example. We will try to find the nearest branch in a given country.
For example, let's assume that we have the following mappings:

{
 "mappings": {
 "poi": {
 "properties": {
 "country": { "type": "string" },
 "loc": { "type": "geo_point" }
 }
 }
 }
}

And now a single sample data record that looks like this:

{ "country": "UK", "loc": ["51.511214,-0.119824", "53.479251,
-2.247926", "53.962301,-1.081884"] }

Our query is a very simple one, which looks like this:

{
 "sort": [{
 "_geo_distance": {
 "loc": "51.511214,-0.119824",
 "unit": "km",
 "mode" : "min"
 }
 }]
}

Power User Query DSL

[46]

As you can see, we have a single document with multiple geographical points in it.
Let's now try to run our query against that document and see the results:

{
 "took" : 21,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : null,
 "hits" : [{
 "_index" : "map",
 "_type" : "poi",
 "_id" : "1",
 "_score" : null, "_source" : {
 "country": "UK", "loc": ["51.511214,-0.119824",
 "53.479251,-2.247926", "53.962301,-1.081884"] }
 ,
 "sort" : [0.0]
 }]
 }
}

As you can see, the query gives us a sort section like this one: "sort" : [0.0].
This is because our geographical point in the query is exactly the same as the one
defined in the documents. However, if you would change the mode property of the
query to max, the results would be different and the highlighted part would look
like this:

"sort" : [280.4459406165739]

ElasticSearch 0.90.1 introduced the possibility of using the avg value as
the value of the mode property for geographical distance sorting.

Chapter 2

[47]

Sorting with nested objects
One last thing about sorting and ElasticSearch 0.90 and newer is that we are now
allowed to sort using fields defined in the nested objects. Using fields from nested
documents for sorting works both for documents with explicit nested mappings
(when using type="nested" in the mappings), as well as, when using the object
type. However, there are some slight differences one needs to remember.

Assume that the index contains the following data:

{
 "country": "PL", "cities": { "name": "Cracow", "votes": {
 "users": "A" }}
}
{
 "country": "EN", "cities": { "name": "York", "votes": [{"users":
 "B"}, { "users": "C" }]}
}
{
 "country": "FR", "cities": { "name": "Paris", "votes": {
 "users": "D"} }
}

As you can see, there are repeatedly nested objects and some data may contain
multiple values (for example, multiple votes).

Let's look at the following query:

{
 "sort": [{ "cities.votes.users": { "order": "desc", "mode":
 "min" }}]
}

The previous query will result in documents that are sorted in the descending order by
the lowest value taken from the table users. However, if we used a subdocument that
was indexed as an object type, we could simplify the query to the following one:

{
 "sort": [{ "users": { order: "desc", mode: "min" }}]
}

Power User Query DSL

[48]

We can simplify the query because when using the object type, the whole
object structure is stored as a single Lucene document. In case of nested type,
ElasticSearch requires more accurate field information, because those documents
are actually separate Lucene documents. Sometimes it is more convenient to
just use notation with the nested_path property and write a query like this:

{
 "sort": [{ "users": { "nested_path": "cities.votes", "order":
 "desc", "mode": "min" }}]
}

Please note that we can also use the nested_filter parameter, which works only
with the nested documents (the ones explicitly marked as nested). Thanks to this,
we can provide a filter that will exclude documents from sorting, but not from the
query results.

Update API
When you index a new document, the underlying Lucene library analyzes every
field and generates token stream, which after additional filtering hits the inverted
index. During this process, some input information is thrown away as unnecessary.
This information may be, for example, position of particular words (if term vectors
are not stored), some words (when using stop words or change words into its
synonyms), or inflections (when using stemming). This is why there is no possibility
of updating a Lucene document in the index and every time, when we want to
change a document, we have to send all the fields to the index. ElasticSearch
bypasses this problem by using _source pseudo field for storing and retrieving
the original field values of the document. When we want to update a document,
ElasticSearch takes the value of the written in the _source field, makes the desired
changes and sends the new document to the index. Of course, the _source field
must be enabled for this feature to work. The important limitation is that the update
command can only update one particular document, and update by query is still
officially unsupported.

If you are not familiar with how Apache Lucene analysis works or any
of the mentioned terms, please refer to the Introduction to Apache Lucene
section in Chapter 1, Introduction to ElaticSearch.

From the API point of view, the update is executed by sending a request to the
endpoint, which address is built by adding _update to the address of the particular
document, for example, /library/book/1/_update. Now it's time to describe
what this functionality offers.

Chapter 2

[49]

As an example, for the rest of this section we will use the document indexed by the
following command:

curl -XPUT localhost:9200/library/book/1 -d '{
 "title": "The Complete Sherlock Holmes","author": "Arthur Conan
 Doyle","year": 1936,"characters": ["Sherlock Holmes","Dr.
 Watson", "G. Lestrade"],"tags": [],"copies": 0, "available" :
 false, "section" : 12
}'

Simple field update
The first use case is to change a single field value of chosen document. For example,
let's look at the following command:

curl -XPOST localhost:9200/library/book/1/_update -d '{
 "doc" : {
 "title" : "The Complete Sherlock Holmes Book",
 "year" : 1935
 }
}'

In the previous example, we've changed two fields in the document, the title and
the year fields. ElasticSearch responds with a reply similar to the one we see when
we send the document for indexing:

{"ok":true,"_index":"library","_type":"book","_id":"1","_version"
 2}

Let's now fetch the document and see if the fields were updated by running the
following command:
curl -XGET localhost:9200/library/book/1?pretty

The response to the above command is as follows:
{
 "_index" : "library",
 "_type" : "book",
 "_id" : "1",
 "_version" : 2,
 "exists" : true, "_source" : {"title":"The Complete Sherlock
 Holmes Book","author":"Arthur Conan
 Doyle","year":1935,"characters":["Sherlock Holmes","Dr.
 Watson","G.
 Lestrade"],"tags":[],"copies":0,"available":false,
 "section":12}
}

As we can see in the _source field, the title and the year fields were updated.
Let's go to the next example which uses scripting.

Power User Query DSL

[50]

Conditional modifications using scripting
Sometimes it is convenient to add some additional logic when modifying a document
and that's why ElasticSearch allows us to use scripting along with the update API.
For example, we can send a request like the following one:

curl localhost:9200/library/book/1/_update -d '{
 "script" : "if(ctx._source.year == start_date) ctx._source.year
 = new_date; else ctx._source.year = alt_date;",
 "params" : {
 "start_date" : 1935,
 "new_date" : 1936,
 "alt_date" : 1934
 }
}'

As you can see, the script field defines what to do with the current document.
This can be any script. We can also refer to the ctx variable holding document
source. As usually, we can define additional variables, which can be used in script.
Using ctx._source, we can modify current fields or create new ones (ElasticSearch
will create a new field, when you refer to the field, which does not exist). This is
exactly what happened in the example previously in ctx._source.year = new_date.
We can also remove fields using the remove() method, for example:

 curl localhost:9200/library/book/1/_update -d '{
 "script" : "ctx._source.remove(\"year\");"
}'

Creating and deleting documents using the
Update API
Update API is not only about the modification of a single field, but it can also be used
to manipulate whole documents. The upsert feature gives us power to create a new
document when document addresses by the URL we've used do not exist. Let's look
at the following command:

curl localhost:9200/library/book/1/_update -d '{
 "doc" : {
 "year" : 1900
 },
 "upsert" : {
 "title" : "Unknown Book"
 }
}'

Chapter 2

[51]

It sets the year field for the existing document (one in the library index, with book
type and identifier of 1). However, if the document is non-existing, it would have
been created with the title field given in the upset section. Just for the record,
this example can also be rewritten using scripting:

curl localhost:9200/library/book/1/_update -d '{
 "script" : "ctx._source.year = 1900",
 "upsert" : {
 "title" : "Unknown Book"
 }
}'

The last interesting feature allows us to conditionally remove the whole document.
This can be achieved by setting ctx.op value to delete. For example, the following
command will remove the document from the index:

curl localhost:9200/library/book/1/_update -d '{
 "script" : "ctx.op = \"delete\""
}'

Of course, we may implement more advanced logic using scripts and delete the
document only when a certain condition is met.

Using filters to optimize your queries
ElasticSearch allows us to make different kinds of queries which you are probably
familiar with. However, queries is not the only thing we are allowed to use when
it comes to choosing which documents should be matched and which ones should
be returned. Most of the queries exposed by ElasticSearch query DSL have their
counterpart and can be used by wrapping them into the following query types:

•	 constant_score

•	 filtered

•	 custom_filters_score

So the question can arise "why bother using filtering, when we can just use queries?".
We will try to answer that question right now.

Power User Query DSL

[52]

Filters and caching
First of all, filters are very good candidates for caching and as you may have expected,
ElasticSearch provides a special cache, the filter cache for storing results of filters.
What's more, cached filters don't require too much memory (it only carries the
information about which documents matche the filter) and can be easily reused by
consecutive queries run against the same filter to greatly increase query performance.
Imagine that you are running a simple query like this one:

{
 "query" : {
 "bool" : {
 "must" : [
 {
 "term" : { "name" : "joe" }
 },
 {
 "term" : { "year" : 1981 }
 }
]
 }
 }
}

It returns the documents that have the joe value in the name field and the 1981
value in the year field. It's a simple query, but for example, it can be used to get
soccer players with the given name, who were born in the specified year.

In the current form, the query will be cached with both those conditions bound
together; so if we search for the same name, but with different birth year,
ElasticSearch won't be able to use any of the information it got during the query.
So now, let's think about how to optimize the query. There can be many names,
so it is not a perfect candidate for caching, but the year is (we can't have too
many distinct values for the year field, right?). So we introduce a different query,
one that will combine a simple query with a filter:

{
 "query" : {
 "filtered" : {
 "query" : {
 "term" : { "name" : "joe" }
 },
 "filter" : {
 "term" : { "year" : 1981 }
 }
 }
 }
}

Chapter 2

[53]

We've used the filtered query to include both query and filter elements. After the
first run of the previous query, our filter will be cached by ElasticSearch and reused
whenever the same filter will be used in a different query. That way, ElasticSearch
doesn't have to load the information about it multiple times.

Not all filters are cached by default
Caching is great, but in fact, not all filters are cached by ElasticSearch by default.
This is because some of the filters in ElasticSearch work using the field data cache,
a special type of cache, which is also used during sorting using field values and
when calculating faceting results. The following filters are not cached using the
filter cache by default:

•	 numeric_range

•	 script

•	 geo_bbox

•	 geo_distance

•	 geo_distance_range

•	 geo_polygon

•	 geo_shape

•	 and

•	 or

•	 not

Although the last three of the mentioned filter types do not use the field cache,
they manipulate other filters and thus, are not cached. This is because the filters
they manipulate are already cached if needed.

Power User Query DSL

[54]

Changing ElasticSearch caching behavior
If we wish, ElasticSearch allows us to turn on and off the caching mechanism for
filters with the use of _cache and _cache_key properties. Let's get back to our
example and specify that we want to store our term filter cache result under the
key, named year_1981_cache:

{
 "query" : {
 "filtered" : {
 "query" : {
 "term" : { "name" : "joe" }
 },
 "filter" : {
 "term" : {
 "year" : 1981,
 "_cache_key" : "year_1981_cache"
 }
 }
 }
 }
}

And now, let's disable caching of the term filter for the same query:

{
 "query" : {
 "filtered" : {
 "query" : {
 "term" : { "name" : "joe" }
 },
 "filter" : {
 "term" : {
 "year" : 1981,
 "_cache" : false
 }
 }
 }
 }
}

Chapter 2

[55]

Why bother naming the key for the cache?
The question that we may now ask is if we should bother using the _cache_key
property at all, can't ElasticSearch do it by itself? Of course it can and it will handle
caching when needed, but sometimes we may want to have a bit more control over
what is happening. For example, we know that we run our query very rarely and
we want to periodically clear the cache of our previous query. If we didn't specify
the _cache_key, we would be forced to clear the whole filter cache; but we did
specify it, so we can just run the following command:

curl -XPOST 'localhost:9200/users /_cache/clear?filter_keys=year_1981_
cache'

When to change the ElasticSearch filter
caching behavior
Of course, there are times when you should know better about what you want to
achieve than ElasticSearch can predict. For example, you may want to limit your
queries to a few locations using the geo_distance filter and you use this filter
alongside many queries with the same parameters of your script filter, which
will be used many times along with the same script. In this scenario, it may be
worthwhile turning on caching for those filters. Every time you should ask yourself
a question "will I use that filter many times or not?" Putting data into the cache will
consume resources and you should aim to avoid consuming resources when it is not
necessary to do so.

The terms lookup filter
Caching and standard queries is not everything. With the release of ElasticSearch
0.90, we've got a neat filter which can help us when we need to pass multiple
terms to a query that are fetched from ElasticSearch itself (something such as the
SQL IN operator).

Let's take a simple example. Let's say we have an online book shop and we store the
information about which books were bought by our users, the clients of our shop.
The books index looks very simple (we've stored it in the books.json file):

{
 "mappings" : {
 "book" : {
 "properties" : {
 "id" : { "type" : "string", "store" : "yes", "index" :
 "not_analyzed" },

Power User Query DSL

[56]

 "title" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" }
 }
 }
 }
}

In the previous code, there's nothing unusual; there's just the identifier of the book
and its title.

Now, let's look at the clients.json file, which stores the mappings describing the
index structure for the clients index:

{
 "mappings" : {
 "client" : {
 "properties" : {
 "id" : { "type" : "string", "store" : "yes", "index" :
 "not_analyzed" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "books" : { "type" : "string", "store" : "yes", "index" :
 "not_analyzed" }
 }
 }
 }
}

We have the client's identifier, name, and the array of book identifiers he/she bought.
In addition to that, let's index some example data:

curl -XPUT 'localhost:9200/clients/client/1' -d '{
 "id":"1", "name":"Joe Doe", "books":["1","3"]
}'
curl -XPUT 'localhost:9200/clients/client/2' -d '{
 "id":"2", "name":"Jane Doe", "books":["3"]
}'
curl -XPUT 'localhost:9200/books/book/1' -d '{
 "id":"1", "title":"Test book one"
}'
curl -XPUT 'localhost:9200/books/book/2' -d '{
 "id":"2", "title":"Test book two"
}'
curl -XPUT 'localhost:9200/books/book/3' -d '{
 "id":"3", "title":"Test book three"
}'

Chapter 2

[57]

Now imagine that we want to show all the books bought by a given user, for example,
for user with the identifier 1. Of course, we could run a get request like this curl
-XGET 'localhost:9200/clients/client/1' to return the document representing
our client and just take the value of the books field and run another query like this:

curl -XGET 'localhost:9200/books/_search' -d '{
 "query" : {
 "ids" : {
 "type" : "book",
 "values" : ["1", "3"]
 }
 }
}'

However, ElasticSearch 0.90 introduced the term, lookup filter, which allows us to
run the two previous queries in a single filtered query, which could look like this:

curl -XGET 'localhost:9200/books/_search' -d '{
 "query" : {
 "filtered" : {
 "query" : {
 "match_all" : {}
 },
 "filter" : {
 "terms" : {
 "id" : {
 "index" : "clients",
 "type" : "client",
 "id" : "1",
 "path" : "books"
 },
 "_cache_key" : "terms_lookup_client_1_books"
 }
 }
 }
 }
}'

Please note the parameter _cache_key value. As you can see, it is set to
terms_lookup_client_1_books, which contains the identifier of the
client. Please be aware of this, because if you'll use the same _cache_key
value for different queries, you'll probably get results that are wrong and
unexpected. This is because ElasticSearch will cache results for one query
under the specified key and then reuse them for the different query.

Power User Query DSL

[58]

Now, let's look at the response to the previous query:

{
 ...
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "books",
 "_type" : "book",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"id":"1", "title":"Test book
 one"}
 }, {
 "_index" : "books",
 "_type" : "book",
 "_id" : "3",
 "_score" : 1.0, "_source" : {"id":"3", "title":"Test book
 three"}
 }]
 }
}

This is exactly what we were looking for. Awesome!

How does it work?
Let's look at the query we've sent to ElasticSearch. As you can see, it is a simple
filtered query, with the query matching all the documents and the terms filter.
But this time, the terms filter is used in a slightly different manner—instead of
specifying the terms we are interested in explicitly, we will let ElasticSearch load
them for us from another index.

As you can see, we are interested in running the filter against the id field, because of
the name of the object grouping all other properties. The next things are the new
properties: index, type, id, and path. The index property specifies which index
we want the terms to be loaded from (in our case it is the clients index). The type
property tells ElasticSearch which document type we are interested in (in our case it
is client). The id property specifies the document identifier from the index and type
we've just specified by using the index and type properties. Finally, the path property
tells ElasticSearch from which field the terms should be loaded, which in our case is
the books field in the clients index.

Chapter 2

[59]

So to sum up, what ElasticSearch will do is loading the terms from the books field of
the clients index, from a document with ID 1 and type client. The loaded values
will be then used in the terms filter to filter the query to only those documents from
the books index (because we've run our query against that index), that have the given
values in the id field (because of the terms filter name, which is id).

Please note that the _source field needs to be stored in order for
terms lookup functionality to work.

Performance considerations
The previous query execution is already optimized by ElasticSearch internals,
by using caching mechanism. The terms will be loaded in the filter cache under
the key provided in the query. In addition to that, once the terms (which in our
case are books identifiers) are loaded into the cache, they won't be loaded during
consecutive executions, which means that ElasticSearch will be able to execute
such query faster.

If your data that will be used in the terms lookup is not large, it is recommended
for your index (in our case clients one) to have only a single shard and for that
single shard to have replicas on all the nodes that the books index is present at.
This is recommended because ElasticSearch will prefer to execute the terms lookup
query locally to avoid unnecessary network traffic, network latency, and thus,
improve performance.

Loading terms from inner objects
Please change that to: If our clients data had the books property as an array of
inner objects instead of array of values, we would have to specify the id property
of our query to include information about object nesting. So we would change
the "id": "books" to "id": "books.book".

Power User Query DSL

[60]

Terms lookup filter cache settings
As we've mentioned, in order to provide the terms lookup functionalities,
ElasticSearch introduced a new type of cache, which uses a fast LRU
(Least Recently Used) cache to handle terms caching.

If you want to learn more about what LRU cache is and how it works,
please look at the following URL: http://en.wikipedia.org/
wiki/Page_replacement_algorithm#Least_recently_used

In order to configure this cache, one can set the following properties in the
elasticsearch.yml file:

•	 indices.cache.filter.terms.size: It defaults to 10mb and specifies the
maximum amount of memory ElasticSearch can use for the terms lookup
cache. The default value should be enough for most cases, but if you know
you'll load vast amount of data into it, you may want to increase it.

•	 indices.cache.filter.terms.expire_after_access: It specifies the
maximum time after which an entry should expire after it is last accessed.
By default, it is disabled.

•	 indices.cache.filter.terms.expire_after_write: It specifies the
maximum time after which an entry should be expired after it is put into
cache. By default, it is disabled.

Filter and scopes in ElasticSearch
faceting mechanism
When using ElasticSearch faceting mechanism there are a few things one needs to
remember. First of all remember that the faceting results will only be calculated
for your query results. If you include filters outside of the query object, inside the
filter object, such filters will not be used to limit the documents on which faceting
is calculated. The other thing to remember about is the scope, which can help you
with extending the documents on which faceting calculation is done. So let's get
into examples.

http://en.wikipedia.org/wiki/Page_replacement_algorithm#Least_recently_used
http://en.wikipedia.org/wiki/Page_replacement_algorithm#Least_recently_used

Chapter 2

[61]

Example data
Let's begin with recalling how queries, filters, and facets work together. To do that we
will index a few documents to the books index by using the following commands:

curl -XPUT 'localhost:9200/books/book/1' -d '{
 "id":"1", "title":"Test book 1", "category":"book",
 "price":29.99
}'
curl -XPUT 'localhost:9200/books/book/2' -d '{
 "id":"2", "title":"Test book 2", "category":"book",
 "price":39.99
}'
curl -XPUT 'localhost:9200/books/book/3' -d '{
 "id":"3", "title":"Test comic 1", "category":"comic",
 "price":11.99
}'
curl -XPUT 'localhost:9200/books/book/4' -d '{
 "id":"4", "title":"Test comic 2", "category":"comic",
 "price":15.99
}'

Faceting and filtering
Let's try to check how the faceting will work when using queries and filters. To do that
we will run a simple query, that would return all the documents from the books index.
We will also include a filter that will narrow down the results of the query to only the
book category and we will include a simple range faceting for the price field, to see
how many documents have a price lower than 30 and how many higher than 30.
The whole query would look like this (stored in the query_with_filter.json file):

{
 "query" : {
 "match_all" : {}
 },
 "filter" : {
 "term" : { "category" : "book" }
 },
 "facets" : {
 "price" : {
 "range" : {
 "field" : "price",
 "ranges" : [
 { "to" : 30 },

Power User Query DSL

[62]

 { "from" : 30 }
]
 }
 }
 }
}

After running the previous query, we would get the following result:

{
 ...
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "books",
 "_type" : "book",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"id":"1", "title":"Test book
 1", "category":"book", "price":29.99}
 }, {
 "_index" : "books",
 "_type" : "book",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"id":"2", "title":"Test book
 2", "category":"book", "price":39.99}
 }]
 },
 "facets" : {
 "price" : {
 "_type" : "range",
 "ranges" : [{
 "to" : 30.0,
 "count" : 3,
 "min" : 11.99,
 "max" : 29.99,
 "total_count" : 3,
 "total" : 57.97,
 "mean" : 19.323333333333334
 }, {
 "from" : 30.0,
 "count" : 1,
 "min" : 39.99,
 "max" : 39.99,
 "total_count" : 1,
 "total" : 39.99,
 "mean" : 39.99
 }]
 }
 }
}

Chapter 2

[63]

Although, the results of the query were limited to only the documents with the book
value in the category field, our faceting was not. In fact, the faceting was run against
all the documents from the books index (because of the match_all query). So now
we know for sure that ElasticSearch faceting mechanism doesn't take filter into
account when doing calculations. What about filters that are part of the query,
such as in the filtered query type, for example? Let's check that out.

Filter as a part of the query
Now, let's try the same example as mentioned previously, but using the filtered
query type. So, again we want to get all the books from the index that are filtered
to the book category and let's get a simple range faceting for the price field to see
how many documents have a price lower than 30 and how many have higher
than 30. To achieve this, we run the following query (stored in the
filtered_query.json file):

{
 "query" : {
 "filtered" : {
 "query" : {
 "match_all" : {}
 },
 "filter" : {
 "term" : {
 "category" : "book"
 }
 }
 }
 },
 "facets" : {
 "price" : {
 "range" : {
 "field" : "price",
 "ranges" : [
 { "to" : 30 },
 { "from" : 30 }
]
 }
 }
 }
}

Power User Query DSL

[64]

The results of the previous query would be as follows:

{
 ...
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "books",
 "_type" : "book",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"id":"1", "title":"Test book
 1", "category":"book", "price":29.99}
 }, {
 "_index" : "books",
 "_type" : "book",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"id":"2", "title":"Test book
 2", "category":"book", "price":39.99}
 }]
 },
 "facets" : {
 "price" : {
 "_type" : "range",
 "ranges" : [{
 "to" : 30.0,
 "count" : 1,
 "min" : 29.99,
 "max" : 29.99,
 "total_count" : 1,
 "total" : 29.99,
 "mean" : 29.99
 }, {
 "from" : 30.0,
 "count" : 1,
 "min" : 39.99,
 "max" : 39.99,
 "total_count" : 1,
 "total" : 39.99,
 "mean" : 39.99
 }]
 }
 }
}

Chapter 2

[65]

As you can see, our faceting result was limited to the same set of results our query
returned and this is exactly what we were expecting, because now the filter is part
of the query! In our case, the faceting results consist of two ranges and each range
contains a single document.

The Facet filter
Now imagine that we would like to calculate the faceting for only those books that
have the term 2 in the title field. We could introduce a second filter to our query,
but that would narrow down our query results and we don't want that. What we
will do is introduce the facet filter.

We use the facet_filter filter on the same level as we provide the type of
the facets. It allows us to narrow down the documents we calculate faceting,
by using a filter, just like the ones used during querying. For example, if we
were to include facet_filter to filter our range faceting calculation to only
the documents that contain the 2 term in the title field, we would change
our query facets section to the following one (the whole query was included
in the file, named filtered_query_facet_filter.json):

{
 ...
 "facets" : {
 "price" : {
 "range" : {
 "field" : "price",
 "ranges" : [
 { "to" : 30 },
 { "from" : 30 }
]
 },
 "facet_filter" : {
 "term" : {
 "title" : "2"
 }
 }
 }
 }
}

Power User Query DSL

[66]

As you can see, we've introduced a new, simple term filter. The results returned by
the modified query look like this:

{
 ...
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "books",
 "_type" : "book",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"id":"1", "title":"Test book
 1", "category":"book", "price":29.99}
 }, {
 "_index" : "books",
 "_type" : "book",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"id":"2", "title":"Test book
 2", "category":"book", "price":39.99}
 }]
 },
 "facets" : {
 "price" : {
 "_type" : "range",
 "ranges" : [{
 "to" : 30.0,
 "count" : 0,
 "total_count" : 0,
 "total" : 0.0,
 "mean" : 0.0
 }, {
 "from" : 30.0,
 "count" : 1,
 "min" : 39.99,
 "max" : 39.99,
 "total_count" : 1,
 "total" : 39.99,
 "mean" : 39.99
 }]
 }
 }
}

Looking at the first result, you may be able to see the difference. By using the
facet filter in the query, we were able to limit the faceting calculation to only
one document, but our query still returns two documents.

Chapter 2

[67]

Global scope
Now, what if we would like to run a query for all the documents that have the 2 term
in their name, but we would like to show the same range faceting for all the documents
in our index? Luckily, we are not forced to run a second query, we can use the global
faceting scope by adding the global property with the true value to the faceting type
we are interested in getting global results.

For example, let's modify the first query we've used. In this section, we will not include
filtering, but instead a term query. In addition to that we'll add the global property,
so the query looks like this (we've put it in the query_global_scope.json file):

{
 "query" : {
 "term" : { "category" : "book" }
 },
 "facets" : {
 "price" : {
 "range" : {
 "field" : "price",
 "ranges" : [
 { "to" : 30 },
 { "from" : 30 }
]
 },
 "global" : true
 }
 }
}

And now, let's look at the results of such query:

{
 ...
 "hits" : {
 "total" : 2,
 "max_score" : 0.30685282,
 "hits" : [{
 "_index" : "books",
 "_type" : "book",
 "_id" : "1",
 "_score" : 0.30685282, "_source" : {"id":"1", "title":"Test
 book 1", "category":"book", "price":29.99}
 }, {

Power User Query DSL

[68]

 "_index" : "books",
 "_type" : "book",
 "_id" : "2",
 "_score" : 0.30685282, "_source" : {"id":"2",
 "title":"Test book 2", "category":"book", "price":39.99}
 }]
 },
 "facets" : {
 "price" : {
 "_type" : "range",
 "ranges" : [{
 "to" : 30.0,
 "count" : 3,
 "min" : 11.99,
 "max" : 29.99,
 "total_count" : 3,
 "total" : 57.97,
 "mean" : 19.323333333333334
 }, {
 "from" : 30.0,
 "count" : 1,
 "min" : 39.99,
 "max" : 39.99,
 "total_count" : 1,
 "total" : 39.99,
 "mean" : 39.99
 }]
 }
 }
}

Even though our query was limited to only two documents, our facets were
calculated for all the documents in the index, thanks to the global property
included in the query.

One of the possible use cases for the global property is showing navigation
built with the use of faceting. Imagine a situation where you would like to
always show a top-level navigation after the user makes his query, for example,
use the terms faceting to enumerate all the top-level categories on the e-commerce
website. The global scope can come in handy in such cases.

Chapter 2

[69]

Summary
In this chapter we've looked at how Apache Lucene works, what query rewrite is,
and how we can affect the score of our documents with query rescore. In addition
to that we've looked at the possibilities of sending multiple queries and real-time
get requests with a single HTTP request and how to sort our data using multivalued
fields and nested documents. We've used the update API and we learned how
we can optimize our queries using filters. Finally, we've used filters and scopes
to narrow down or expand the list of documents we calculate faceting on.

In the next chapter, we will look at how to choose different scoring formula
and adjust the indexing using postings formats. We'll look at multilingual
data handling, configuring transaction log, and dive even deeper into how
ElasticSearch caches work.

Low-level Index Control
In the previous chapter we've looked at how Apache Lucene works when it comes to
scoring documents, what query rewrite is, and how to affect the score of the returned
documents with the new feature introduced in ElasticSearch 0.90—the query rescore.
We also discussed how to send multiple queries and multiple real-time GET requests
with a single HTTP request and how to sort out data using multivalued fields and
nested documents. In addition to all this, we've used the update API and we've learned
how we can optimize our queries using filters. Finally, we've used filters and scopes to
narrow down or expand the list of documents we calculate faceting on. By the end of
this chapter we will have covered the following topics:

•	 How to use different scoring formulae and what they can bring
•	 How to use different posting formats and what they can bring
•	 How to handle Near Real Time searching, real-time GET, and what

searcher reopening means
•	 Looking deeper into multilingual data handling
•	 Configuring transaction log to our needs and see how it affects

our deployments
•	 Segments merging, different merge policies, and merge scheduling

Altering Apache Lucene scoring
With the release of Apache Lucene 4.0 in 2012, all the users of this great, full text
search library, were given the opportunity to alter the default TF/IDF based
algorithm. Lucene API was changed to allow easier modification and extension
of the scoring formula. However, that was not the only change that was made to
Lucene when it comes to documents score calculation. Lucene 4.0 was shipped
with additional similarity models, which basically allows us to use different scoring
formula for our documents. In this section we will take a deeper look at what
Lucene 4.0 brings and how those features were incorporated into ElasticSearch.

Low-level Index Control

[72]

Available similarity models
As already mentioned, apart from the original and default similarity models available
before Apache Lucene 4.0, the TF/IDF model was available. We've already discussed
it in detail in the Default Apache Lucene scoring explained section in Chapter 2, Power User
Query DSL.

The three new similarity models are as follows:

•	 Okapi BM25: It is a similarity model based on a probabilistic model that
estimates the probability of finding a document for a given query. In order
to use this similarity in ElasticSearch, you need to use the name, BM25.
The Okapi BM25 similarity model is said to be performing best when
dealing with short text documents, where term repetitions are especially
hurtful to the overall document score.

•	 Divergence from randomness: It is a similarity model based on the
probabilistic model of the same name. In order to use this similarity
in ElasticSearch, you need to use the name, DFR. It is said that the
Divergence from randomness similarity model performs well on text
similar to natural language.

•	 Information based: It is the last of the newly introduced similarity models,
which is very similar to the model used by Divergence from randomness.
In order to use this similarity in ElasticSearch, you need to use the name
IB. Similar to the DFR similarity model, it is said that the information based
model performs well on data similar to natural language text.

All the mentioned similarity models require mathematical knowledge to
fully understand the deep explanation of those models and are far beyond
the scope of this book. However, if you would like to explore those
models and increase your knowledge about them, please go to http://
en.wikipedia.org/wiki/Okapi_BM25 for Okapi BM25 similarity
and to http://terrier.org/docs/v3.5/dfr_description.html
for divergence from randomness similarity.

Chapter 3

[73]

Setting per-field similarity
Since ElasticSearch 0.90, we are allowed to set a different similarity for each of
the fields we have in our mappings. For example, let's assume that we have the
following simple mapping that we use, in order to index blog posts (stored in the
posts_no_similarity.json file):

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

What we would like to do is, use the BM25 similarity model for the name field and the
contents field. In order to do that, we need to extend our field definitions and add
the similarity property with the value of the chosen similarity name. Our changed
mappings (stored in the posts_similarity.json file) would appear as shown in
the following code:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed", "similarity" : "BM25" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed", "similarity" : "BM25" }
 }
 }
 }
}

Low-level Index Control

[74]

And that's all, nothing more is needed. After the preceding change,
Apache Lucene will use the BM25 similarity to calculate the score
factor for the name and contents fields.

In case of the Divergence from randomness and Information based
similarity model, we need to configure some additional properties to
specify the behavior of those similarities. How to do that is covered
in the next part of the current section.

Similarity model configuration
As we now know how to set the desired similarity for each field in our index,
it's time to see how to configure those if we need it, which is actually pretty
easy. What we need to do is, use the index settings section to provide additional
similarity section, for example, as shown in the following code (this example is
stored in the posts_custom_similarity.json file):

{
 "settings" : {
 "index" : {
 "similarity" : {
 "mastering_similarity" : {
 "type" : "default",
 "discount_overlaps" : false
 }
 }
 }
 },
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed", "similarity" : "mastering_similarity" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

Chapter 3

[75]

You can have more than one similarity configuration, but let's focus on the preceding
example. We've defined a new similarity model named mastering_similarity,
which is based on the default similarity, which is the TF/IDF one. We've configured
the discount_overlaps property to false for that similarity and we've used it as
the similarity for the name field. We'll talk about what properties can be used for
different similarities later in this section. Now let's see how to change the default
similarity model ElasticSearch will use.

Choosing the default similarity model
In order to change the similarity model used by default, we need to provide a
configuration of a similarity model that will be called default. For example,
if we would like to use our mastering_similarity model as the default one,
we would have to change the preceding configuration to the following one
(the whole example is stored in the posts_default_similarity.json file):

{
 "settings" : {
 "index" : {
 "similarity" : {
 "default" : {
 "type" : "default",
 "discount_overlaps" : false
 }
 }
 }
 },
 ...
}

Low-level Index Control

[76]

Because of the fact that the query norm and coord factors (explained in the Default
Apache Lucene scoring explained section in Chapter 2, Power User Query DSL) are used
by all similarity models globally and are taken from the default configuration
similarity, ElasticSearch allows us to change that, when needed. In order to do
that, we need to define another similarity called as base. It is defined exactly in the
same manner as we've shown in the preceding code, but instead of setting its name
to default, we would set it to base, as shown in the following code (the whole
example is stored in the posts_base_similarity.json file):

{
 "settings" : {
 "index" : {
 "similarity" : {
 "base" : {
 "type" : "default",
 "discount_overlaps" : false
 }
 }
 }
 },
 ...
}

If the base similarity is present in the index configuration, ElasticSearch will use it to
calculate the query norm and coord factors when calculating the score using other
similarity models.

Configuring the chosen similarity models
Each of the newly introduced similarity models can be configured to match our
needs. ElasticSearch allows us to use the default and BM25 similarities without
any configuration, because they are pre-configured for us. In case of DFR and IB
we need to provide the configuration in order to use them. Let's now see what
properties each of the similarity models implementation provides.

Configuring TF/IDF similarity
In the case of TF/IDF similarity, we are allowed to set only a single parameter—the
discount_overlaps property, whose value defaults to true. By default, the tokens
that have their position increment set to 0 (that are placed at the same position as
the one before them) will not be taken into consideration when calculating the score.
If we want them to be taken into consideration, we need to configure the similarity
with the discount_overlaps property set to false.

Chapter 3

[77]

Configuring Okapi BM25 similarity
In the case of Okapi BM25 similarity, we have the following parameters that we
can configure:

•	 The k1 parameter (controls saturation, which is a non-linear term
in frequency normalization) as a float value

•	 The b parameter (controls how the document length affects the term
frequency values) as a float value

•	 The discount_overlaps property, which is exactly the same as
in TF/IDF similarity

Configuring DFR similarity
In the case of DFR similarity, we have the following parameters that we
can configure:

•	 The basic_model parameter (which can take the value: be, d, g, if, in,
and ine)

•	 The after_effect parameter (with values of no, b, and l)
•	 The normalization parameter (which can be no, h1, h2, h3, or z)

If we choose normalization other than no, we need to set the normalization factor.
Depending upon the chosen normalization, we should use normalization.h1.c
(float value) for h1 normalization, normalization.h2.c (float value) for h2
normalization, normalization.h3.c (float value) for h3 normalization,
and normalization.z.z (float value) for z normalization. The following
code snippet is an example of how the similarity configuration could look:

"similarity" : {
 "esserverbook_dfr_similarity" : {
 "type" : "DFR",
 "basic_model" : "g",
 "after_effect" : "l",
 "normalization" : "h2",
 "normalization.h2.c" : "2.0"
 }
}

Low-level Index Control

[78]

Configuring IB similarity
In case of IB similarity, we have the following parameters that we can configure:

•	 The distribution property (which can take the value ll or spl)
•	 The lambda property (which can take the value df or tff)

In addition to this, we can choose the normalization factor which is the same as for
the DFR similarity, so we'll omit describing it for the second time. The following
code snippet shows how the example IB similarity configuration could look:

"similarity" : {
 "esserverbook_ib_similarity" : {
 "type" : "IB",
 "distribution" : "ll",
 "lambda" : "df",
 "normalization" : "z",
 "normalization.z.z" : "0.25"
 }
}

Using codecs
One of the most significant changes introduced by Apache Lucene 4.0 was the ability
to alter how index files are written. Back in the days prior to Lucene 4.0, if we wanted
to change the way the index was written, we had to patch Lucene. It is no longer the
case with the introduction of flexible indexing, when one can alter the way postings
(posting format) are written.

Simple use cases
A question may arise, is this really useful? and it is a proper one, why one may
need to alter the way Lucene index is written? One of the reasons is performance.
Some fields may require special treatment, like the primary keys which are unique
and with the help of some techniques they can be searched very fast as compared
to standard numeric or text fields that have many unique values. You can also use
it for debugging what is actually going to be written in the Lucene index by using
SimpleTextCodec (on the Apache Lucene level because, ElasticSearch doesn't
expose this codec).

Chapter 3

[79]

Let's see how it works
Let's assume that we have the following mappings for our posts index (stored in the
posts.json file):

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

The codecs are defined per field. In order to configure our field to use a codec,
we need to add a property called postings_format along with the value of the
desired codec, for example, pulsing. So, after introduction of the mentioned
codec our mappings file would appear as shown in the following code snippet
(stored in the posts_codec.json file):

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes", "precision_step" :
 "0", "postings_format" : "pulsing" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

Low-level Index Control

[80]

If we would now run the following command:

curl -XGET 'localhost:9200/posts/_mapping?pretty'

to check if the codec was taken into consideration by ElasticSearch, we would get
the following response:

{
 "posts" : {
 "post" : {
 "properties" : {
 "contents" : {
 "type" : "string"
 },
 "id" : {
 "type" : "long",
 "store" : true,
 "postings_format" : "pulsing",
 "precision_step" : 2147483647
 },
 "name" : {
 "type" : "string",
 "store" : true
 }
 }
 }
 }
}

As we can see, the id field is configured to use the pulsing posting_format
property and that's what we wanted.

Please remember that codecs were introduced in Apache
Lucene 4.0 and because of this, the described functionality
can't be used in ElasticSearch older than 0.90.

Chapter 3

[81]

Available posting formats
The following posting formats were introduced and can be used:

•	 default: It is used when no explicit format is defined. Provides on the
fly stored fields and term vectors compression. If you want to read about
what to expect from the compression please refer to http://solr.pl/
en/2012/11/19/solr-4-1-stored-fields-compression/.

•	 pulsing: It is a codec that encodes the post listing into the terms array for
high cardinality fields, which results in one less seek, Lucene needs to do
when retrieving a document. Using this codec for high cardinality fields can
speed up queries on such fields.

•	 direct: It is a codec that during reads loads terms into arrays, which are
held in the memory uncompressed. This codec may give you performance
boost on commonly used fields, but should be used with caution, as it is very
memory intensive, because the terms and postings arrays need to be stored
in the memory.

Since all the terms are held in the byte array you can have upto 2.1 GB of
memory used for this per segment.

•	 memory: As its name suggests, this codec writes all the data to disk, but reads
the terms and post listings into the memory, using a structure called FST
(Finite State Transducers). More information about this structure can be
found in a great post by Mike McCandless at http://blog.mikemccandless.
com/2010/12/using-finite-state-transducers-in.html). Because of
storing the data in memory, this codec may result in performance boost for
commonly used terms.

•	 bloom_default: It is an extension of the default codec that adds the
functionality of a bloom filter that is written to the disk. When reading,
the bloom filter is read and held into memory to allow very fast checking
if a given value exists. This codec is very useful for high cardinality fields
such as primary key. More information about bloom filter is available at
http://en.wikipedia.org/wiki/Bloom_filter, which uses the bloom
filter in addition to what the default codec does.

•	 bloom_pulsing: It is an extension of the pulsing codec, which uses the
bloom filter in addition to what the pulsing codec does.

http://solr.pl/en/2012/11/19/solr-4-1-stored-fields-compression/
http://solr.pl/en/2012/11/19/solr-4-1-stored-fields-compression/
http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html
http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html

Low-level Index Control

[82]

Configuring the codec behavior
All the postings format comes with the default configuration that is sufficient for
most use cases, but there are times when you may want to configure the behavior
to match your deployment needs. In such cases, ElasticSearch allows us to index
settings API with the defined codec section. For example, if we would like to
configure the default codec and name it as custom_default, we would define
the following mappings (stored in the posts_codec_custom.json file):

{
 "settings" : {
 "index" : {
 "codec" : {
 "postings_format" : {
 "custom_default" : {
 "type" : "default",
 "min_block_size" : "20",
 "max_block_size" : "60"
 }
 }
 }
 }
 },
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed", "postings_format" : "custom_default" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

As you can see, we've changed the min_block_size and the max_block_size
properties of the default codec and we named the newly configured codec as
custom_default. After that, we've used it as the postings format for the name field.

Chapter 3

[83]

Default codec properties
When using the default codec we are allowed to configure the following properties:

•	 min_block_size: It specifies the minimum block size Lucene term
dictionary uses to encode blocks. It defaults to 25.

•	 max_block_size: It specifies the maximum block size Lucene term
dictionary uses to encode blocks. It defaults to 48.

Direct codec properties
The direct codec allows us to configure the following properties:

•	 min_skip_count: It specifies the minimum number of terms with a
shared prefix to allow writing of a skip pointer. It defaults to 8.

•	 low_freq_cutoff: The codec will use a single array object to hold
postings and positions that have document frequency lower than
this value. It defaults to 32.

Memory codec properties
By using the memory codec we are allowed to alter the following properties:

•	 pack_fst: It is a Boolean option that defaults to false and specifies if the
memory structure that holds the postings should be packed into the FST.
Packing into FST will reduce the memory needed to hold the data.

•	 acceptable_overhead_ratio: It is a compression ratio of the internal
structure specified as a float value which defaults to 0.2. When using the
0 value, there will be no additional memory overhead but the returned
implementation may be slow. When using the 0.5 value, there can be a
50 percent memory overhead, but the implementation will be fast. Values
higher than 1 are also possible, but may result in high memory overhead.

Pulsing codec properties
When using the pulsing codec we are allowed to use the same properties as with
the default codec and in addition to them one more property, which is described
as follows:

•	 freq_cut_off: It defaults to 1. The document frequency at which the postings
list will be written into the term dictionary. The documents with the frequency
equal to or less than the value of freq_cut_off will be processed.

Low-level Index Control

[84]

Bloom filter-based codec properties
If we want to configure a bloom filter based codec, we can use the bloom_filter
type and set the following properties:

•	 delegate: It specifies the name of the codec we want to wrap, with the
bloom filter.

•	 ffp: It is a value between 0 and 1.0 which specifies the desired false positive
probability. We are allowed to set multiple probabilities depending on the
amount of documents per Lucene segment. For example, the default value
of 10k=0.01,1m=0.03 specifies that the fpp value of 0.01 will be used when
the number of documents per segment is larger than 10.000 and the value of
0.03 will be used when the number of documents per segment is larger than
one million.

For example, we could configure our custom bloom filter based codec to
wrap a direct posting format as shown in the following code (stored in
posts_bloom_custom.json file):

{
 "settings" : {
 "index" : {
 "codec" : {
 "postings_format" : {
 "custom_bloom" : {
 "type" : "bloom_filter",
 "delegate" : "direct",
 "ffp" : "10k=0.03,1m=0.05"
 }
 }
 }
 }
 },
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed", "postings_format" : "custom_bloom" },
 "contents" : { "type" : "string", "store" : "no", "index"
 : "analyzed" }
 }
 }
 }
}

Chapter 3

[85]

NRT, flush, refresh, and transaction log
In an ideal search solution, when new data is indexed it is instantly available
for searching. At the first glance it is exactly how ElasticSearch works even in
multiserver environments. But this is not the truth (or at least not all the truth)
and we will show you why it is like this. Let's index an example document to
the newly created index by using the following command:

curl -XPOST localhost:9200/test/test/1 -d '{ "title": "test" }'

Now, we will replace this document and immediately we will try to find it. In order
to do this, we'll use the following command chain:

curl –XPOST localhost:9200/test/test/1 -d '{ "title": "test2" }' ; curl
localhost:9200/test/test/_search?pretty

The preceding command will probably result in the response, which is very similar
to the following response:

{"ok":true,"_index":"test","_type":"test","_id":"1","_version":2}{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "test",
 "_type" : "test",
 "_id" : "1",
 "_score" : 1.0, "_source" : { "title": "test" }
 }]
 }
}

The first line starts with a response to the indexing command—the first command.
As you can see everything is correct, so the second, search query should return the
document with the title field test2, however, as you can see it returned the first
document. What happened?

But before we give you the answer to the previous question, we should take a step
backward and discuss about how underlying Apache Lucene library makes the
newly indexed documents available for searching.

Low-level Index Control

[86]

Updating index and committing changes
As we already know from the Introduction to Apache Lucene section in Chapter 1,
Introduction to ElasticSearch, during the indexing process new documents are written
into segments. The segments are independent indices, which means that queries that
are run in parallel to indexing, from time to time should add newly created segments
to the set of those segments that are used for searching. Apache Lucene does that by
creating subsequent (because of write-once nature of the index) segments_N files,
which list segments in the index. This process is called committing. Lucene can do
this in a secure way—we are sure that all changes or none of them hits the index.
If a failure happens, we can be sure that the index will be in consistent state.

Let's return to our example. The first operation adds the document to the index,
but doesn't run the commit command to Lucene. This is exactly how it works.
However, a commit is not enough for the data to be available for searching.
Lucene library use an abstraction class called Searcher to access index.
After a commit operation, the Searcher object should be reopened in order to
be able to see the newly created segments. This whole process is called refresh.
For performance reasons ElasticSearch tries to postpone costly refreshes and by
default refresh is not performed after indexing a single document (or a batch of
them), but the Searcher is refreshed every second. This happens quite often,
but sometimes applications require the refresh operation to be performed more
often than once every second. When this happens you can consider using another
technology or requirements should be verified. If required, there is possibility to
force refresh by using ElasticSearch API. For example, in our example we can
add the following command:

curl –XGET localhost:9200/test/_refresh

If we add the preceding command before the search, ElasticSearch would respond
as we had expected.

Changing the default refresh time
The time between automatic Searcher refresh can be changed by using the index.
refresh_interval parameter either in the ElasticSearch configuration file or by
using the update settings API. For example:

curl -XPUT localhost:9200/test/_settings -d '{

 "index" : {

 "refresh_interval" : "5m"

 }

}'

Chapter 3

[87]

The preceding command will change the automatic refresh to be done every
5 minutes. Please remember that the data that are indexed between refreshes
won't be visible by queries.

As we said, the refresh operation is costly when it comes to resources.
The longer the period of refresh is, the faster your indexing will be. If you
are planning for very high indexing procedure when you don't need your
data to be visible until the indexing ends, you can consider disabling the
refresh operation by setting the index.refresh_interval parameter
to -1 and setting it back to its original value after the indexing is done.

The transaction log
Apache Lucene can guarantee index consistency and all or nothing indexing, which is
great. But this fact cannot ensure us that there will be no data loss when failure
happens while writing data to the index (for example, when there isn't enough space
on the device, the device is faulty or there aren't enough file handlers available to
create new index files). Another problem is that frequent commit is costly in terms
of performance (as you recall, a single commit will trigger a new segment creation
and this can trigger the segments to merge). ElasticSearch solves those issues by
implementing transaction log. Transaction log holds all uncommitted transactions
and from time to time, ElasticSearch creates a new log for subsequent changes.
When something goes wrong, transaction log can be replayed to make sure that
none of the changes were lost. All of these tasks are happening automatically, so,
the user may not be aware of the fact that commit was triggered at a particular
moment. In ElasticSearch, the moment when the information from transaction log
is synchronized with the storage (which is Apache Lucene index) and transaction
log is cleared is called flushing.

Please note the difference between flush and refresh operations. In most
of the cases refresh is exactly what you want. It is all about making new
data available for searching. From the opposite side, the flush operation
is used to make sure that all the data is correctly stored in the index and
transaction log can be cleared.

In addition to automatic flushing, it can be forced manually using the flush API.
For example, we can run a command to flush all the data stored in the transaction
log for all indices, by running the following command:

curl –XGET localhost:9200/_flush

Low-level Index Control

[88]

Or we can run the flush command for the particular index, which in our case is the
one called library:

curl –XGET localhost:9200/library/_flush

curl –XGET localhost:9200/library/_refresh

In the second example we used it together with the refresh, which after flushing the
data opens a new searcher.

The transaction log configuration
If the default behavior of the transaction log is not enough ElasticSearch allows us to
configure its behavior when it comes to the transaction log handling. The following
parameters can be set in the elasticsearch.yml file as well as using index settings
update API to control transaction log behavior:

•	 index.translog.flush_threshold_period: It defaults to 30 minutes (30m).
It controls the time, after which flush will be forced automatically even if no
new data was being written to it. In some cases this can cause a lot of I/O
operation, so sometimes it's better to do flush more often with less data being
stored in it.

•	 index.translog.flush_threshold_ops: It specifies the maximum number
of operations after which the flush operation will be performed. It defaults
to 5000.

•	 index.translog.flush_threshold_size: It specifies the maximum size of
the transaction log. If the size of the transaction log is equal to or greater than
the parameter, the flush operation will be performed. It defaults to 200 MB.

•	 index.translog.disable_flush: This option disables automatic flush.
By default flushing is enabled, but sometimes it is handy to disable it
temporarily, for example, during import of large amount of documents.

All of the mentioned parameters are specified for an index of our
choice, but they are defining the behavior of the transaction log
for each of the index shards.

Chapter 3

[89]

Of course, in addition to setting the preceding parameters in the elasticsearch.
yml file, they can also be set by using Settings Update API. For example:

curl -XPUT localhost:9200/test/_settings -d '{

 "index" : {

 "translog.disable_flush" : true

 }

}'

The preceding command was run before the import of a large amount of data,
which gave us a performance boost for indexing. However, one should remember
to turn on flushing when the import is done.

Near Real Time GET
Transaction log gives us one more feature for free that is, real-time GET operation,
which provides the possibility of returning the previous version of the document
including non-committed versions. The real-time GET operation fetches data from
the index, but first it checks if a newer version of that document is available in the
transaction log. If there is no flushed document, data from the index is ignored and
a newer version of the document is returned—the one from the transaction log.
In order to see how it works, you can replace the search operation in our example
with the following command:

curl -XGET localhost:9200/test/test/1?pretty

ElasticSearch should return the result similar to the following:

{
 "_index" : "test",
 "_type" : "test",
 "_id" : "1",
 "_version" : 2,
 "exists" : true, "_source" : { "title": "test2" }
}

If you look at the result, you would see that again, the result was just as we expected
and no trick with refresh was required to obtain the newest version of the document.

Low-level Index Control

[90]

Looking deeper into data handling
When starting to work with ElasticSearch, you can be overwhelmed with the different
ways of searching and the different query types it provides. Each of these query types
behaves differently and we do not say only about obvious differences, for example,
like the one you would see when comparing range search and prefix search. It is
crucial to know about these differences to understand how the queries work,
especially when doing a little more than just using the default ElasticSearch
instance, for example, for handling multilingual information.

Input is not always analyzed
Before we start discussing queries analysis, let's create the index by using the
following command:

curl -XPUT localhost:9200/test -d '{

 "mappings" : {

 "test" : {

 "properties" : {

 "title" : { "type" : "string", "analyzer" : "snowball" }

 }

 }

 }

}'

As you can see, the index is pretty simple. The document contains only one field,
processed by snowball analyzer. Now, let's index a simple document. We do it by
running the following command:

curl -XPUT localhost:9200/test/test/1 -d '{

 "title" : "the quick brown fox jumps over the lazy dog"

}'

Chapter 3

[91]

We have our big index, so we may bomb it with queries. Look closely at the
following two commands:

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "term" : {

 "title" : "jumps"

 }

 }

}'

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "match" : {

 "title" : "jumps"

 }

 }

}'

The first query will not return our document, but the second query will, surprise!
You probably already know (or suspect) what the reason for such behavior is and
that it is connected to analyzing. Let's compare what we, in fact, have in the index
and what we are searching for. To do that, we will use the Analyze API by running
the following command:

curl 'localhost:9200/test/_analyze?text=the+quick+brown+fox+jumps+over+th
e+lazy+dog&pretty&analyzer=snowball'

The _analyze endpoint allows us to see what ElasticSearch does with the input
that is given in the text parameter. It also gives us the possibility to define which
analyzer should be used (the analyzer parameter).

Other features of the analyze API are available at
http://www.elasticsearch.org/guide/
reference/api/admin-indices-analyze/.

http://www.elasticsearch.org/guide/reference/api/admin-indices-analyze/
http://www.elasticsearch.org/guide/reference/api/admin-indices-analyze/

Low-level Index Control

[92]

The response returned by ElasticSearch for the preceding request will look similar to
the following:

{
 "tokens" : [{
 "token" : "quick",
 "start_offset" : 4,
 "end_offset" : 9,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "brown",
 "start_offset" : 10,
 "end_offset" : 15,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "fox",
 "start_offset" : 16,
 "end_offset" : 19,
 "type" : "<ALPHANUM>",
 "position" : 4
 }, {
 "token" : "jump",
 "start_offset" : 20,
 "end_offset" : 25,
 "type" : "<ALPHANUM>",
 "position" : 5
 }, {
 "token" : "over",
 "start_offset" : 26,
 "end_offset" : 30,
 "type" : "<ALPHANUM>",
 "position" : 6
 }, {
 "token" : "lazi",
 "start_offset" : 35,
 "end_offset" : 39,
 "type" : "<ALPHANUM>",
 "position" : 8
 }, {
 "token" : "dog",
 "start_offset" : 40,
 "end_offset" : 43,
 "type" : "<ALPHANUM>",
 "position" : 9
 }]
}

Chapter 3

[93]

You can see how ElasticSearch changed the input into a stream of tokens. As you
recall from the Introduction to Apache Lucene section in Chapter 1, Introduction to
ElasticSearch every token has information about its position in the original text,
about its type (this is not interesting from our perspective, but may be used by
filters), and a term,word, which is stored in the index and used for comparison when
searching. Our original text, the quick brown fox jumps over the lazy dog
was converted into the following words (terms): quick, brown, fox, jump, over, lazi
(this is interesting), and dog. So, we'll summarize what the snowball analyzer did:

•	 skipped non-significant words (the)
•	 converted words into their base forms (jump)
•	 sometimes messed up the conversion (lazi)

The third thing is not as bad as it looks, as long as all forms of the same word are
converted into the same form. If such a thing happens, the goal of stemming will be
achieved—ElasticSearch will match words from the query with the words stored in
the index, independently of its form. But now let's return to our queries. The term
query just searches for a given term (jumps in our case) but there is no such term in
the index (there is jump). In the case of the match query the given text is first passed
on to the analyzer, which converts jumps into jump, and after that the converted
form is being used in the query.

Now let's look at the second example:

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "prefix" : {

 "title" : "lazy"

 }

 }

}'

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "match_phrase_prefix" : {

 "title" : "lazy"

 }

 }

}'

Low-level Index Control

[94]

In the preceding case both queries are similar, but again, the first query returns
nothing (because lazy is not equal to lazi in the index) and the second query,
which is analyzed, will return our document.

Example usage
All of this is interesting and you should remember the fact that some of the queries
are being analyzed and some are not. However, the most interesting part is, how we
can do all of this consciously to improve search-based applications.

Let's imagine searching the content of the books. It is possible that sometimes our
users search by the name of the character, place name, probably by the quote fragment.
We don't have any natural language analysis functionality in our application so we
don't know the meaning of the phrase entered by the user. However, with some
degree of probability we can assume that the most interesting result will be the one
that exactly matches the phrase entered by the user. It is also very probable that the
second scale of importance, will be the documents that have exactly the same words in
the same form as the user input, and those documents—the ones with words with the
same meaning or with a different language form.

In order to use another example let's use a command, which creates a simple index
with only a single field defined:

curl -XPUT localhost:9200/test -d '{

 "mappings" : {

 "test" : {

 "properties" : {

 "lang" : { "type" : "string" },

 "title" : {

 "type" : "multi_field",

 "fields" : {

 "i18n" : { "type" : "string", "index" : "analyzed",
 analyzer : "english" },

 "org" : { "type" : "string", "index" : "analyzed",
 "analyzer" : "standard"}

 }

 }

 }

 }

 }

}'

Chapter 3

[95]

We have the single field, but it is analyzed in two different ways because of the
multi_field: with the standard analyzer (field title.org), and with the english
analyzer (field title.i18n) which will try to change the input to its base form.
If we index an example document with the following command:

curl -XPUT localhost:9200/test/test/1 -d '{ "title" : "The quick brown
fox jumps over the lazy dog." }'

We will have the jumps term indexed in the title.org field and the jump term
indexed in the title.i18n field. Now let's run the following query:

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "multi_match" : {

 "query" : "jumps",

 "fields" : ["title.org^1000", "title.i18n"]

 }

 }

}'

Our document will be given a higher score for perfect match, thanks to boosting
and matching the jumps term in the field.org field. The score is also given for
hit in field.i18n, but the impact of this field on the overall score is much smaller,
because we didn't specify the boost and thus the default value of 1 is used.

Changing the analyzer during indexing
The next thing worth mentioning when it comes to handling multilingual data is the
possibility of dynamically changing the analyzer during indexing. Let's modify the
previous mapping by adding the _analyzer part to it:

curl -XPUT localhost:9200/test -d '{

 "mappings" : {

 "test" : {

 "_analyzer" : {

 "path" : "lang"

 },

 "properties" : {

 "lang" : { "type" : "string" },

Low-level Index Control

[96]

 "title" : {

 "type" : "multi_field",

 "fields" : {

 "i18n" : { "type" : "string", "index" : "analyzed"},

 "org" : { "type" : "string", "index" : "analyzed",
 "analyzer" : "standard"}

 }

 }

 }

 }

 }

}'

The change we just did, allows ElasticSearch to determine the analyzer basing on the
contents of the document that is being processed. The path parameter is the name
of the document field, which contains the name of the analyzer. The second change
is removal of the analyzer definition from the field.i18n field definition. Now our
indexing command will look like this:

curl -XPUT localhost:9200/test/test/1 -d '{ "title" : "The quick brown
fox jumps over the lazy dog.", "lang" : "english" }'

In the preceding example, ElasticSearch will take the value of the lang field and
will use it as the analyzer for that document. It can be useful when you want to
have different analysis for different documents (for example, some documents
should have stop words removed and some shouldn't).

Changing the analyzer during searching
Changing the analyzer is also possible in the query time, by specifying the analyzer
property. For example, let's look at the following query:

curl localhost:9200/test/_search?pretty -d '{

 "query" : {

 "multi_match" : {

 "query" : "jumps",

 "fields" : ["title.org^1000", "title.i18n"],

 "analyzer": "english"

 }

 }

}'

Chapter 3

[97]

Thanks to the highlighted code fragment. ElasticSearch will choose the analyzer that
we've explicitly mentioned.

The pitfall and default analysis
Combining the mechanism of replacing analyzer per document on index-time and
query-time level is a very powerful feature, but it can also introduce hard-to-spot
errors. One of them can be a situation where the analyzer is not defined. In such
cases, ElasticSearch will choose the so-called default analyzer, but sometimes this is
not what you can expect, because default analyzer, for example, can be redefined by
plugins. In such cases, it is worth defining what the default ElasticSearch analysis
should look like. To do this, we just define analyzer as usual, but instead of giving it
a custom name we use the default name.

As an alternative you can define the default_index analyzer and
the default_search analyzer, which will be used as a default
analyzer respectively on index-time and search-time analysis.

Segment merging under control
As you already know (we've discussed it throughout Chapter 1, Introduction to
ElasticSearch) every ElasticSearch index is built out of one or more shards and
can have zero or more replicas. You also know that each of the shards and replicas
are actual Apache Lucene indices, which are built of multiple segments (at least
one segment). If you recall, the segments are written once and read many times,
apart from the information about the deleted documents which are held in one
of the files and can be changed. After some time, when certain conditions are met,
the contents of some segments can be copied to a bigger segment and the original
segments are discarded and thus deleted from the disk. Such an operation is called
segment merging.

You may ask yourself, why bother about segment merging? There are a few reasons.
First of all, the more segments the index is built of, the slower the search will be
and the more memory Lucene needs to use. In addition to this, the segments are
immutable, so the information is not deleted from it. If you happen to delete many
documents from your index, until the merge happens, those documents are only
marked as deleted, not deleted physically. So, when segment merging happens the
documents, which are marked as deleted, are not written into the new segment and
in this way, they are removed, which decreases the final segment size.

Low-level Index Control

[98]

Many small changes can result in a large number of small segments,
which can lead to problems with large number of opened files. We should
always be prepared to handle such situations, for example, by having the
appropriate opened files limit set.

So, just to quickly summarize, segments merging takes place and from the user's
point of view will result in two effects:

•	 It will reduce the number of segments to allow faster searching when
a few segments are merged into a single one

•	 It will reduce the size of the index because of removing the deleted
documents when the merge is finalized

However, you have to remember that segment merging comes with a price; the price
of I/O (input/output) operations, which on slower systems can affect performance.
Because of this, ElasticSearch allows us to choose the merge policy and the store
level throttling. We will discuss the merge policy in the following section and we
will get back to throttling in the When it is all too much for the I/O section in Chapter 6,
Fighting with Fire.

Choosing the right merge policy
Although segments merging is Apache Lucene's duty, ElasticSearch allows us to
configure which merge policy we would like to use. There are three policies that
we are currently allowed to use:

•	 tiered (the default one)
•	 log_byte_size

•	 log_doc

Each of the preceding mentioned policies have their own parameters, which define
their behavior and which default values we can override (please look at the section
dedicated to the policy of your choice to see what are those parameters).

In order to tell ElasticSearch, which merge policy we want to use, we should set
index.merge.policy.type to the desired type, shown as follows:

index.merge.policy.type: tiered

Chapter 3

[99]

Once the index is created with the specified merge policy type it can't be
changed. However, all the properties defining merge policy behavior can
be changed using the index update API.

Let's now look at the different merge policies and what functionality they provide.
After this, we will discuss all the configuration options provided by the policies.

The tiered merge policy
This is the default merge policy that ElasticSearch uses. It merges the segments of
approximately similar size, taking into account the maximum number of segments
allowed per tier. It is also possible to differentiate the number of segments that are
allowed to be merged at once from how many segments are allowed to be present
per tier. During indexing, this merge policy will compute how many segments are
allowed to be present in the index, which is called budget. If the number of segments
the index is built of is higher than the computed budget, the tiered policy will first
sort the segments by decreasing order of their size (taking into account the deleted
documents). After that it will find the merge that has the lowest cost. The merge cost
is calculated in a way that merges reclaiming more deletes and having a smaller size
is favored.

If the merge produces a segment that is larger than the value specified by the
index.merge.policy.max_merged_segment property, the policy will merge
fewer segments to keep the segment size under the budget. This means,
that for indices that have large shards, the default value of the index.merge.
policy.max_merged_segment property may be too low and will result in the
creation of many segments, slowing down your queries. Depending on the
volume of your data you should monitor your segments and adjust the merge
policy setting to match your needs.

The log byte size merge policy
This is a merge policy, which over time will produce an index that will be built of a
logarithmic size of indices. There will be a few large segments, then there will be a
few merge factor smaller segments and so on. You can imagine that there will be a
few segments of the same level of size, when the number of segments will be lower
than the merge factor. When an extra segment is encountered and all the segments
within that level are merged. The number of segments an index will contain is
proportional to the logarithm of the next size in bytes. This merge policy is generally
able to keep the low number of segments in your index while minimizing the cost of
segments merging.

Low-level Index Control

[100]

The log doc merge policy
It is similar to the log_byte_size merge policy, but instead of operating on the
actual segment size in bytes, it operates on the number of documents in the index.
This merge policy will perform well when the documents are similar in terms of
size or if you want segments of similar size in terms of the number of documents.

Merge policies configuration
We now know how merge policies work, but we lack the knowledge about the
configuration options. So now, let's discuss each of the merge policies and see what
options are exposed to us. Please remember that the default values will usually be
OK for most of the deployments and they should be changed only when needed.

The tiered merge policy
When using the tiered merge policy the following options can be altered:

•	 index.merge.policy.expunge_deletes_allowed: It defaults to 10 and it
specifies the percentage of deleted documents in a segment in order for it to
be considered to be merged when running expungeDeletes.

•	 index.merge.policy.floor_segment: It is a property that enables us to
prevent frequent flushing of very small segments. Segments smaller than the
size defined by this property are treated by the merge mechanism, as they
would have the size equal to the value of this property. It defaults to 2 MB.

•	 index.merge.policy.max_merge_at_once: It specifies the maximum
number of segments that will be merged at the same time during indexing.
By default it is set to 10. Setting the value of this property to higher values
can result in multiple segments being merged at once, which will need more
I/O resources.

•	 index.merge.policy.max_merge_at_once_explicit: It specifies the
maximum number of segments that will be merged at the same time
during optimize operation or expungeDeletes. By default it is set to 30.
This setting will not affect the maximum number of segments that will
be merged during indexing.

•	 index.merge.policy.max_merged_segment: It defaults to 5 GB and it
specifies the maximum size of a single segment that will be produced
during segment merging when indexing. This setting is an approximate
value, because the merged segment size is calculated by summing the
size of segments that are going to be merged minus the size of the deleted
documents in those segments.

Chapter 3

[101]

•	 index.merge.policy.segments_per_tier: It specifies the allowed number
of segments per tier. Smaller values of this property result in less segments,
which means, more merging and lower indexing performance. It defaults to
10 and should be set to a value higher than or equal to the index.merge.
policy.max_merge_at_once or you'll be facing too many merges and
performance issues.

•	 index.reclaim_deletes_weight: It defaults to 2.0 and specifies how many
merges that reclaim deletes are favored. When setting this value to 0.0 the
deletes reclaim will not affect merge selection. The higher the value, the more
favored will be the merge that will reclaim deletes.

•	 index.compund_format: It is a Boolean value that specifies whether the index
should be stored in a compound format or not. It defaults to false. If set to
true, Lucene will store all the files that build the index in a single file. This is
sometimes useful for systems running constantly out of file handlers, but will
decrease the searching and indexing performance.

•	 index.merge.async: It is a Boolean value specifying if the merge should be
done asynchronously. It defaults to true.

•	 index.merge.async_interval: When the index.merge.async value is set
to true (so the merging is done asynchronously), this property specifies the
interval between merges. The default value of this property is 1s. Please note
that the value of this property needs to be kept low, for merging to actually
happen and the index segments reduction will take place.

The log byte size merge policy
When using the log_byte_size merge policy the following options can
be configured:

•	 merge_factor: It specifies how often segments are merged during indexing.
With a smaller merge_factor value, the searches are faster, less memory
is used, but that comes with the cost of slower indexing. With larger
merge_factor values, it is the opposite—the indexing is faster (because of
less merging being done), but the searches are slower and more memory is
used. By default, the merge_factor is given the value of 10. It is advised to
use larger values of merge_factor for batch indexing and lower values of
this parameter for normal index maintenance.

•	 min_merge_size: It defines the size (total size of the segment files in bytes) of
the smallest segment possible. If a segment is lower in size than the number
specified by this property, it will be merged if the merge_factor property
allows us to do that. This property defaults to 1.6 MB and is very useful to
avoid having many very small segments. However, one should remember
that setting this property to a large value will increase the merging cost.

Low-level Index Control

[102]

•	 max_merge_size: It defines the maximum size (total size of the segment files
in bytes) of the segment that can be merged with other segments. By default
it is not set, so there is no limit on the maximum size a segment can be in
order to be merged.

•	 maxMergeDocs: It defines the maximum number of documents a segment
can have in order to be merged with other segments. By default it is not
set, so there is no limit on the maximum number of documents a segment
can have.

•	 calibrate_size_by_deletes: It is a Boolean value, which is set to true and
specifies if the size of deleted documents should be taken into consideration
when calculating segment size.

•	 index.compund_format: It is a Boolean value that specifies if the index
should be stored in a compound format. It defaults to false. Please refer
to tiered merge policy for the explanation of what this parameter does.

The mentioned properties we just saw, should be prefixed with the index.merge.
policy prefix. So if we would like to set the min_merge_docs property, we should
use the index.merge.policy.min_merge_docs property.

In addition to this, the log_byte_size merge policy accepts the index.merge.async
property and the index.merge.async_interval property just like tiered merge
policy does.

The log doc merge policy
When using the log_doc merge policy the following options can be configured:

•	 merge_factor: It is same as the property that is present in the log_byte_size
merge policy, so please refer to that policy for explanation.

•	 min_merge_docs: It defines the minimum number of documents for the
smallest segment. If a segment contains a lower document count than the
number specified by this property it will be merged if the merge_factor
property allows this. This property defaults to 1000 and is very useful to
avoid having many very small segments. However, one should remember
that setting this property to a large value will increase the merging cost.

•	 max_merge_docs: It defines the maximum number of documents a segment
can have in order to be merged with other segments. By default it is not set,
so there is no limit on the maximum number of documents a segment
can have.

Chapter 3

[103]

•	 calibrate_size_by_deletes: It is a Boolean value which defaults to
true and specifies if the size of deleted documents should be taken into
consideration when calculating the segment size.

•	 index.compund_format: It is a Boolean value that specifies if the index
should be stored in a compound format. It defaults to false. Please refer
to tiered merge policy for the explanation of what this parameter does.

Similar to the previous merge policy, the previously mentioned properties
should be prefixed with the index.merge.policy prefix. So if we would
like to set the min_merge_docs property, we should use the index.merge.
policy.min_merge_docs property.

In addition to this, the log_doc merge policy accepts the index.merge.async
property and the index.merge.async_interval property, just like tiered
merge policy does.

Scheduling
In addition to having a control over how merge policy is behaving,
ElasticSearch allows us to define the execution of merge policy once
a merge is needed. There are two merge schedulers available with
the default being the ConcurrentMergeScheduler.

The concurrent merge scheduler
This is a merge scheduler that will use multiple threads in order to perform segments
merging. This scheduler will create a new thread until the maximum number of
threads is reached. If the maximum number of threads is reached and a new thread
is needed (because segments merge needs to be performed), all the indexing will be
paused until at least one merge is completed.

In order to control the maximum threads allowed, we can alter the index.merge.
scheduler.max_thread_count property. By default, it is set to the value calculated
by the following equation:

maximum_value(1, minimum_value(3, available_processors / 2)

So, if our system has eight processors available, the maximum number of threads
that concurrent merge scheduler is allowed to use will be equal to 4.

Low-level Index Control

[104]

The serial merge scheduler
A simple merge scheduler that uses the same thread for merging. It results in
a merge that stops all the other document processing that was happening in
the same thread, which in this case means stopping of indexing.

Setting the desired merge scheduler
In order to set the desired merge scheduler, one should set the index.merge.
scheduler.type property to the value of concurrent or serial. For example,
in order to use the concurrent merge scheduler, one should set the
following property:

index.merge.scheduler.type: concurrent

In order to use the serial merge scheduler, one should set the following property:

index.merge.scheduler.type: serial

When talking about merge policy and merge schedulers it would be nice to
visualize it. If one needs to see how the merges are done in the underlying
Apache Lucene library, we suggest visiting Mike McCandless' blog post
at http://blog.mikemccandless.com/2011/02/visualizing-
lucenes-segment-merges.html.
In addition to this, there is a plugin allowing us to see what is happening
to the segments called SegmentSpy. Please refer to the following URL for
more information:
https://github.com/polyfractal/elasticsearch-segmentspy

Summary
In this chapter, we've learned how to use different scoring formulae and what they
bring to the table. We've also seen how to use different posting formats and how we
benefit from using them. In addition to this, we now know how to handle Near Real
Time searching and real-time GET requests and what searcher reopening means for
ElasticSearch. We've discussed multilingual data handling and we've configured
transaction log to our needs. Finally, we've learned about segments merging, merge
policies, and scheduling.

In the next chapter, we'll look closely at what ElasticSearch offers us when it comes
to shard control. We'll see how to choose the right amount of shards and replicas
for our index, we'll manipulate shard placement and we will see when to create
more shards than we actually need. We'll discuss how the shard allocator works.
Finally, we'll use all the knowledge we've got so far to create fault tolerant and
scalable clusters.

Index Distribution Architecture
In the previous chapter, we've learned how to use different scoring formulas and how
we can benefit from using them. We've also seen how to use different posting formats
to change how the data is indexed. In addition to that, we now know how to handle
near real-time searching and real-time get and what searcher reopening means for
ElasticSearch. We've discussed multilingual data handling and we've configured
the transaction log to our needs. Finally, we've learned about segments merging,
merge policies, and scheduling. By the end of this chapter, you will have learned:

•	 How to choose the right amount of shards and replicas for our cluster
•	 What routing is and what it means for ElasticSearch
•	 How ShardAllocator works and how we can configure it
•	 How to adjust the shard allocation mechanism to our needs
•	 How to choose on which shards the given operation should be executed
•	 How to combine our knowledge to configure a real-life example cluster
•	 How to react when the data and queries number increases

Index Distribution Architecture

[106]

Choosing the right amount of shards
and replicas
In the beginning, when you started using ElasticSearch, you probably began by
creating the index, importing your data to it and after that you started sending
queries. We are pretty sure all worked well at least in the beginning when the
amount of data and the number of queries per second were not high. In the
background, ElasticSearch created some shards and probably replicas as well
(if you are using the default configuration for example) and you didn't pay
much attention to this part of the deployment.

When your application grows, you have to index more and more data and
handle more and more queries per second. This is the point where everything
changes. Problems start to appear (you can read about how we can handle the
application's growth in the Using our knowledge section of this chapter). It's now
time to think how you should plan your index and its configuration to rise with
your application. In this chapter, we will give some guidelines on how to handle
that. Unfortunately there is no exact recipe, each application has different
characteristics and requirements, on which not only the index structure depends,
but also the configuration. For example, these factors can be ones like the size of
the document or whole index, query types, and desired throughput.

Sharding and over allocation
You already know from the Introducing ElasticSearch section in Chapter 1,
Introduction to ElasticSearch what sharding is, but let's recall it. Sharding is the
splitting of an index to a set of smaller indices, which allows us to spread them
among multiple nodes in the same cluster. While querying, the result is a sum
of all the results that were returned by each shard of an index (although it's not
really a sum because a single shard may hold all the data we are interested).
By default, ElasticSearch creates five shards for every index even in a
single-node environment. This redundancy is called over allocation: it seems
to be totally needless at this point and only leads to more complexity when
indexing (spreading document to shards) and handling queries (querying shards
and merging the results). Happily, this complexity is handled automatically,
but why does ElasticSearch do this?

Chapter 4

[107]

Let's say that we have an index that is built only of a single shard. This means that if
our application grows above the capacity of a single machine, we will face a problem.
In the current version of ElasticSearch there is no possibility of splitting the index to
multiple, smaller parts: we need to say how many shards the index should be built of
when we create that index. What we can do is prepare a new index with more shards
and re-index the data. However, such an operation requires additional time and server
resources such as CPU time, RAM, and mass storage, and of course we may not have
time and mentioned resources. From the other side, while using over allocation,
we can just add a new server with ElasticSearch installed and ElasticSearch will
rebalance the cluster and move parts of the index to the new machine without
additional cost of re-indexing. The default configuration (which means five shards
and one replica) chosen by the authors of the ElasticSearch is the balance between
possibilities of growing and overhead resulting from the need to merge results from
a different shard.

The default shard number of 5 is chosen for standard use cases. So now, the question
arises: When should we start with more shards or contrary, try to keep the number
of shards as low as possible?

The first answer is obvious. If you have a limited and strongly defined data set you
can use only a single shard. If you do not, however, the rule of thumb dictates that
the optimal number of shards is dependent on the target number of nodes. So, if you
plan to use 10 nodes in the future, you need to configure the index to have 10 shards.
One important thing to remember is that: for high availability and query throughput
we should also configure replicas, and it also takes room on the nodes just like the
normal shard. If you have one additional copy of each shard (number_of_replicas
equal to one) you end with 20 shards: 10 with main data and 10 with its replicas.
To sum up, our simple formula can be presented as follows:

Max number of nodes = Number of shards * (number of replicas + 1)

In other words, if you have planned to use 10 shards and you like to have 2 replicas,
the maximum number of nodes for this setup will be 30.

Index Distribution Architecture

[108]

A positive example of over allocation
If you carefully read the previous part of this chapter you will have a strong
conviction that you should use minimal number of shards. But sometimes
having more shards is handy, because a shard is in fact an Apache Lucene
index and more shards means that every operation executed on a single,
smaller Lucene index (especially indexing) will be faster. Sometimes this is
a good enough reason to use many shards. Of course, there is the possible
cost of splitting a query into multiple requests to every shards and merge
response from it. This can be avoided for particular types of applications
where the queries are always filtered by the concrete parameter. This is the
case with multitenant systems, where every query is run in context of the
defined user. The idea is simple, we can index data of this user in a single
shard and use only that shard during querying. This is in place when routing
should be used (we will discuss it in detail in the Routing explained section
in this chapter).

Multiple shards versus multiple indices
You may wonder, if a shard is de facto of a small Lucene index, what about "true"
ElasticSearch indices? What is the difference between them? Technically, it is
the same, but some additional features work either with indices or with shards.
For sharding, there is a possibility of targeting queries to a particular shard
using routing or query execution preference. For indices, a more universal
mechanism is stitched in addressing, queries can be sent to several indices
using the /index1,index2,…/ notation. While querying, we can also use the
aliasing feature and make the indices visible as one index, just as with sharding.
More differences can be spotted in the shard and index balancing logic,
although less automation with indexes can be partially hidden by the
manual force of deploying indices on particular nodes.

Replicas
While sharding lets us store more data than which fits on a single node,
replicas are there to handle increasing throughput and for data security.
When a node with the primary shard is lost, ElasticSearch can promote
one of the available replicas to be a new primary shard. By default,
ElasticSearch creates one replica. However, differently to sharding,
the number of replicas can be changed any time using the settings API.
This is very convenient while building the applications, our query
throughput can grow together with the number of users using it and while
using replicas we can handle the increasing number of parallel queries.

Chapter 4

[109]

The drawback of using more replicas is obvious: the cost of additional space used
by additional copies of each shard, and of course the cost of data copy between the
primary shard and all the replicas. While choosing the number of shards you should
also consider how many replicas need to be present. If you select too many replicas,
you can end up using disk space and ElasticSearch resources, when in fact they won't
be used. On the other hand, choosing to have none of the replicas may result in the
data being lost if something bad happens to the primary shard.

Routing explained
In the Choosing the right amount of shards and replicas section in this chapter,
we've mentioned routing as a solution for limiting the query to be executed
only on a single shard to allow us to increase the query throughput. Now it's
time to look closer at this functionality.

Shards and data
Usually it is not important how ElasticSearch divides data into shards and which
shard holds the particular document. While querying, the query will be sent to all of
them so the only crucial thing is to use the algorithm, which spreads our data evenly.
The situation complicates slightly when we want to remove or add a newer version
of the document. ElasticSearch must be able to know where the document resides.
In practice, this is not a problem. It is enough to use the sharding algorithm, which for
the same document identifier will always generate the same value. If we have such
an algorithm, ElasticSearch will know which shard to point to while dealing with a
document. But don't you think it would be handy to be able to use a more intelligent
way of determining in which shard the document should be stored in? For example,
we would like to store every book of a particular type only on a particular shard and
during searching for that kind of book we could avoid searching on many shards
and merging results from them. This is exactly what the routing does. It allows us to
provide information to ElasticSearch, which will be used to determine which shard
should be used for document storage and for querying. The same routing value will
always result in the same shard. It's basically like saying: "Search for documents on the
shard where you've put the documents by using the provided routing value".

Index Distribution Architecture

[110]

Let's test routing
To show you an example that will illustrate how ElasticSearch allocates shards and
which documents are placed on a particular shard, we will use an additional plugin.
It will help us to visualize what ElasticSearch did with our data. Let's install the
Paramedic plugin using the following command:

bin/plugin -install karmi/elasticsearch-paramedic

After ElasticSearch restarts, we can point our browser to http://localhost:9200/_
plugin/paramedic/index.html and we will be able to see a page with various
statistics and information about indices. For our example, the most interested
information is the cluster color that indicates the cluster's state and the list of
shards and replicas next to every index.

Let's start two ElasticSearch nodes and create an index by running the
following command:

curl -XPUT localhost:9200/documents -d '{

 settings: {

 number_of_replicas: 0,

 number_of_shards: 2

 }

}'

We've created an index without replicas and only two shards. This means that the
largest cluster can have only two nodes, and each following node cannot be filled
with data unless we increase the number of replicas (you can read about this in
the Choosing the right amount of shards and replicas section of this chapter). The next
operation is to index some documents. In order to do that we will use the following
set of commands:

curl -XPUT localhost:9200/documents/doc/1 -d '{ "title" : "Document No.
1" }'

curl -XPUT localhost:9200/documents/doc/2 -d '{ "title" : "Document No.
2" }'

curl -XPUT localhost:9200/documents/doc/3 -d '{ "title" : "Document No.
3" }'

curl -XPUT localhost:9200/documents/doc/3 -d '{ "title" : "Document No.
4" }'

http://localhost:9200/_plugin/paramedic/index.html
http://localhost:9200/_plugin/paramedic/index.html

Chapter 4

[111]

After that Paramedic shows us two primary shards, as given in the
following screenshot:

In the information given about nodes, we can also find the information that we are
currently interested in. Each of the nodes in the cluster holds exactly two documents
which leads us to the conclusion that the sharding algorithm perfectly did its work and
we have an index that is built of shards, and that has evenly redistributed documents.

Now let us do some disaster and shutdown the second node. Now using Paramedic,
we should see something similar to the following screenshot:

The first information we see is that the cluster is now in red state. This means
that at least one primary shard is missing, which tells us that some of the data
is not available and some parts of the index are not available. Nevertheless,
ElasticSearch allows us to execute queries, it is our decision what an application
should: inform the user about the possibility of the incomplete results or block
querying attempts. Look at the result of the query matching all the documents:

{
 "took" : 30,
 "timed_out" : false,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 1,
 "failures" : [{
 "index" : "documents",

Index Distribution Architecture

[112]

 "shard" : 1,
 "status" : 500,
 "reason" : "No active shards"
 }]
 },
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "documents",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : { "title" : "Document No. 1" }
 }, {
 "_index" : "documents",
 "_type" : "doc",
 "_id" : "3",
 "_score" : 1.0, "_source" : { "title" : "Document No. 3" }
 }]
 }
}

As you can see, ElasticSearch returned the information about failures. We saw that
shard 1 is not available. In the returned result set, we can only see the documents
with identifiers of 1 and 3. Other documents have been lost, at least until the primary
shard is back online. If you start the second node, after a while (depending on the
network and gateway module settings) the cluster should return to green state
and all the documents should be available. Now, we will try to do the same using
routing, and we will try to observe the difference in the ElasticSearch's behavior.

Indexing with routing
With routing, we can control the target shard that ElasticSearch will choose to send
the documents to. The value of the routing parameter is irrelevant, you can use
whatever value you choose. The important thing is that the same value of the routing
parameter should be used to place different documents together in the same shard.

There are a few possibilities, with which we can provide the routing information to
ElasticSearch. The simplest way is to add a routing URI parameter when indexing
a document. For example, as follows:

curl -XPUT localhost:9200/documents/doc/1?routing=A -d '{ "title" :
"Document" }'

Chapter 4

[113]

Another option is to place a _routing field inside the document as follows:

curl -XPUT localhost:9200/documents/doc/1 -d '{ "title" : "Document No.
1", "_routing" : "A" }'

However, this will work only when the _routing field is defined in the mappings,
for example:

 "mappings": {
 "doc": {
 "_routing": {
 "required": true,
 "path": "_routing"
 },
 "properties": {
 "title" : {"type": "string" }
 }
 }
 }

Let's stop here for a while. In this example, we have used the _routing field. It is
worth mentioning that the path parameter can point to any not-analyzed field from
the document. This is a very powerful feature and one of the main advantages of the
routing feature. For example, if we extend our document with the library_id field
indicated library where the book is available, this is logical that all queries based on the
library can be more effective when we set up routing based on the library_id field.

Now, let's get back to the routing value definition possibilities. The last way is used
during bulk indexing. In this case, routing is given in the header for each document.
For example:

curl -XPUT localhost:9200/_bulk --data-binary '

{ "index" : { "_index" : "documents", "_type" : "doc", "_routing" : "A"
}}

{ "title" : "Document No. 1" }

'

Now that we know how it works, let's return to our example.

Index Distribution Architecture

[114]

Indexing with routing
Now, we will do the same as in the previous example, but using routing. The first
thing is deleting the old documents. If we will not do this, and add documents with
the same identifier, routing may cause the same document to be placed in the other
shard. Therefore, we run the following command to delete all the documents from
our index:

curl -XDELETE localhost:9200/documents/_query?q=*:*

After that, we index our data again, but this time we add routing information, so the
command used to index our documents looks as follows:

curl -XPUT localhost:9200/documents/doc/1?routing=A -d '{ "title" :
"Document No. 1" }'

curl -XPUT localhost:9200/documents/doc/2?routing=B -d '{ "title" :
"Document No. 2" }'

curl -XPUT localhost:9200/documents/doc/3?routing=A -d '{ "title" :
"Document No. 3" }'

curl -XPUT localhost:9200/documents/doc/4?routing=A -d '{ "title" :
"Document No. 4" }'

The routing parameter indicates to ElasticSearch in which shard the document
should be placed. Of course, it doesn't tell us that a document with a different
routing value will be placed in a different shard. But in our case and with small
number of documents, it is true. You can verify it on the Paramedic page, one node
has only one document (the one with the routing value of B) and the second node
 has three documents (the one with the routing value of A). If we kill one node,
Paramedic will again show the red cluster, state, and query for all the documents
and will return the following response:

{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 1,
 "failures" : [{
 "index" : "documents",
 "shard" : 1,
 "status" : 500,
 "reason" : "No active shards"
 }]
 },

Chapter 4

[115]

 "hits" : {
 "total" : 3,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "documents",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : { "title" : "Document No. 1" }
 }, {
 "_index" : "documents",
 "_type" : "doc",
 "_id" : "3",
 "_score" : 1.0, "_source" : { "title" : "Document No. 3" }
 }, {
 "_index" : "documents",
 "_type" : "doc",
 "_id" : "4",
 "_score" : 1.0, "_source" : { "title" : "Document No. 4" }
 }]
 }
}

In this case, a document with the identifier 2 is missing. We lost a node with the
documents that had the routing value of B. If we were less lucky, we would have
lost three documents!

Querying
Routing allows us to build queries more effectively when we are able to use it.
Why send a query to all the nodes if we want to get data from a particular subset
of the whole index? For example, these are indexed with routing, A. It is as simple
as running the following query:

curl -XGET 'localhost:9200/documents/_search?pretty&q=*:*&routing=A'

We've just added a routing parameter with the value we are interested in.
ElasticSearch replied with the following result:

{

 "took" : 0,

 "timed_out" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

Index Distribution Architecture

[116]

 "failed" : 0

 },

 "hits" : {

 "total" : 3,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "documents",

 "_type" : "doc",

 "_id" : "1",

 "_score" : 1.0, "_source" : { "title" : "Document No. 1" }

 }, {

 "_index" : "documents",

 "_type" : "doc",

 "_id" : "3",

 "_score" : 1.0, "_source" : { "title" : "Document No. 3" }

 }, {

 "_index" : "documents",

 "_type" : "doc",

 "_id" : "4",

 "_score" : 1.0, "_source" : { "title" : "Document No. 4" }

 }]

 }

}

Everything works similar to a charm. But look closer! We forgot to start the node that
holds the shard with the documents that were indexed with the routing value of B.
Even though we didn't have a full index view, the reply from ElasticSearch doesn't
contain information about shard failures. This is a proof that queries with routing
hits only the chosen shard and ignores the rest. If we run the same query with
routing=B we will get an exception similar to the following one:

{
 "error" : "SearchPhaseExecutionException[Failed to execute phase
[query_fetch], total failure; shardFailures {[_na_][documents][1]: No
active shards}]",
 "status" : 500
}

Chapter 4

[117]

The routing is a very powerful mechanism for optimizing a cluster. It lets us to
deploy documents in a way dependent on the application logic, which allows us
to build faster queries using fewer resources.

There is one important thing we would like to repeat, however. Routing ensures
that during indexing, documents with the same routing value are indexed in the
same shard. However, you need to remember that a given shard may have many
documents with different routing values. Routing allows limiting the number of
nodes used during query, but cannot replace filtering! This means that a query
with routing and without routing should have the same set of filters.

Aliases
At the end, it is worth mentioning about one feature, which simplifies working with
routing. If you work as a search engine specialist you probably want to hide some
configuration details to programmers to allow them to work faster and not care
about search details. In an ideal world, they should not worry about routing,
shards, and replicas. Aliases allow us to use shards with routing as ordinary
indices. For example, let's create an alias using the following command:

curl -XPOST 'http://localhost:9200/_aliases' -d '

{

 "actions" : [

 {

 "add" : {

 "index" : "documents",

 "alias" : "documentsA",

 "routing" : "A"

 }

 }

]

}'

In the preceding example we've created a virtual index (an alias) named documentsA,
which presents information from the documents index. However, in addition to
that, searching will be limited to the shard which stores information according to
the A routing value. Thanks to this approach, you can give information about the
documentsA alias to developers and they may use it for querying and indexing like
any other index.

Index Distribution Architecture

[118]

Multiple routing values
ElasticSearch gives us the possibility of searching with several routing values in
a single query. Depending on which shard documents with given routing values
are placed, it could mean searching on one or more shards. Let's look at the
following query:

curl -XGET 'localhost:9200/documents/_search?routing=A,B'

After executing it, ElasticSearch will send the search request to all the shards in our
index, because the routing value of A covers one of two shards of our index and
routing value of B covers the second shard of our index.

Of course, multiple routing values are supported in aliases. The following example
shows the usage of these features:

curl -XPOST 'http://localhost:9200/_aliases' -d '

{

 "actions" : [

 {

 "add" : {

 "index" : "documents",

 "alias" : "documentsA",

 "search_routing" : "A,B",

 "index_routing" : "A"

 }

 }

]

}'

The preceding example shows two additional configuration parameters which
we didn't talk until now, we can define different values of routing for searching
and indexing. In the preceding case, we've defined that during querying
(the search_routing parameter) two values of routing (A and B) will be applied.
While indexing (the index_routing parameter) only one value (A) will be used.
Note that indexing doesn't support multiple routing values and you should also
remember proper filtering (you can also add it in your alias).

Chapter 4

[119]

Altering the default shard allocation
behavior
In the previous chapters, we've learned many things about sharding and the features
connected with it. We've also discussed how shard allocation works (the Adjusting
shard allocation section in this chapter). However, we didn't talk about anything
else than the default behavior. ElasticSearch gives us more possibilities of building
advanced systems with specific sharding placement strategies. In this section,
we will take a deeper look on what else we can do when it comes to shard allocation.

Introducing ShardAllocator
ShardAllocator is the main class responsible for making a decision about the shard's
placement. As you recall, shards need to be allocated when ElasticSearch change
data allocation on the nodes, for example due to changes in the cluster topology (
when nodes are added or removed) or by forced rebalancing. Internally, allocator is
an implementation of the org.elasticsearch.cluster.routing.allocation.
allocator.ShardsAllocator interface. ElasticSearch provides two types of
allocators, which are as follows:

•	 even_shard

•	 balanced (the default one)

We can specify which allocator implementation we want to use by setting the
cluster.routing.allocation.type property in the elasticsearch.yml
file or by using the settings API. Let's look closer at the afore mentioned
allocator types.

The even_shard ShardAllocator
The allocator that was also available in ElasticSearch prior to version 0.90.0. It focuses
on ensuring that every node has the same number of shards (of course, this is not
always possible). It also doesn't allow storing the primary shard and its replicas on
the same node. When reallocation is needed and the even_shard ShardAllocator is
used, ElasticSearch moves shards from the most occupied nodes to ones that are less
occupied as long as the cluster is not fully balanced or no more moves can be done.
The important information is that this allocator doesn't work on the indices level,
which means that it doesn't take into consideration where different shards from the
same index are placed as long as a shard and its replica are on different nodes.

Index Distribution Architecture

[120]

The balanced ShardAllocator
This is the newest allocator that was introduced in ElasticSearch 0.90.0. It does
allocation based on several weights, which we can control. Compared to the
even_shard allocator we discussed earlier, it introduces additional possibilities
of tuning allocation process by exposing some parameters, which can be changed
dynamically using the cluster update API. The parameters that we can control
are as follows:

•	 cluster.routing.allocation.balance.shard: Its default value is 0.45
•	 cluster.routing.allocation.balance.index: Its default value is 0.5
•	 cluster.routing.allocation.balance.primary: Its default value is 0.05
•	 cluster.routing.allocation.balance.threshold: Its default value is 1.0

The preceding parameters define the behavior of the balanced allocator. Starting
from the first, we have the weight of the factor based on the total number of shards,
next we have the weight of the factor based on the shards of the given index,
and finally the weight of the factor based on primary shards. We will leave the
threshold explanation for now. The higher the weight of a particular factor,
the more important it will be, and the more influence it will have when
ElasticSearch will take a decision about shard relocation.

The first factor tells ElasticSearch how important for us is the number of shards
allocated to each node are similar. The second factor does the same, but not for all
shards, but for shards of the same index. The third factor tells ElasticSearch how
important is to have the same number of primary shards allocated to the nodes.
So, if having the same amount of primary shards distributed among nodes in your
cluster is very important, you should increase the value of the cluster.routing.
allocation.balance.primary weight and probably decrease the value of all the
other weights excluding threshold.

Finally, if the sum of all the calculated factors multiplied by the weights we've
given is higher than the defined threshold then shards of such indexes needs to be
reallocated. If for some reason you want to avoid considering one or more factors,
just set their weight to 0.

Chapter 4

[121]

The custom ShardAllocator
The built-in allocators may not fit in your deployment scenario. For example,
you could need something that during allocation takes into consideration
differences in sizes of the indices. Another example is a big cluster with various
hardware components, different CPUs, RAM amount, or disk space. All of these
factors can lead to inefficiently distributed data on nodes.

Happily, there is a possibility to implement your own solution. In this case,
the cluster.routing.allocation.type setting should be set to a fully qualified
class name, which implements the org.elasticsearch.cluster.routing.
allocation.allocator.ShardsAllocator interface.

Deciders
To understand how shard allocators decide when shard should be moved and to
which node it should be moved, we should discuss the internals of ElasticSearch,
which are called deciders. These are the brains where the allocation decisions are
made. ElasticSearch allows us to use many deciders simultaneously and all of them
will vote on the decision. There is a rule consensus, for example, if one decider votes
against reallocations of a shard, that shard cannot be moved. The list of deciders is
constant and cannot be changed without affecting the ElasticSearch code. Let's see
which deciders are used by default.

SameShardAllocationDecider
As its name suggests, this decider disallows situations where copies of the same
data (the shard and its replica) are placed on the same node. The reason for this
is obvious: we don't want to keep the backup of our data at the same place as the
master data. However while talking about this decider we should mention the
cluster.routing.allocation.same_shard.host property. It controls whether
ElasticSearch should care about the physical machine on which the shard is placed.
By default, it is set to false, because many nodes can run on the same server,
which is running multiple virtual machines. When set to true this decider will
disallow allocating a shard and its replicas on the same physical machine. It may
seem strange, but think about virtualization and the modern world, where the
operating system cannot determine on which physical machine it works.
Because of this, it is better to rely more on settings such as index.routing.
allocation properties family described in the Adjusting shard allocation section
in this chapter.

Index Distribution Architecture

[122]

ShardsLimitAllocationDecider
ShardsLimitAllocationDecider makes sure that for a given index there is no
more than a given number of shards on a single node. The number is defined by
the index.routing.allocation.total_shards_per_node property setting which
can be set in the elasticsearch.yml file or updated on live indices using the index
update API. The default value is -1, which means that no restrictions are applied.
Note that lowering this value forces reallocation and causes additional load on the
cluster for the duration of rebalancing.

FilterAllocationDecider
FilterAllocationDecider is used when we add the properties that are controlling
shard allocation, which means the ones that match the *.routing.allocation.*
name pattern. You can find more information about how this decider works in the
Adjusting shard allocation section of this chapter.

ReplicaAfterPrimaryActiveAllocationDecider
The decider that causes that ElasticSearch will start allocating replicas only when the
primary shards are allocated.

ClusterRebalanceAllocationDecider
ClusterRebalanceAllocationDecider allows changing conditions when
rebalancing will be done according to the current cluster state. The decider
can be controlled by the cluster.routing.allocation.allow_rebalance
property, which can take the following values:

•	 indices_all_active: Its default value indicates that rebalancing can be
done only when all the existing shards in the cluster are allocated

•	 indices_primaries_active: This setting specifies that rebalancing can be
done when primary shards are allocated

•	 always: This setting specifies that rebalancing is always allowed even when
primaries and replicas are not allocated

Note that these settings cannot be changed at runtime.

Chapter 4

[123]

ConcurrentRebalanceAllocationDecider
ConcurrentRebalanceAllocationDecider allows throttling relocation operations
based on the cluster.routing.allocation.cluster_concurrent_rebalance
property. With the help of the mentioned property, we can set up the number of
concurrent relocations that should happen at once on the given cluster. The default
value is 2, which means that no more than two shards can be moved at the same
time in our cluster. Setting the value to -1 turns off throttling, which means that the
number of concurrent rebalance is not limited.

DisableAllocationDecider
DisableAllocationDecider is another decider that exposes possibility of tuning its
behavior and adjust it to our needs. In order to do that, we can change the following
settings (statically in both elasticsearch.yml and using the cluster settings API):

•	 cluster.routing.allocation.disable_allocation: This setting allows
us to disable all allocation

•	 cluster.routing.allocation.disable_new_allocation: This setting
allows us to disable new primary shard allocation

•	 cluster.routing.allocation.disable_replica_allocation: This setting
allows us to disable replicas allocation

All these settings are by default set to false. They are quite handy when you
want to have full control when allocations happen. For example, you can disable
reallocations when you want to quickly reconfigure and restart several nodes.
In addition, remember that even though you can set the preceding properties in
elasticsearch.yml, it usually makes sense to use the update API here.

AwarenessAllocationDecider
AwarenessAllocationDecider is responsible for handling the awareness allocation
functionality. Whenever you use the cluster.routing.allocation.awareness.
attributes settings, this decider will jump in. More information about how it works
can be found in the Adjusting shard allocation section of this chapter.

Index Distribution Architecture

[124]

ThrottlingAllocationDecider
ThrottlingAllocationDecider is similar to
ConcurrentRebalanceAllocationDecider discussed earlier. This decider allows us
to limit the load generated by the allocation process. In this case, we are allowed to
control the recovery process by using the following properties:

•	 cluster.routing.allocation.node_initial_primaries_recoveries:
This property defaults to 4. It describes the number of initial primary shard
recovery operations allowed on a single node.

•	 cluster.routing.allocation.node_concurrent_recoveries:
This property defaults to 2. It defines the number of concurrent recovery
operations on a single node.

RebalanceOnlyWhenActiveAllocationDecider
RebalanceOnlyWhenActiveAllocationDecider allows rebalancing process to
happen only when all the shards are active in a single shard replication group
(which means the primary shard and its replicas).

DiskThresholdDecider
DiskThresholdDecider introduced in ElasticSearch 0.90.4 allows us to allocate
shards on the basis of free disk space available on the server. By default, it is disabled
and we must set the cluster.routing.allocation.disk.threshold_enabled
property to true in order to enable it. This decider allows us to configure thresholds
when a shard can be allocated to a node and when ElasticSearch should try to
relocate shard to another node.

The cluster.routing.allocation.disk.watermark.low property allows us
to specify the threshold or an absolute value when shard allocation is possible.
For example, the default 0.7 value, informs ElasticSearch that new shards can be
allocated to a node when the disk space is less than 70 percent.

The cluster.routing.allocation.disk.watermark.high property allows us
to specify the threshold or an absolute value when a shard allocator will try to
relocate the shard to another node. By default, it is set to 0.85, which means that
ElasticSearch will try to reallocate the shard when disk usage rises above 85 percent.

Both the cluster.routing.allocation.disk.watermark.low and cluster.
routing.allocation.disk.watermark.high properties can be set to a percentage
value (for example, 0.7 or 0.85) or to an absolute value (for example, 1000mb).
In addition, all the properties mentioned in this section can be set both statically
in elasticsearch.yml and updated dynamically using the ElasticSearch API.

Chapter 4

[125]

Adjusting shard allocation
In the ElasticSearch Server book we talked about how to manually force shard
allocation, how to cancel it, and how to move shards around the cluster with
a single API command. However, that's not the only thing ElasticSearch allows
us to use when it comes to shard allocation, we are also allowed to define a set
of rules on which shard allocation will work. For example, let's say that we have
a four-node cluster, which looks as follows:

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2um4u 4AAJQhQM

IP address: 192.168.3.1
node.tag: node3
node.group: groupB

Node: wJq0kPSH CovjuCsVK0-ATH

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

IP address: 192.168.3.2
node.tag: node4
node.group: groupB

Node: xKq1f-JJHD_voxussBB-x0

ElasticSearch cluster

As you can see, our cluster is built of four nodes. Each node was bound to a
specific IP address and each node was given the tag property and a group
property (added to elasticsearch.yml as the node.tag and node.group
properties). This cluster will serve the purpose of showing how shard allocation
filtering works. The group and tag properties can be given names whatever
you want, you just need to prefix your desired property name with the node
name, for example if you like to use a property name, party, you need to just
add node.party: party1 to your elasticsearch.yml file.

Index Distribution Architecture

[126]

Allocation awareness
Allocation awareness allows us to configure shards and their replicas allocation
with the use of generic parameters. In order to illustrate how allocation awareness
works we will use our example cluster. For the example to work, we should add
the following property to the elasticsearch.yml file:

cluster.routing.allocation.awareness.attributes: group

This will inform ElasticSearch to use the node.group property as the
awareness parameter.

One can specify multiple attributes while setting the cluster.
routing.allocation.awareness.attributes property.
For example:
cluster.routing.allocation.awareness.
attributes: group, node

After that, let's start the first two nodes, the ones with the node.group parameter
equal to groupA and let's create an index by running the following command:

curl -XPOST 'localhost:9200/mastering' -d '{

 "settings" : {

 "index" : {

 "number_of_shards" : 2,

 "number_of_replicas" : 1

 }

 }

}'

Chapter 4

[127]

After executing that command our two-node cluster will look more or less similar to
the following diagram:

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2um4u 4AAJQhQM

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

ElasticSearch cluster

Mastering
shard 0Replica

Mastering
shard 1Primary

Mastering
Primary shard 0

Mastering
Replica shard 1

As you can see, the index was divided between two nodes evenly. Now, let's see
what happens when we launch the rest of the nodes (the ones with node.group set
to groupB):

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2um4u 4AAJQhQM

IP address: 192.168.3.1
node.tag: node3
node.group: groupB

Node: wJq0kPSH CovjuCsVK0-ATH

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

IP address: 192.168.3.2
node.tag: node4
node.group: groupB

Node: xKq1f-JJHD_voxussBB-x0

ElasticSearch cluster

Mastering
Primary shard 0

Mastering
Replica shard 1

Mastering
Primary shard 1

Mastering
Replica shard 0

Index Distribution Architecture

[128]

Notice the difference: the primary shards were not moved from their original
allocation nodes, but the replica shards were moved to the nodes with a different
node.group value. That's exactly right. While using shard allocation awareness,
ElasticSearch won't allocate shards and replicas to the nodes with the same value
of the property used to determine the allocation awareness (which in our case is
the node.group value). One of the example usages of this functionality is dividing
the cluster topology between virtual machines or physical locations, to be sure that
you don't have a single point of failure.

Please remember that while using allocation awareness, shards will not
be allocated to the node that doesn't have the expected attributes set. So in
our example, a node without setting the node.group property will not
be taken into consideration by the allocation mechanism.

Forcing allocation awareness
Forcing allocation awareness can come in handy when we know in advance how
many values our awareness attributes can take and we don't want more replicas
than needed to be allocated in our cluster, for example not to overload our cluster
with too many replicas. For that, we can force allocation awareness to be active only
for certain attributes. We can specify those values by using the cluster.routing.
allocation.awareness.force.zone.values property and providing a list of
comma-separated values to it. For example, if we like for allocation awareness to
only use the groupA and groupB values of the node.group property, we should
 add the following code to the elasticsearch.yml file:

cluster.routing.allocation.awareness.attributes: group
cluster.routing.allocation.awareness.force.zone.values: groupA, groupB

Filtering
ElasticSearch allows us configure allocation for the whole cluster or for the index
level. In case of cluster allocation we can use the following properties prefixes:

•	 cluster.routing.allocation.include

•	 cluster.routing.allocation.require

•	 cluster.routing.allocation.exclude

Chapter 4

[129]

When it comes to index-specific allocation, we can use the following
properties prefixes:

•	 index.routing.allocation.include

•	 index.routing.allocation.require

•	 index.routing.allocation.exclude

The previously mentioned prefixes can be used with the properties that we've
defined in the elasticsearch.yml file (our tag and group properties) and with
a special property called _ip that allows us to match or exclude using node's IP
address, for example:

cluster.routing.allocation.include._ip: 192.168.2.1

If we like to include nodes with a group property matching the value groupA,
we should set the following property:

cluster.routing.allocation.include.group: groupA

Notice that we've used the cluster.routing.allocation.include prefix and
we've concatenated it with the name of the property, which is group in our case.

But what those properties mean?
If you look closely at the parameters mentioned previously, you will notice that there
are three kinds of them.

•	 include: This type will result in including all the nodes with this parameter
defined. If multiple include conditions are visible then all the nodes that
match at least a single of those conditions will be taken into consideration
while allocating shards. For example, if we add two cluster.routing.
allocation.include.tag parameters to our configuration, one with the
value of node1 and second with the value of node2, we would end up with
indices (actually their shards) being allocated to the first and the second node
(counting from left to right). To sum up, the nodes that have the include
allocation parameter type, we will take into consideration ElasticSearch
while choosing the nodes to place shards on, but that doesn't mean that
ElasticSearch will put shards on them.

•	 require: This property was introduced in the ElasticSearch 0.90 type of
the allocation filter. It requires all the nodes to have the value that matches
the value of this property. For example, if we add one cluster.routing.
allocation.require.tag parameter to our configuration with the value
of node1 and a cluster.routing.allocation.require.group parameter
with the value of groupA we would end up with shards allocated only to the
first node (the one with IP address of 192.168.2.1).

Index Distribution Architecture

[130]

•	 exclude: This property allows us to exclude nodes with given properties
from the allocation process. For example, if we set cluster.routing.
allocation.include.tag to groupA, we would end up with indices being
allocated only to nodes with IP addresses, 192.168.3.1 and 192.168.3.2
(the third and the fourth node in our example).

Property values can use simple wildcard characters. For example,
if we like to include all the nodes that have the group parameter
value beginning with group, we should set the cluster.routing.
allocation.include.group property to group*. In the example
cluster case, it will result in matching nodes with the groupA and
groupB group parameter values.

Runtime allocation updating
In addition to setting all the discussed properties in the elasticsearch.yml file we
can also use the update API to update those settings in real time, when the cluster is
already running.

Index-level updates
In order to update settings for a given index (for example our mastering index) we
should run the following command:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{

 "index.routing.allocation.require.group": "groupA"

}'

As you can see, the command was sent to the _settings endpoint for a given index.
You can include multiple properties in a single call.

Cluster-level updates
In order to update settings for the whole cluster we should run the
following command:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{

 "transient" : {

 "cluster.routing.allocation.require.group": "groupA"

 }

}'

Chapter 4

[131]

As you can see, the command was sent to the _cluster/settings endpoint. You can
include multiple properties in a single call. Please remember that the transient name
in the preceding command means that the property will be forgotten after restarting
the cluster. If you want to avoid that and set this property as a permanent one,
use the persistent property instead of the transient one. An example command,
which will persist the settings between restarts would look as follows:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{

 "persistent" : {

 "cluster.routing.allocation.require.group": "groupA"

 }

}'

Please note that running the preceding commands, depending
on the command and where your indices are located, can result
in shards being moved between the nodes.

Defining total shards allowed per node
In addition to the previously mentioned properties, we are also allowed to define how
many shards (primaries and replicas) for an index can by allocated per node. In order
to do that, one should set the index.routing.allocation.total_shards_per_node
property to a desired value. For example in the elasticsearch.yml file we should set:

index.routing.allocation.total_shards_per_node: 4

This would result in maximum of four shards per index being allocated to a
single node.

This property can also be updated on a live cluster using the update API as follows:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{

 "index.routing.allocation.total_shards_per_node": "4"

}'

And now, let's see a few examples of how the cluster would look, while creating a
single index and having the allocation properties used in the elasticsearch.yml file.

Index Distribution Architecture

[132]

Inclusion
Now let's use our example cluster to see how the allocation inclusion works.
Let's start by creating the mastering index by using the following command:

curl -XPOST 'localhost:9200/mastering' -d '{

 "settings" : {

 "index" : {

 "number_of_shards" : 2,

 "number_of_replicas" : 0

 }

 }

}'

After that let's try running the following command:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{

 "index.routing.allocation.include.tag": "node1",

 "index.routing.allocation.include.group": "groupA",

 "index.routing.allocation.total_shards_per_node": 1

}'

If we visualize the response of the index status we will notice that the cluster looks
similar to the the following diagram:

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2um4u 4AAJQhQM

IP address: 192.168.3.1
node.tag: node3
node.group: groupB

Node: wJq0kPSH CovjuCsVK0-ATH

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

IP address: 192.168.3.2
node.tag: node4
node.group: groupB

Node: xKq1f-JJHD_voxussBB-x0

ElasticSearch cluster

Mastering
Shard 1

Mastering
Shard 0

Chapter 4

[133]

As you can see, the Mastering index shards are allocated to the nodes with the tag
property set to node1 or the group property set to groupA.

Requirements
Now let's re-use our example cluster (let's assume we don't have any index there
again) to see how the allocation requirement works. Let's again start by creating
the mastering index using the following command:

curl -XPOST 'localhost:9200/mastering' -d '{

 "settings" : {

 "index" : {

 "number_of_shards" : 2,

 "number_of_replicas" : 0

 }

 }

}'

After that let's try running the following command:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{

 "index.routing.allocation.require.tag": "node1",

 "index.routing.allocation.require.group": "groupA"

}'

If we visualize the response of the index status command we will see that the cluster
looks as follows:

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2um4u 4AAJQhQM

IP address: 192.168.3.1
node.tag: node3
node.group: groupB

Node: wJq0kPSH CovjuCsVK0-ATH

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

IP address: 192.168.3.2
node.tag: node4
node.group: groupB

Node: xKq1f-JJHD_voxussBB-x0

ElasticSearch cluster

Mastering
Shard 1

Mastering
Shard 0

Index Distribution Architecture

[134]

As you can see the view is different than the one when using include. This is
because we tell ElasticSearch to allocate shards of the Mastering index only to
the nodes that match both require parameters and in our case the only node
that matches both is the first node.

Exclusion
Again let's start with a clear example cluster and after that we will create the
mastering index by using the following command:

curl -XPOST 'localhost:9200/mastering' -d '{

 "settings" : {

 "index" : {

 "number_of_shards" : 2,

 "number_of_replicas" : 0

 }

 }

}'

After that let's try running the following command to test allocation exclusion:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{

 "index.routing.allocation.exclude.tag": "node1",

 "index.routing.allocation.require.group": "groupA"

}'

And again let's look at our cluster now:

IP address: 192.168.2.1
node.tag: node1
node.group: groupA

Node: 6GVd-ktcS2u 4um4AAJQhQM

IP address: 192.168.3.1
node.tag: node3
node.group: groupB

Node: wJq0kPSH CovjuCsVK0-ATH

IP address: 192.168.2.2
node.tag: node2
node.group: groupA

Node: iW76Z_TaTfGRmbtCcPHF0Q

IP address: 192.168.3.2
node.tag: node4
node.group: groupB

Node: xKq1f-JJHD_voxussBB-x0

ElasticSearch cluster

Mastering
Shard 1

Mastering
Shard 0

Chapter 4

[135]

As you can see, we said that we require the group property to be equal to groupA
and we want to exclude the node with tag equal to node1. This resulted in a shard of
the Mastering index being allocated to the node with IP address 192.168.2.2, which is
what we wanted.

Additional shard allocation properties
In addition to what we've already discussed, ElasticSearch allows us to use a few
properties when it comes to shard allocation. Let's discuss them and see what else
we can control.

•	 cluster.routing.allocation.allow_rebalance: This property allows
us to control when rebalancing will take place based on the status of all
the shards in the cluster. The possible values are: always, using which
rebalancing will happen when its needed without looking at the state of the
shards of the indices (be careful with this value as it can cause high load),
indices_primaries_active, using which rebalancing will happen as soon
as all the primary shards are active, and indices_all_active, using which
rebalancing will happen after all the shards (primaries and replicas) are
allocated. The default value is indices_all_active.

•	 cluster.routing.allocation.cluster_concurrent_rebalance:
This property defaults to 2 and specifies how many concurrent shards
may be rebalanced at the same time in our cluster. Setting this property
to higher values may result in high I/O, increased network activity,
and increased nodes load.

•	 cluster.routing.allocation.node_initial_primaries_recoveries:
This property allows us to specify how many primary shards can be
concurrently recovered per node. Because of the fact that the primaries
recovery is usually fast, we can set this property to higher values without
putting too much pressure on the node itself. This property defaults to 4.

•	 cluster.routing.allocation.node_concurrent_recoveries:
This property defaults to 2 and specifies how many concurrent
recoveries are allowed per node. Please remember that specifying
too many concurrent recoveries per node may result in very high
I/O activity.

•	 cluster.routing.allocation.disable_new_allocation: This property,
by default is set to false. It allows us to disable allocation of new shards
(both the primary and the replicas) for newly created indices. This property
can be useful when you want to delay allocation of newly created indices
or shards for some reason. We can also disable allocation of only the new
shards for a given index by setting the index.routing.allocation.
disable_new_allocation property to true in that index settings.

Index Distribution Architecture

[136]

•	 cluster.routing.allocation.disable_allocation: This property,
by default is set to false and allows us to disable allocation for already
created primary and replica shards. Please note that promoting a replica
shard to a primary one (if the primary one is not existent) isn't an allocation
and thus such an operation will be permitted even if this property is set
to true. This property can be useful when you want to disable allocation
for newly created indices for some time. We can also completely disable
allocation of shards for a given index by setting the index.routing.
allocation.disable _allocation property to true in that
index settings.

•	 cluster.routing.allocation.disable_replica_allocation:
This property, by default, is set to false. When set to true it will
disallow the process of replica shards allocation to nodes. This can
be useful when one wants to stop allocating replicas for some time.
We can also disable replica allocation for a given index by setting
the index.routing.allocation.disable_replica_allocation
property to true in that index settings.

All the preceding properties can be set in both the elasticsearch.yml file and by
using the update settings API. However in practice, you use only the update settings
to work with properties such as cluster.routing.allocation.disable_new_
allocation, cluster.routing.allocation.disable_allocation, or cluster.
routing.allocation.disable_replica_allocation.

Query execution preference
Let's forget about the shard placement and how to configure it, at least for a moment.
In addition to all that fancy stuff that ElasticSearch allows us to set for shards
and replicas we also have the possibility to specify where our queries (and other
operations, for example, the real time get) should be executed.

Chapter 4

[137]

Before we get into details, let's look at our example cluster:

Node name: node3, id: wJq0kPSHTHCovjuCsVK0-A

Node name: node1, id: 6GVd-ktcS2um4u 4AAJQhQM Node name: node2, id: iW76Z_TaTfGRmbtCcPHF0Q

ElasticSearch cluster

Mastering
Primary shard 0

Mastering
Primary shard 1

Mastering
Replica shard 0

Mastering
Replica shard 1

As you can see, we have three nodes and a single index called Mastering. Our index
is divided into two primary shards and there is one replica for each primary shard.

Introducing the preference parameter
In order to control where the query (and other operations) we are sending will be
executed, we can use the preference parameter, which can be set to one of the
following values:

•	 _primary: Using this property, the operation we are sending will only
be executed on primary shards. So if we would send a query against
the mastering index with the preference parameter set to the _primary
value we would have it executed on the nodes with names node1 and
node2. For example, if you know that your primary shards are in one
rack and the replicas are in other racks, you may want to execute the
operation on primary shards to avoid network traffic.

Index Distribution Architecture

[138]

•	 _primary_first: This option is similar to the _primary value's behavior,
but with a failover mechanism. If we ran a query against the mastering
index with the preference parameter set to the _primary_first value
we would have it executed on the nodes with names node1 and node2,
however if one (or more) of the primary shard fails, the query will be
executed against the other shard, which in our case is allocated to a node
named node3. As we said, this is very similar to the _primary value,
but with additional fall back to replicas if the primary shard is not available
for some reason.

•	 _local: ElasticSearch will prefer to execute the operation on a local node
if possible. For example, if we would send a query to node3 with the
preference parameter set to _local, we would end up having that query
executed on that node. However, if we would send the same query to
node2, we would end up with one query executed against the primary
shard numbered 1 (which is located on that node) and the second part of the
query will be executed against node1 or node3 where the shard numbered 0
resides. This is especially useful while trying to minimize network latency,
while using the _local preference we ensure that our queries be executed
locally whenever possible (for example when running a client connection
from a local node or sending a query to a node).

•	 _only_node:wJq0kPSHTHCovjuCsVK0-A: This operation will be
only executed against a node with the provided identifier
(which is wJq0kPSHTHCovjuCsVK0-A in this case). So in our case,
the query would be executed against two replicas located on node3.
Please remember that if there aren't enough shards to cover all the
index data, the query will be executed against only the shard available
in the specified node. For example, if we would set the preference
parameter to _only_node:6GVd-ktcS2um4uM4AAJQhQ we would end
up having our query executed against a single shard. This can be useful
for examples where we know that one of our nodes is more powerful
than the other ones and we want some of the queries to be executed
only on that node.

•	 _prefer_node:wJq0kPSHTHCovjuCsVK0-A: This option sets the preference
parameter to the _prefer_node: value followed by a node identifier
(which is wJq0kPSHTHCovjuCsVK0-A in our case) will result in ElasticSearch
preferring the mentioned node while executing the query, but if some
shards are not available on the preferred node ElasticSearch will send the
appropriate query parts to nodes where the shards are available. Similar to
the _only_node option, _prefer_node can be used while choosing a
particular node, however with a fall back to other nodes.

Chapter 4

[139]

•	 _shards:0,1: This is the preference value that allows us to identify which
shards should the operation be executed against (in our case, it will be all
the shards, because we only have shards 0 and 1 in the mastering index).
This is the only preference parameter value that can be combined with the
other mentioned values. For example, in order to locally execute our query
against the 0 and 1 shard, we should concatenate the 0,1 value with _local
using the ; character, so the final value of the preference parameter should
look like this: 0,1;_local. Allowing us to execute the operation against a
single shard can be useful for diagnosis purposes.

•	 custom, string value: This is a custom value that will guarantee that the
query with the same value will be executed against the same shards.
For example, if we send a query with the preference parameter set to
the mastering_elasticsearch value we would end up having the query
executed against primary shards located on nodes named node1 and node2.
If we send another query with the same preference parameter value,
then the second query will be again executed against the shards located
on nodes named node1 and node2. This functionality can help us in cases
where we have different refresh rates and we don't want our users to see
different results while repeating requests.

There is one more thing missing, which is the default behavior. What ElasticSearch
will do by default is randomize the operation between shards and replicas. If we sent
many queries we would end up having the same (or almost the same) number of
queries run against each of the shard and replicas.

Using our knowledge
As we are slowly approaching the end of the fourth chapter we need to get something
that is closer to what you can encounter during your everyday work. Because of that
we have decided to divide the real-life example into two sections. In this section,
you'll see how to combine the knowledge we've got so far to build a fault-tolerant
and scalable cluster based on some assumptions. Because this chapter is mostly
about configuration, we will concentrate on that. The mappings and your data may
be different, but with similar amount data and queries hitting your cluster the
following sections may be useful for you.

Assumptions
Before we go into the juicy configuration details let's make some basic assumptions
with which using which we will configure our ElasticSearch cluster.

Index Distribution Architecture

[140]

Data volume and queries specification
Let's assume that we have an online library that currently sells about 100,000 books
in different languages.

We also expect for the average query response time to be less or equal to
200 milliseconds in order not to force our users to wait too long for the
search or browse for the results to be rendered.

So now, let's get back to the expected load. We did some performance tests
(which are beyond the scope of this book) and we've managed to learn that
our four-node cluster is behaving the best when we have our data divided
into two shards and we have one replica for each of the created shards.

You'll probably want to do performance tests on your own. To do this,
you can use one of the open source tools to run queries against your
cluster, for example, Apache JMeter (http://jmeter.apache.org/)
or ActionGenerator (https://github.com/sematext/
ActionGenerator). In addition to that you can either use the
ElasticSearch API to look at the statistics recorded by using a plugin
similar to ElasticSearch paramedic (https://github.com/karmi/
elasticsearch-paramedic), or BigDesk (https://github.
com/lukas-vlcek/bigdesk), or use a complete monitoring and
alerting solution similar to SPM for ElasticSearch from Sematext
(http://sematext.com/spm/elasticsearch-performance-
monitoring/index.html). All of these will provide the view on
how your cluster behaves during performance tests and where are
the bottlenecks. In addition to those mentioned, you'll probably want
to monitor the JVM garbage collector's work and how the operating
system behaves (some of the mentioned tools do that for you).

Chapter 4

[141]

So we want our cluster to look similar to the following diagram:

ElasticSearch cluster

Books
Primary shard 0

ElasticSearch Node

ElasticSearch Node

Books
Primary shard 1

Books
Replica shard 0

ElasticSearch Node

Books
Replica shard 1

ElasticSearch Node

Of course, the exact placement of shards and their replicas may be different, but the
logic behind it stays the same, that is, we want to have a single shard per node.

Index Distribution Architecture

[142]

Configuration
And now we'll create the configuration for our cluster and discuss in detail why we
used each of the specified properties. Let's start:

cluster.name: books
node configuration
node.master: true
node.data: true
node.max_local_storage_nodes: 1
indices configuration
index.number_of_shards: 2
index.number_of_replicas: 1
index.routing.allocation.total_shards_per_node: 1
instance paths
path.conf: /usr/share/elasticsearch/conf
path.plugins: /usr/share/elasticsearch/plugins
path.data: /mnt/data/elasticsearch
path.work: /usr/share/elasticsearch/work
path.logs: /var/log/elasticsearch
swapping
bootstrap.mlockall: true
#gateway
gateway.type: local
gateway.recover_after_nodes: 3
gateway.recover_after_time: 30s
gateway.expected_nodes: 4
recovery
cluster.routing.allocation.node_initial_primaries_recoveries: 1
cluster.routing.allocation.node_concurrent_recoveries: 1
indices.recovery.concurrent_streams: 8
discovery
discovery.zen.minimum_master_nodes: 3
search and fetch logging
index.search.slowlog.threshold.query.info: 500ms
index.search.slowlog.threshold.query.debug: 100ms
index.search.slowlog.threshold.fetch.info: 1s
index.search.slowlog.threshold.fetch.debug: 200ms
JVM gargabe collection work logging
monitor.jvm.gc.ParNew.info: 700ms
monitor.jvm.gc.ParNew.debug: 400ms
monitor.jvm.gc.ConcurrentMarkSweep.info: 5s
monitor.jvm.gc.ConcurrentMarkSweep.debug: 2s

Now let's see what these values mean.

Chapter 4

[143]

Node-level configuration
With the node-level configuration we've specified a cluster name (using the
cluster.name property) that will identify our cluster. If we have multiple
clusters on the same network, the nodes with the same cluster name will try
to connect to each other and form a cluster. Next, we say that this particular
node can be elected as a master node (the node.master: true property)
and that it can hold the indices data (node.data: true). In addition to that,
by setting the node.max_local_storage_nodes property to 1 we say that we
don't want more than a single instance of ElasticSearch running on a single node.

Indices configuration
Because we will only have a single index and we are not planning more indices for
now, we decided to set the default number of shards to 2 (the index.number_of_
shards property) and the default number of replicas to 1 (the index.number_of_
replicas property). In addition to that we've set the index.routing.allocation.
total_shards_per_node property to 1, which means that for each index
ElasticSearch will place a single shard on a node, which in case of our four-node
cluster will result in an even placement of shards per node.

The directories layout
We've installed ElasticSearch in /usr/share/elasticsearch and because of that
the conf, plugins, and the work directories are configured to be present in that
directory. The data will be placed on a hard drive specially designated for that
cause and which is available under the /mnt/data/elasticsearch mount point.
Finally, the logfiles will be stored in the /var/log/elasticsearch directory.
By having the directory layout that way while we do updates, we will only need
to think about the /usr/share/elasticsearch directory and not touch the rest.

Gateway configuration
As you know, the gateway is the module responsible for the storage of our indices and
their metadata. In our case we've chosen the suggested and the only non-deprecated
type of gateway, which is the local (gateway.type property). We said that we
want the recovery process to start as soon as there are three nodes (the gateway.
recover_after_nodes property) and start 30 seconds after at least 3 nodes are
connected to each other (the gateway.recover_after_time property). In addition to
that, we've informed ElasticSearch that our cluster will consist of four nodes by setting
the gateway.expected_nodes property to 4.

Index Distribution Architecture

[144]

Recovery
One of the crucial configuration options when it comes to ElasticSearch is the
recovery configuration. Although it is not needed every day, because you don't tend
to restart ElasticSearch day-to-day and of course you don't want your cluster to fail
often. However such situations happen and it's better to be prepared. So let's discuss
what we've used. We've set the cluster.routing.allocation.node_initial_
primaries_recoveries property to 1, which means that we only allow for a single
primary shard to be recovered per node at once. This is all right, because we will
have only a single node per ElasticSearch server. However, please remember that this
operation is fast using the local gateway type and thus can be set to larger values
if we have more than a single primary shard per node. We've also set the cluster.
routing.allocation.node_concurrent_recoveries property to 1 to again limit the
number of recoveries happening at the same time per node (we have a single shard per
node so we are not hit by this at all, but again if you have more shards per node and
your I/O allows that you can set it to a larger value). In addition to that we've set the
indices.recovery.concurrent_streams property to 8, because during our initial
tests of the recovery process we've seen that our network and servers can easily use
eight concurrent streams while recovering a shard from the peer shard, which basically
means that eight index files will be read concurrently.

Discovery
When it comes to the discovery module configuration we've only set a single property,
the discovery.zen.minimum_master_nodes to 3. It specifies the minimum
master-eligible nodes that are needed to form a cluster. It should be set to at least
50 percent of our nodes + 1, which in our case results to the value of 3. It will prevent
us from facing a situation where the node from our cluster, because of some failure,
will be disconnected and will form a new cluster with the same name (so called a
split-brain situation). Such situations are dangerous because they can result in a data
corruption, because two newly formed clusters will be indexing and changing the data
at the same time.

Chapter 4

[145]

Logging slow queries
One of the things that may be very useful while working with ElasticSearch is having
your queries logged only when they are executed for a certain period of time,
or longer. Keep in mind that this log is not telling about the total execution time of
the query, but per shard execution, which means that only the partial execution time.
In our case, we want the INFO level logging to log queries and real-time get requests
to be logged when they are executed for longer than 500 milliseconds and one second
for the real-time get requests. For debugging purposes, we have set those values to
100 milliseconds and 200 milliseconds. The following is the configuration section
responsible for that part:

index.search.slowlog.threshold.query.info: 500ms
index.search.slowlog.threshold.query.debug: 100ms
index.search.slowlog.threshold.fetch.info: 1s
index.search.slowlog.threshold.fetch.debug: 200ms

Logging garbage collector work
Finally, because we start with no monitoring solutions, (at least for the start) we
want to see how garbage collection is behaving. To be perfectly clear, we want to
see if and when the garbage collection takes too much of time. In order to do that
we've included the following lines to the elasticsearch.yml file:

monitor.jvm.gc.ParNew.info: 700ms
monitor.jvm.gc.ParNew.debug: 400ms
monitor.jvm.gc.ConcurrentMarkSweep.info: 5s
monitor.jvm.gc.ConcurrentMarkSweep.debug: 2s

While using the INFO level logging, ElasticSearch will write the information about
garbage collection working for too long when the concurrent mark sweep works for
five seconds or more, and for the younger generation collection working for more
than 700 milliseconds. We've also added the DEBUG level logging for cases we want
to debug and fix problems.

If you don't know what young generation garbage collection is or what
concurrent mark sweep is, please refer to the Oracle Java documentation
available at http://www.oracle.com/technetwork/java/javase/
gc-tuning-6-140523.html.

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Index Distribution Architecture

[146]

Memory setup
Till now we didn't talk about the RAM memory setup, so we will do that now.
Let's assume that our nodes have 16 GB RAM each. The general recommendation
is that we shouldn't set the JVM heap size to more than 50 percent of the total
memory available, which is true in our case. We would set the Xms and Xms Java
properties to 8g and for our case it should be enough, because our index size is not
very high, and we don't have the parent-child relationships in our data because we
don't facet on high cardinality fields. In the configuration shown earlier, we've set up
ElasticSearch to include the garbage collector's information, however for long-term
monitoring you may want to use monitoring tools such as SPM (http://sematext.
com/spm/index.html) or Munin (http://munin-monitoring.org/).

We've mentioned the general rule, that is, 50 percent of the available
physical memory may go to JVM and the rest should be left for the
operating system. As with most of the rules, this one too is right for most
of the cases. But let's imagine that our index would takes about 30 GB
of disk space and we would have 128 GB of RAM memory, but because
of the amount of parent-child relationships and high cardinality fields
faceting, we end up having out-of-memory exceptions even with 64 GB
of RAM dedicated to the JVM heap. Should we avoid adding more than
50 percent of the total available memory for JVM in such case? In our
opinion the answer is no, but it all depends on the particular case, in the
previously mentioned one the index size is far less than the free memory
available after giving JVM the 64 GB out of 128 GB, so we can extend that,
but we should remember to leave enough memory so that swapping is
not happening in our system.

One more thing
There is one more thing we didn't talk about: the bootstrap.mlockall property.
Setting this property to true allows ElasticSearch to lock the heap memory and
ensure that the memory will never be swapped. While setting the bootstrap.
mlockall property to true it is recommended to set the ES_MIN_MEM and
ES_MAX_MEM variables to the same value and ensure that the server has enough
free physical memory to start ElasticSearch and leave enough memory for the
operating system to be able to work flawlessly. We will discuss more about it
in the Avoid swapping on Unix-like systems section in Chapter 6, Fighting with Fire.

Chapter 4

[147]

Changes are coming
Let's imagine now that our service is a great success. The traffic increases. And not
only that, a big company wants to cooperate with us. This large supplier is not
selling their own books, but only provides them to the retailers. The data we can
expect from him is about 2 million books, so we will have 20 times of the data we
have right now (when it comes to number of documents). We have to prepare our
business for these changes, which also means altering our ElasticSearch cluster,
so that our users have the same, or better, search experience. What can we do?
The easier things will go first. Without additional work we can change (increase or
decrease) the number of replicas. This will prepare us for more number of queries,
which will of course put more pressure on ElasticSearch. The drawback is that
additional replicas need more disk space. We also should make sure that the
additional replicas can be allocated on the cluster nodes (refer to the formula in the
Choosing the right amount of shards and replicas section). And please remember about
performance testing: the resulting throughput always depends on many factors that
cannot be described using the mathematical formulas.

What about sharding? As we said before, we cannot change the number of shards
on a living index. If we over allocate shards, we have the room for expected growth.
But in our case we have 2 shards, which were fine for 100,000. But it is too small to
handle 2,100,000 (the ones which we have already handled and the additional ones)
in a timely manner. Who could have imagined such a success? So, let's think about
the solution that will allow us to handle data growth, but will also limit the time
when our service is unavailable, because unavailability means loss of money.

Reindexing
The first option is to remove the old index and create a new one with a greater
number of shards. This is the simplest solution but our service will be unavailable
during re-indexing. Let's say that in our case, preparing documents for indexing is
quite costly and the time of indexing of the whole database is long. The businessmen
in our company say that stopping the whole service for the time needed for
re-indexing is unacceptable. The second thought is that we can create the second
index, feed it with data, and then switch the application to a new one. As an option,
we can use aliasing to provide the new index without affecting the application's
configuration. But there is a small issue, creating a new index requires additional
disk space. Of course, we will have new machines with bigger hard drives
(we have to index new "big data") but before they arrive, we should finish all
the time-consuming tasks. We decide to search for another simpler solution.

Index Distribution Architecture

[148]

Routing
Maybe routing will be handy in our case? The obvious gain from using routing is the
possibility to create effective queries that return only books from our base dataset or
data that belongs to our business collaborate (because routing allows us to hit only a
part of our index). However, what we have to remember is to apply an appropriate
filter, routing doesn't ensure that data from both sources are not in the same shard.
Unfortunately, in our case this is another dead end, introducing routing again needs
re-indexing. So again, we throw that solution to a trashcan next to our desk.

Multiple Indices
Let's start with the basic question, why we need only a single index and why we need
to change the current part of the system. The answer is because we want to search in
all the documents, to find out whether they come from our initial data source or the
partner data source. Please note that ElasticSearch gives us the option of searching
using multiple indices without additional penalty. We can use multiple indices in
the API endpoint, for example, /books,partner1/. There is also a more elastic way
that will allow us to add another partner fast and easily without the need of changing
anything at the application side and without any downtime. We can use aliases for
defining virtual indices what won't require changes in the application code.

After brainstorming, we've decided to choose the last solution with some additional
improvements to put less pressure on the ElasticSearch cluster during indexing.
What we did is disabling the refresh rate and removing replicas:

curl -XPUT localhost:9200/books/_settings -d '{

 "index" : {

 "refresh_interval" : -1,

 "number_of_replicas" : 0

 }

}'

Of course, after indexing we change it to its previous value (for refresh: 1s). The one
issue was that ElasticSearch disallows changing the name of the index, which causes
a small downtime to service for changing the index name in configuration at the
application side.

Chapter 4

[149]

Summary
In this chapter we've learned how to choose the correct shards of replicas for our
ElasticSearch deployment and we've seen how routing works when it comes to
querying and indexing. We've seen how the new shard allocator works and how we
can configure it to match our needs. We configured the allocation mechanism to our
needs and we've learned how to choose query execution preference to specify which
nodes our operations should be executed. Finally, we used the knowledge we got to
configure a real-life example cluster, and we extended it when there needed.

In the next chapter we'll focus on more ElasticSearch configuration options: we will
see how to configure memory usage and choose the right directory implementation.
We will look at the Gateway and Discovery modules configuration and why they
are very important. In addition to that we'll learn how to configure indices recovery
and what information we can get about Lucene segments. Finally we will look at
ElasticSearch caches.

ElasticSearch Administration
In the previous chapter we looked at how to choose the right amount of shards
and replicas for our deployment, what is over sharding, and when we can go for
it. We discussed routing in greater detail and we now know how the newly
introduced shard allocator works and how we can alter its work. In addition to
that, we learned how to choose which shards our queries should be executed at.
Finally we've used all the knowledge to configure the fault tolerant and scalable
clusters and how to extend our cluster for growing the application. By the end of
this chapter you will have learned:

•	 How to choose the right directory implementation to allow ElasticSearch
access the underlying I/O system in the most effective way

•	 How to configure the Discovery module to avoid potential problems
•	 How to configure the Gateway module to match our needs
•	 What the Recovery module gives us and how to alter its configuration
•	 How to look at the segments information
•	 What ElasticSearch caching looks like, what it is responsible for, how to

use it, and alter its configuration

Choosing the right directory
implementation – the store module
The store module is one of the modules that we usually don't pay much attention to
when configuring our cluster, however it is very important. It allows us to control
how data in the index is stored, by using persistent (on disk) storage or by using
the transient one (in memory). Most of the store types in ElasticSearch are mapped
to an appropriate Apache Lucene Directory class (http://lucene.apache.org/
core/4_5_0/core/org/apache/lucene/store/Directory.html). The directory is
used to access all the files the index is built of, so it is crucial to properly configure it.

ElasticSearch Administration

[152]

Store type
ElasticSearch exposes four store types that we can use. Let's see what they provide
and how we can leverage their features.

The simple file system store
The simplest implementation of the directory class that is available is implemented
using a random access file (Java RandomAccessFile: http://docs.oracle.
com/javase/7/docs/api/java/io/RandomAccessFile.html) and maps to the
SimpleFSDirectory (http://lucene.apache.org/core/4_5_0/core/org/
apache/lucene/store/SimpleFSDirectory.html) in Apache Lucene. It is
sufficient for very simple applications. However, the main bottleneck will be
multithreaded access, which has poor performance. In case of ElasticSearch it is
usually better to use the new IO-based system store instead of the simple filesystem
store. However, if you like to use this system store you should set the index.store.
type property to simplefs.

The new IO filesystem store
This store type uses the directory class implementation based on the FileChannel
(http://docs.oracle.com/javase/7/docs/api/java/nio/channels/
FileChannel.html) from the java.nio package and maps to NIOFSDirectory
in Apache Lucene (http://lucene.apache.org/core/4_5_0/core/org/
apache/lucene/store/NIOFSDirectory.html). The discussed implementation
allows multiple threads to access the same files concurrently without performance
degradation. In order to use this store one should set the index.store.type
property to niofs.

Please remember that because of some bugs that exist in the JVM machine
for Microsoft Windows it is very probable that the new IO filesystem
store will suffer from performance problems while running on Microsoft
Windows. More information about that bug can be found at: http://
bugs.sun.com/bugdatabase/view_bug.do?bug_id=6265734.

http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html
http://docs.oracle.com/javase/7/docs/api/java/io/RandomAccessFile.html

Chapter 5

[153]

The MMap filesystem store
This store type uses the Apache Lucene MMapDirectory (http://lucene.apache.
org/core/4_5_0/core/org/apache/lucene/store/MMapDirectory.html)
implementation. It uses the mmap system call (http://en.wikipedia.org/wiki/
Mmap) for reading and randomly accessing a file for writing. It uses a portion of
the available virtual memory address space in the process equal to the size of the
file being mapped. It doesn't have any locking, so it is scalable when it comes to
multithread access. When using mmap to read index files for the operating system
it looks as if it is already cached (it was mapped to the virtual space). Because of
that when reading a file from the Apache Lucene index, that file doesn't need to be
loaded into the operating system's cache and thus the access is faster. This basically
allows Lucene and thus ElasticSearch to directly access the I/O cache, which should
result in faster access to the index files.

It is worth noting that the MMap filesystem store works best on 64-bit environments
and should only be used on 32-bit machines when you are sure that the index is
small enough and the virtual address space is sufficient. In order to use this store one
should set the index.store.type property to mmapfs.

The memory store
This is the only store type that is not based on the Apache Lucene directory.
The memory store allows us to store all the index files in the memory, so the
files are not stored on the disk. This is crucial, because it means that the index
data is not persistent: it will be removed whenever a full cluster restart happens.
However if you need a small, very fast index that can have multiple shards and
replicas and can be rebuilt very fast, the memory store type may be the option you
are looking for. In order to use this store one should set the index.store.type
property to memory.

The data stored in the memory store, similar to all the other stores is
replicated among all the nodes that can hold data.

ElasticSearch Administration

[154]

Additional properties
When using the memory store type we also have some degree of control over the
caches, which are very important while using the memory store. Please remember
that all the following settings are set per node:

•	 cache.memory.direct: This property defaults to true and specifies if the
memory store should be allocated outside of the JVM's heap memory. It is
usually a good idea to leave it to the default value, so that the heap is not
overloaded with data.

•	 cache.memory.small_buffer_size: This property defaults to 1 KB and
defines small buffer size: the internal memory structure used for holding
segments information and deleted documents information.

•	 cache.memory.large_buffer_size: This property defaults to 1 MB and
defines large buffer size: the internal memory structure used for holding
index files other than segments information and deleted documents.

•	 cache.memory.small_cache_size: This property defines smaller cache
size: the internal memory structure used for caching of index segments
information and deleted documents information. It defaults to 10 MB.

•	 cache.memory.large_cache_size: This property defines a large cache size:
the internal memory structure used for caching information about index
other than index segments information and deleted documents information.
It defaults to 500 MB.

The default store type
By default, ElasticSearch uses filesystem-based storage. However, different store
types are chosen for different operating systems: however the one chosen by
ElasticSearch will still be based on filesystem. For example, for 32-bit Microsoft
Windows the simplefs type will be used, mmapfs will be used when ElasticSearch
is running on Solaris, and Microsoft Windows 64-bit and the niofs will be used for
the rest of the world.

If you are looking for some information that comes from experts
on how they see which directory implementation to use,
please look at the http://blog.thetaphi.de/2012/07/
use-lucenes-mmapdirectory-on-64bit.html post
written by Uwe Schindler and http://jprante.github.io/
applications/2012/07/26/Mmap-with-Lucene.html
by Jörg Prante.

http://blog.thetaphi.de/2012/07/use-lucenes-mmapdirectory-on-64bit.html
http://blog.thetaphi.de/2012/07/use-lucenes-mmapdirectory-on-64bit.html
http://jprante.github.io/applications/2012/07/26/Mmap-with-Lucene.html
http://jprante.github.io/applications/2012/07/26/Mmap-with-Lucene.html

Chapter 5

[155]

Usually the default store type will be the one that you want to use.
However, sometimes it is worth considering using the MMap filesystem
store type, especially when you have plenty of memory and your indices
are big. This is because when using mmap to access the index file, will cause
the index files to be cached only once and be reused both by Apache Lucene
and the operating system.

Discovery configuration
As we already mentioned multiple times, ElasticSearch is built to work in the
cluster. This is the main difference when comparing to other solutions available as
open source and which have the same role as ElasticSearch. Other solutions can be
used (easier or harder) in a multinode, distributed architecture: for ElasticSearch it
is an everyday life. It also minimizes work needed to set up the cluster, thanks to
discovery mechanisms.

The main assumption is that the cluster is automatically formed by the nodes which
declare the same cluster.name setting. This allows us to have several independent
clusters in the same network. The drawback of this automatic discovery is that
sometimes someone forgets to change this setting and by accident join someone else's
cluster. In such a situation, ElasticSearch may rebalance the cluster and move some
data to the newly joined node. When that node is shut down, magically some data in
the cluster may disappear.

Zen discovery
Zen discovery is the default mechanism responsible for discovery of ElasticSearch
and available by default. The default Zen discovery configuration uses multicast to
find the other nodes. This is a very convenient solution: just start new ElasticSearch
node and if everything works, that node will be joined to the cluster if it has the same
cluster name and is visible by the other nodes in that cluster. If not, you should check
your publish_host or host settings to make sure that ElasticSearch listens to the
proper network interface.

Sometimes multicast is not available for various reasons or you don't want to use it
for the previously mentioned reason. In bigger clusters the multicast discovery may
generate too much unnecessary traffic and this is sometimes a valid reason for not
using it. For these cases Zen discovery introduces the second discovery method the
unicast mode. Let's stop here for a moment and describe configuration for
these modes.

ElasticSearch Administration

[156]

If you want to know more about the differences between multicast and
unicast ping methods please refer: http://en.wikipedia.org/wiki/
Multicast and http://en.wikipedia.org/wiki/Unicast.

Multicast
As mentioned, this is the default mode. When the node is not a part of the cluster
(for example it was just started or restarted) it will send a multicast ping request
which will basically inform all the visible nodes and clusters that the node is
available and is ready to be a part of the cluster.

The multicast part of the Zen discovery module exposes the following settings:

•	 discovery.zen.ping.multicast.address (default: all available
interfaces): This interface is used for communication given as address
or the interface name.

•	 discovery.zen.ping.multicast.port (default: 54328): This port is
used for communication.

•	 discovery.zen.ping.multicast.group (default: 224.2.2.4):
This represents a multicast address to send messages to.

•	 discovery.zen.ping.multicast.buffer_size (default: 2048)
•	 discovery.zen.ping.multicast.ttl (default: 3): It defines the time to live

for a multicast message. Every time when packet crosses route, the TTL is
decreased. This allows limiting an area where transmission can be received.
Note that the routers can have assigned the threshold values as compared
with TTL which ensures that the TTL value is not exactly the number of
routers which packet can jump over.

•	 discovery.zen.ping.multicast.enabled (default: true): Setting this
property to false turns off multicast. You should disable multicast if you
are planning to use the unicast discovery method.

http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Multicast

Chapter 5

[157]

Unicast
When you switch off multicast as described previously, you can safely use the unicast
part. When the node is not a part of the cluster (was just restarted, started or left the
cluster because of some error) it will send a ping request to all the addresses specified
in the configuration and will inform all those nodes that it is available for being a part
of the cluster.

The configuration is very simple and is as follows:

•	 discovery.zen.ping.unicats.hosts: This configuration represents the
initial list of nodes in the cluster. The list can be defined as a list or as an array
of hosts. Every host can be given a name (or IP address), have port, or port
range added. For example the value of this property can look similar to this:
["master1", "master2:8181", "master3[80000-81000]"]. So basically
the hosts' list for the unicast discovery doesn't need to be a complete list of
ElasticSearch nodes in your cluster, because once the node is connected to
one of the mentioned nodes, it will be informed about all the others that are
forming the cluster.

•	 discovery.zen.ping.unicats.concurrent_connects (default: 10):
This configuration specifies the maximum number of concurrent
connection unicast discovery will use.

Minimum master nodes
One of the very important properties when it comes to the discovery module is
the discovery.zen.minimum_master_nodes property, which allows us to set the
number of master eligible nodes that should be present in order to form the cluster.
It allows us to prevent a so called split-brain situation, where because of some error
(for example network issues), instead of a single cluster we have more of them with
the same name. You can imagine two clusters (that should be a single one) indexing
different data and problems it can cause. Because of that is it suggested to use the
discovery.zen.minimum_master_nodes property and set it to at least 50 percent
+ 1 number of your nodes in the cluster. For example if you have 9 nodes in your
cluster, that all are master-eligible, we should set the discovery.zen.minimum_
master_nodes property to 5. So the minimal cluster that will be allowed to elect
a master needs to have five master-eligible nodes present.

ElasticSearch Administration

[158]

Zen discovery fault detection
ElasticSearch runs two detection processes while it is working. The first process is
sending the ping requests from the master node to all the other nodes in the cluster
to check if they are operational. The second process is the reverse of that: each of
the nodes sends ping requests to the master in order to verify that it is still up and
running and performing its duties. However, if we have a slow network or our nodes
are in different hosting locations the default configuration may not be sufficient.
Because of that ElasticSearch discovery module exposes the following properties,
which we can change:

•	 discovery.zen.fd.ping_interval: This property defaults to 1s and
specifies the interval of how often the node will send ping requests to the
target node.

•	 discovery.zen.fd.ping_timeout: This property defaults to 30s and
specifies how long the node will wait for the sent ping request to be
responded to. If your nodes are 100 percent utilized or your network is
slow you may consider increasing that property's value.

•	 discovery.zen.fd.ping_retries: This property defaults to 3 and specifies
the number of ping request retries before the target node will be considered
not operational. You can increase that value if your network has a high
number of packets lost (or you can fix your network).

Amazon EC2 discovery
The Amazon store, in addition to selling goods has a few popular services as
selling storage or computing power in the pay-as-you-go model. In this second
case, called EC2, Amazon provides server instances and of course they can be
used for installing and running the ElasticSearch cluster (among many other
things as those are normal Linux machines). This is convenient: you pay for
instances that are needed in order to handle the current traffic or speed up
calculations and you shut down unnecessary instances when the traffic is
lower. ElasticSearch works on EC2, but due to the nature of the environment
some features may work slightly differently. One of those features that work
differently is discovery, because Amazon EC2 doesn't support multicast
discovery. Of course we can switch to unicast discovery: it will work but we
will lose automatic node detection and in most cases we don't want to lose
that functionality. However, there is an alternative: we can use the Amazon
EC2 plugin, a plugin that combines the multicast and unicast discovery
methods using the Amazon EC2 API.

Chapter 5

[159]

Make sure that during set up of EC2 instances you set up communication
between them (by default on port 9200 and 9300). This is crucial to have
ElasticSearch communication and thus cluster functioning. Of course,
this communication depends also on the network.bind_host and
network.publish_host (or network.host) settings.

EC2 plugin's installation
The installation of a plugin is as simple as most of the plugins. In order to install it
we should run the following command:

bin/plugin install cloud-aws

EC2 plugin's configuration
This plugin provides the following configuration settings that we need to provide in
order for the EC2 discover to work:

•	 cluster.aws.access_key: It is the Amazon access key, one of the credential
values you can find in the Amazon configuration panel

•	 cluster.aws.secret_key: It is the Amazon secret key: similar to
the previously mentioned access_key it can be found in the EC2
configuration panel

The last thing is to inform ElasticSearch that we want to use new discovery type by
setting the discovery.type property to the ec2 value and turn off multicast.

Optional EC2 discovery configuration options
The previously mentioned settings are sufficient to run the EC2 discovery, but in
order to control the EC2 discovery plugin's behavior ElasticSearch exposes the
following additional settings:

•	 cloud.aws.region: This specifies the region for connecting with Amazon
web services. You can choose a region adequate to the region where your
instance resides. For example eu-west-1 for Ireland. The possible values
are: eu-west-1, us-east-1, us-west-1, and ap-southeast-1.

•	 cloud.aws.ec2.endpoint: Instead of defining a region, you can enter an
address of the AWS endpoint, for example: ec2.eu-west-1.amazonaws.com.

ElasticSearch Administration

[160]

•	 discovery.ec2.ping_timeout (default: 3s): This specifies the time to wait
for the response for the ping message sent to the other node. After that time,
the non-responsive node will be considered dead and will be removed from
the cluster. Increasing this value make sense while dealing with network
issues or having many EC2 nodes.

EC2 nodes scanning configuration
The last group of settings we want to mention allows us to configure a very important
thing while building a cluster with EC2: the ability to filter the available ElasticSearch
nodes in our Amazon network. The ElasticSearch EC2 plugin exposes the following
properties that can help us to configure its behavior:

•	 discovery.ec2.host_type (defaults to private_ip): This property allows
us to choose the host type which will be used to communicate with the other
nodes in the cluster. The values we can use are private_ip (the default one,
the private IP address will be used for communication), public_ip (the public
IP address will be used for communication), private_dns (the private host
name will be used for communication), and public_dns (the public host name
will be used for communication).

•	 discovery.ec2.tag: This property defines a group of settings. When you
launch your Amazon EC2 instances, you can define tags, which can describe
the purpose of the instance, for example: customer name or environment type.
Then you use these defined settings to limit the discovery nodes. Let's say
you define a tag named environment with a qa value. While configuring you
can now specify: discovery.ec2.tag.environment: qa and only the nodes
running on instances with this tag will be considered for discovery.

•	 discovery.ec2.groups: This property specifies a list of security groups.
Only the nodes that fall within those groups can be discovered and included
in the cluster.

•	 discovery.ec2.availability_zones: This property specifies a list of
available zones. Only the nodes with the specified available zones will
be discovered and included in the cluster.

•	 discovery.ec2.any_group (defaults to true): Setting this property to false
will force the EC2 discovery plugin to discover only those nodes that reside
in an Amazon instance that fall into all of the defined security groups.
The default value requires only a single group to be matched.

Chapter 5

[161]

•	 There is one more property we would like to mention, the cloud.node.
auto_attributes property. When cloud.node.auto_attributes is set to
true, all the above information can be used as attributes while configuring
shard placement. You can find more about shard placement in Chapter 4,
Index Distribution Architecture, in the Adjusting shard allocation section.

Gateway and recovery configuration
The gateway module allows us to store all the data that is needed for ElasticSearch
to work properly. That means that not only the data in the Apache Lucene indices is
stored, but also all the metadata (for example index allocation settings) along with
the mappings configuration for each index. Whenever the cluster's state is changed,
for example when the allocation properties are changed, the cluster's state will be
persisted by using the gateway module. When the cluster is started up, its state will
be loaded and applied using the gateway module.

One should remember that while configuring different nodes
and different gateway types, indices will use the gateway type
configuration present on the given node. If an index state should
not be stored using the gateway module one should explicitly set
the index gateway type to none.

Gateway recovery process
Let's say that explicitly, the recovery process is used by ElasticSearch to load the
data stored with the use of gateway module, in order for ElasticSearch to work.
Whenever a full cluster's restart occurs the gateway process kicks in, in order to
load all the relevant information we've mentioned: the metadata, the mappings,
and of course all the indices. During shard recovery ElasticSearch copies the
data between nodes, this data is of course the Lucene indices, metadata, and the
transaction log that is used to recover not yet indexed documents.

ElasticSearch allows us to configure when the actual cluster data, metadata,
and mappings should be recovered using the gateway module. For example,
we need to wait for a certain amount of master eligible or data nodes to be
present in the cluster before starting the recovery process. However, one should
remember that when the cluster is not recovered all the operations performed
on it will not be allowed. This is done in order to avoid modification conflicts.

ElasticSearch Administration

[162]

Configuration properties
Before we continue with the configuration, we would like to say one more thing about
ElasticSearch nodes. ElasticSearch nodes can play different roles: they can have a role
of data nodes: the one that holds data, they can have a master role, and in addition to
handling queries such nodes (one in a given cluster) will be responsible for managing
the cluster. Of course, a node can be configured to neither be a master or a data node
and in such case, the node will be only used as aggregator node that will have user
queries. By default, each ElasticSearch node is data and master-eligible, but we can
change that behavior. In order for the node to not be master-eligible, one should set
the node.master property to false in the elasticsearch.yml file. In order for the
node to not be data-eligible, one should set the node.data property to false in the
elasticsearch.yml file.

In addition to that ElasticSearch allows us to use the following properties in order to
control how the gateway module behaves:

•	 gateway.recover_after_nodes: This property represents an integer number
that specifies how many nodes should be present in the cluster in order for
the recovery to happen. For example, when set to 5 at least 5 nodes (no matter
if they are data or master eligible nodes) must be present in order for the
recovery process to start.

•	 gateway.recover_after_data_nodes: This property specifies an integer
number that allows us to set how many data nodes should be present in the
cluster in order for the recovery process to start.

•	 gateway.recover_after_master_nodes: This property specifies another
gateway configuration option allowing us to set, how many master nodes
should be present in the cluster in order for the recovery to start.

•	 gateway.recover_after_time: This property allows us to set the waiting
time before the recovery process starts after the conditions are met.

Let's imagine that we have six nodes in our cluster from which four are data-eligible.
We also have an index that is built of three shards, which are spread across the
cluster. The last two nodes are master-eligible, but they are only used for querying
and can't hold data. What we would like to configure is the recovery process to be
delayed until all the data nodes are present in the cluster for at least 3 minutes.
So our gateway configuration would look as follows:

gateway.recover_after_data_nodes: 4
gateway.recover_after_time: 3m

Chapter 5

[163]

Expectations on nodes
In addition to already mentioned properties we can also specify the properties,
which will force the recovery to happen. These are as follows:

•	 gateway.expected_nodes: This property specifies the number of expected
nodes to be present in the cluster for the recovery to start immediately. If you
don't need the recovery to be delayed it is advised to set this property to the
number of nodes (or at least most of them) that the cluster will be formed
from, because that will guarantee that the latest cluster's state is recovered.

•	 gateway.expected_data_nodes: This property specifies the number of
expected data-eligible nodes to be present in the cluster for the recovery
process to start immediately.

•	 gateway.expected_master_nodes: This property specifies the number of
expected master-eligible nodes to be present in the cluster for the recovery
process to start immediately.

Now let's get back to our previous example. We know that when all the six nodes
are connected and in the cluster we want the recovery to start. So in addition to the
previous configuration we would add the following property:

gateway.expected_nodes: 6

So the whole configuration would look as follows:

gateway.recover_after_data_nodes: 4
gateway.recover_after_time: 3m
gateway.expected_nodes: 6

Local gateway
With the release of ElasticSearch 0.20 (and some of the releases from 0.19 versions)
all the gateway types, apart from the default, local, were deprecated and it is
not advised to use those, because they will be removed in the future version of
ElasticSearch. If you want to avoid full data reindexation you should only use the
local gateway type and this is why we won't discuss all the other types.

The local gateway type uses a local storage available on a node to store the
metadata, mappings, and indices. In order to use this gateway type, the local
storage available on the node, there needs to be enough disk space to hold the
data with no memory caching.

ElasticSearch Administration

[164]

The persistence to the local gateway is different from the other gateways that
are currently present (but deprecated). The writes to that gateway is done in a
synchronous manner to ensure that no data will be lost during the write process.

In order to set the type of gateway that should be used, one should
use the gateway.type property, which by default is set to local.

Backing up the local gateway
ElasticSearch up to the 0.90.5 (and including it) version doesn't support an automatic
backup of the data stored with the local gateway type. However, sometimes it
is crucial to do backups, for example when you want to upgrade your cluster to a
newer version and you would like to be able to roll back if something bad happens.
In order to do that, you should perform the following actions:

•	 Stop the indexing that is happening on your ElasticSearch cluster (this may
mean stopping the rivers or any external application that is sending data
to ElasticSearch).

•	 Flush all the not yet indexed data using the Flush API.
•	 Create at least one copy of each shard that is allocated in the cluster, which is

the minimum to be able to get the data back in case something bad happens.
However, if you like to have it as simple as it can be you can copy the whole
data directory from every node in your cluster that is eligible to hold data.

Recovery configuration
We told that we can use the gateway to configure the behavior of the ElasticSearch
recovery process, but in addition to that, ElasticSearch allows us to configure the
recovery process itself. We did mention some of the recovery configuration options
already while talking about the shard allocation in the Altering default shard allocation
behavior section in Chapter 4, Index Distribution Architecture. However, we decided
that it would be good to mention the properties we can use in the section dedicated
to gateway and recovery.

Chapter 5

[165]

Cluster-level recovery configuration
The recovery configuration is specified mostly at the cluster level and allows us to set
general rules for the recovery module to work with. These settings are as follows:

•	 indices.recovery.concurrent_streams: This property defaults to 3 and
specifies the number of concurrent streams that are allowed to be opened in
order to recover a shard from its source. The higher the value of this property
the more pressure will be put on the networking layer, however the recovery
will be faster, depending on your network usage and throughput.

•	 indices.recovery.max_bytes_per_sec: This property, by default is set
to 20 MB and specifies the maximum number of data that can be transferred
during shard recovery per second. In order to disable data transfer limiting,
one should set this property to 0. Similar to the number of concurrent
streams this property allows us to control network usage of the recovery
process. Setting this property to higher values may result in higher network
utilization, but also faster recovery process.

•	 indices.recovery.compress: This property is set to true by default
and allows us to define if ElasticSearch should compress the data that is
transferred during recovery process. Setting this to false may lower the
pressure on the CPU, but will also result in more data being transferred
over the network.

•	 indices.recovery.file_chunk_size: This property specifies the chunk
size used to copy the shard data from the source shard. By default, it is set
to 512 KB and is compressed if the indices.recovery.compress property
is set to true.

•	 indices.recovery.translog_ops: This property defaults to 1000 and
specifies how many transaction log lines should be transferred between
shards in a single request during the recovery process.

•	 indices.recovery.translog_size: This property specifies the chunk size
used to copy shard transaction log data from the source shard. By default,
it is set to 512 KB and is compressed if the indices.recovery.compress
property is set to true.

In the versions prior to ElasticSearch 0.90.0, there was the indices.
recovery.max_size_per_sec property that could be used, but it
was deprecated and it is suggested to use the indices.recovery.
max_bytes_per_sec property instead. However, if you are using
ElasticSearch older than 0.90.0 it may be worth remembering.

All the mentioned settings can be updated using the cluster update API or set in the
elasticsearch.yml file.

ElasticSearch Administration

[166]

Index-level recovery settings
In addition to the values mentioned previously there is a single property that can
be set on per index basis. The property can be set both in the elasticsearch.yml
file and using the indices update settings API and it is called index.recovery.
initial_shards. In general, ElasticSearch will only recover a particular shard when
there is a quorum of shards present and if that quorum can be allocated. A quorum is
50 percent of the shards for the given index plus one. By using the index.recovery.
initial_shards property we can change what ElasticSearch will take as a quorum.
This property can be set to one of the following values:

•	 quorum: This value implies that 50 percent plus one shards needs to be
present and be allocable.

•	 quorum-1: This value implies that 50 percent of the shards for a given index
needs to be present and be allocable.

•	 full: This value implies that all of the shards for the given index needs to be
present and be allocable.

•	 full-1: This value implies that 100 percent minus one shards for the given
index needs to be present and be allocable.

•	 integer value: This value represents any integer, for example 1, 2 or 5
which will specify the number of shards that are needed to be present
and that can be allocated. For example, setting this value to 2 will mean
that at least two shards need to be present and ElasticSearch needs at
least 2 shards to be allocable.

It is good to know about this property, but in most cases the default value will be
sufficient for most deployments.

Segments statistics
In the Segment merging under control section of Chapter 3, Low-level Index Control,
we've discussed the possibilities of adjusting Apache Lucene segments merge
processes to match our needs. In addition to that, in Chapter 6, Fighting with Fire,
in the When it is too much for the I/O - throttling explained section, we will further
discuss configuration possibilities. However, in order to be aware what needs to
be adjusted we should at least see how the segments of our index or indices look.

Chapter 5

[167]

Introducing the segments API
In order to look deeper into Lucene segments ElasticSearch provides the segments
API, which we can access by running an HTTP GET request to the _segments REST
endpoint. For example, if we like to get the view of all the segments of the indices
present in our cluster we should run the following command:

curl -XGET 'localhost:9200/_segments'

If we like to only view the segments for a mastering index, we should run
the following command:

curl -XGET 'localhost:9200/mastering/_segments'

We can also view segments of multiple indices at once by running the
following command:

curl -XGET 'localhost:9200/mastering,books/_segments'

The response
The response of the segments API call is always shard-oriented. That's because our
index is built of one or more shards (and their replicas) and as you already know
each shard is a physical Apache Lucene index. Let's assume that we already have an
index called mastering and that it has some documents indexed in it. During that
index creation, we've specified that we want it to be built of a single shard and it
should not have any replicas: it's only a test index, so it should be enough.

Let's check how the index segments look by running the following command:

curl -XGET 'localhost:9200/_segments?pretty'

In response we would get the following JSON (where we truncated a bit):

{
 "ok" : true,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "indices" : {
 "mastring" : {
 "shards" : {
 "0" : [{
 "routing" : {
 "state" : "STARTED",
 "primary" : true,

ElasticSearch Administration

[168]

 "node" : "Cz4RFYP5RnudkXzSwe-WGw"
 },
 "num_committed_segments" : 1,
 "num_search_segments" : 8,
 "segments" : {
 "_0" : {
 "generation" : 0,
 "num_docs" : 62,
 "deleted_docs" : 0,
 "size" : "5.7kb",
 "size_in_bytes" : 5842,
 "committed" : true,
 "search" : true,
 "version" : "4.3",
 "compound" : false
 },
 ...
 "_7" : {
 "generation" : 7,
 "num_docs" : 1,
 "deleted_docs" : 0,
 "size" : "1.4kb",
 "size_in_bytes" : 1482,
 "committed" : false,
 "search" : true,
 "version" : "4.3",
 "compound" : false
 }
 }
 }]
 }
 }
 }
}

As we can see, ElasticSearch returned plenty of useful information that we can analyze.
The top-level information is the index name and the shard that we are looking at.
In our case, we see that we have a single shard, a 0 one, that is started and working
("state" : "STARTED") which is a primary shard ("primary" : true) and which is
placed on a node with the Cz4RFYP5RnudkXzSwe-WGw identifier.

Chapter 5

[169]

The next information we can see is the number of committed segments
(the num_committed_segments property) and the number of search segments
(the num_search_segments property). The committed segments are the ones
that have a commit command run on them, which means that they are persistent
to a disk and read-only. The search segments are the ones that are searchable.

After that we will have a list of segments. Each segment is characterized by the
following information:

•	 number: This property specifies the number of the segment which is the
name of the JSON object grouping other segment characteristics (for example,
_0, _1, and so on).

•	 generation: This property specifies index generation, a number showing us
how "old" the segment is. For example, the segment with generation of 0 was
created as the first one, then the one with the generation of 1 was created,
and so on.

•	 num_docs: This property specifies the number of documents indexed in
the segment.

•	 deleted_docs: This property specifies the number of documents that are
marked as deleted and those will be removed while merging the segments.

•	 size: This property specifies the size of the segment on the disk.
•	 size_in_bytes: This property specifies the segment size in bytes.
•	 committed: This property is set to true if the segment is committed and set

to false, when the segment is not yet committed.
•	 search: This property specifies the segment searchable by ElasticSearch.
•	 version: This property specifies the Lucene version used to create this index.

Just a side note: although a given ElasticSearch version will always use a
single version of Lucene it may happen that different segments are created
by different Lucene versions. This can happen when you've upgraded
ElasticSearch and it is built on a different version of Lucene. In such cases,
the older segments will be rewritten while merging the segments to the
newer version.

•	 compound: This property specifies the segment in the compound format
(is there a single file used to hold all the segment information).

ElasticSearch Administration

[170]

Visualizing segments information
The first thing that comes to mind when we look at all that information that is
returned by the segments API is: hey let's visualize it. If you'd like to do that
yourself you can always go and do it, but there is a nice plugin called SegmentSpy
that is dedicated to visualize your segments (https://github.com/polyfractal/
elasticsearch-segmentspy) and utilizes the API we just discussed.

After installing the plugin, by pointing our web browser to http://
localhost:9200/_plugin/segmentspy/ and choosing the index we
are interested in we would see a screen similar to the following screenshot:

As you can see, the plugin visualizes the information provided by the segments API
and can come in handy when we want to look at the segments, but we don't want to
analyze the whole JSON response provided by ElasticSearch.

Understanding ElasticSearch caching
Caching is one of those things that we usually don't pay attention to while using
an already configured and working ElasticSearch cluster (actually not only
ElasticSearch). The caches play an important role in ElasticSearch. They allow us to
effectively store filters and reuse them, use parent child functionality, use faceting,
and of course sort on indexed fields effectively. In this section, we will look at
the filter cache and the field data cache that are one of the most important caches
and as we would think knowing how they work is very useful while tuning our
ElasticSearch cluster.

Chapter 5

[171]

The filter cache
The filter cache is the one responsible for caching the results of filters used in queries.
For example let's look at the following query:

{
 "query" : {
 "filtered" : {
 "query" : {
 "match_all" : {}
 },
 "filter" : {
 "term" : {
 "category" : "romance"
 }
 }
 }
 }
}

It will return all the documents that have the romance term in the category
field. As you can see, we've used the match_all query combined with a filter.
Now, after the initial query, every query with the same filter present in it will
reuse the results of our filter and save the precious I/O and CPU resources.

Filter cache types
There are two types of filter caches in ElasticSearch: index level and node-level filter
cache. So, we can basically choose to configure the filter cache to be dependent on the
index and on a node (which is the default behavior). Since we can't always predict
where the given index will be allocated (actually its shards and replicas), it is not
recommended to use the index-based filter cache because we can't predict the
memory usage then.

ElasticSearch Administration

[172]

Index-level filter cache configuration
ElasticSearch allows us to use the following properties to configure the index-level
filter cache behavior:

•	 index.cache.filter.type: This property sets the type of the cache,
which can take the values of resident, soft and weak and node
(the default one). The entries in the resident cache can't be removed
by JVM unless we want them to be removed (either by using API,
setting the maximum size or expiration time) and is basically
recommended because of this (filling up the filter cache can be
expensive). The soft and weak filter cache types can be cleared by
JVM when it lacks memory, with the difference that when clearing
up memory, JVM will choose the weaker reference objects first and
then the one using the soft reference. The node property says that
the cache will be controlled on a node level (refer the Node-level filter
cache configuration section in this chapter).

•	 index.cache.filter.max_size: This property specifies the maximum
number of cache entries that can be stored in a cache (default is -1,
which means unbounded). You need to remember that this setting is
not applicable for the whole index, but for a single segment of a shard
for such index, so the memory usage will differ depending on how
many shards (and replicas) there are (for the given index) and how
many segments the index contains. Generally the default, unbounded
filter cache is fine with the soft type and proper queries that are
paying attention to make the caches reusable.

•	 index.cache.filter.expire: This property specifies the expiration time
of an entry in the filter cache, which is by default unbounded (set to -1).
If we want our filter cache to expire if not accessed, we can set the maximum
time of inactivity. For example, if we would like our cache to expire after
60 minutes we should set this property to 60m.

If you want to read more about the soft and weak references in Java,
please refer to the Java documentation, especially the Javadocs for those
two types: http://docs.oracle.com/javase/7/docs/api/java/
lang/ref/SoftReference.html and http://docs.oracle.com/
javase/7/docs/api/java/lang/ref/WeakReference.html.

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/SoftReference.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/SoftReference.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/WeakReference.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/WeakReference.html

Chapter 5

[173]

Node-level filter cache configuration
The default and recommended filter cache type, which is configured for all shards
allocated to a given node (set using the index.cache.filter.type property to
the node value or not setting that property at all). ElasticSearch allows us to use the
indices.cache.filter.size property to configure the size of this cache. We can
either use a percentage value as 20% (which is the default value) or a static memory
value as 1024mb. If we use the percentage value, ElasticSearch will calculate it as a
percentage of the maximum heap memory given to a node.

The node-level filter cache is an LRU cache type (Least Recently Used), which means
that while removing cache entries, the ones that were used the least number of times
will be thrown away in order to make place for the newer entries.

The field data cache
Field data cache is used when we want to send queries that involve faceting or
sorting on the field value. What ElasticSearch does is, it loads all the values for the
field we are using in memory, and by doing this ElasticSearch is able to provide fast
document-based access to these values. There are two things one should remember:
the field data cache is usually expensive to build from the hardware resource's point
of view, because the data for the whole field needs to be loaded into memory and
that requires both I/O operations and CPU resources.

One should remember that for every field that we sort on or use faceting
on, the data needs to be loaded into the memory: each and every term.
This can be expensive, especially for the fields that are high cardinality
ones, the ones with numerous different terms in them.

ElasticSearch Administration

[174]

Index-level field data cache configuration
Similar to index-level filter cache, we can also use the index-level field data cache,
but again it is not recommended to do so because of the same reasons: it is hard to
predict which shards or which indices will be allocated to which nodes. Because of
that we can't predict the amount of memory that will be used for caching each index
and we can run into memory issues.

However, if you know what you are doing and what you want to use, resident or
soft field data cache, you can use the index.fielddata.cache.type property and
set it to resident or soft. As we already discussed during filter cache's description,
the entries in the resident cache can't be removed by JVM unless we want them
to be and it is basically recommended to use this cache type when we want to use
index-level field data cache. Rebuilding the field data cache is expensive and will
affect the ElasticSearch query's performance. The soft field data cache types can
be cleared by JVM when it lacks memory.

Node-level field data cache configuration
ElasticSearch Version 0.90.0 allows us to use the following properties to configure
the node-level field data cache, which is the default field data cache if we don't
alter the configuration:

•	 indices.fielddata.cache.size: This property specifies the maximum
size of the field data cache either as a percentage value as 20% or an absolute
memory size as 10gb. If we use the percentage value, ElasticSearch will
calculate it as a percentage of the maximum heap memory given to a node.
By default, the field data cache size is unbounded.

•	 indices.fielddata.cache.expire: This property specifies the expiration
time of an entry in the field data cache, which is by default set to -1,
which means that the entries in the cache won't be expired. If we want our
field data cache to expire if not accessed, we can set the maximum time of
inactivity. For example, if we like our cache to expire after 60 minutes we
should set this property to 60m.

If we want to be sure that ElasticSearch will use the node-level field data
cache we should set the index.fielddata.cache.type property to
the node value or not set that property at all.

Chapter 5

[175]

Filtering
In addition to the previously mentioned configuration options, ElasticSearch allows
us to choose which field values are loaded into the field data cache. This can be
useful in some cases, especially if you remember that sorting and faceting use the
field data cache to calculate the results. ElasticSearch allows us to use two types of
field data loading filtering: by term frequency, by using regex, or by combining
both of them.

One of the examples when field data filtering can be useful and when you may want to
exclude the terms with the lowest frequency from the results is faceting. For example,
we may need to do this, because we know that we have some terms in the index
having spelling mistakes and those are lower cardinality terms for sure. We don't want
to bother calculating faceting for them, so we can remove them from the data, correct
them in our data source, or remove them from the field data cache by filtering. It will
not only exclude them from the results returned by ElasticSearch but also make the
field data memory footprint lower, because less data will be stored in the memory.
Now let's look at the filtering possibilities.

Adding field data filtering information
In order to introduce the field data cache filtering information, we need to add an
additional object to our mappings field definition: the fielddata object with its
child object, filter. So our extended field definition, for some abstract tag field,
would look as follows:

"tag" : {
 "type" : "string",
 "index" : "not_analyzed",
 "fielddata" : {
 "filter" : {
 ...
 }
 }
}

We will see what to put in the filter object in the following sections:

ElasticSearch Administration

[176]

Filtering by term frequency
Filtering by term frequency allows us to only load the terms that have frequency
higher than the specified minimum (the min parameter) and lower than the specified
maximum (the max parameter). The term frequency bounded by the min and max
parameters is not specified for the whole index, but per segment, which is very
important, because those frequencies will differ. The min and max parameters can be
specified either as a percentage (for example 1 percent is 0.01 and 50 percent is 0.5)
or as an absolute number.

In addition to that we can include the min_segment_size property that specifies the
minimum number of documents a segment should contain in order to be taken into
consideration while building the field data cache.

For example if we would like to store in the field data cache only the terms that come
from segments with at least 100 documents and the terms that have a segment term
frequency between 1 percent to 20 percent we should have mappings similar to the
following ones:

{
 "book" : {
 "properties" : {
 "tag" : {
 "type" : "string",
 "index" : "not_analyzed",
 "fielddata" : {
 "filter" : {
 "frequency" : {
 "min" : 0.01,
 "max" : 0.2,
 "min_segment_size" : 100
 }
 }
 }
 }
 }
 }
}

Chapter 5

[177]

Filtering by regex
In addition to filtering by the term frequency, we can also filter by the regex
expression. In such a case, only the terms that match the specified regex will
be loaded into the field data cache. For example, if we only like to load the data
from the tag field that are probably Twitter tags (starting with the # character),
we should have the following mappings:

{
 "book" : {
 "properties" : {
 "tag" : {
 "type" : "string",
 "index" : "not_analyzed",
 "fielddata" : {
 "filter" : {
 "regex" : "^#.*"
 }
 }
 }
 }
 }
}

Filtering by regex and term frequency
Of course we can combine the previously discussed filtering methods. So, if we like
to have the field data cache responsible for holding the tag field data, only those
terms that start with the # character, that comes from a segment with at least 100
documents and that have segment term frequency between 1 percent to 20 percent,
we should have the following mappings:

{
 "book" : {
 "properties" : {
 "tag" : {
 "type" : "string",
 "index" : "not_analyzed",
 "fielddata" : {
 "filter" : {
 "frequency" : {
 "min" : 0.1,
 "max" : 0.2,
 "min_segment_size" : 100
 },

ElasticSearch Administration

[178]

 "regex" : "^#.*"
 }
 }
 }
 }
 }
}

Please remember that the field data cache is not built during indexing,
but can be rebuilt while querying and because of that we can change
filtering during runtime by updating the fieldata section using the
mappings API. However, one has to remember that after changing the
field data loading filtering settings the cache should be cleared using the
clear cache API described in the Clearing the caches section in this chapter.

The filtering example
So now let's get back to the example from the beginning of the filtering section.
What we want to do is exclude the terms with the lowest frequency from faceting
results. In our case the lowest ones are the ones that have the frequency lower than
50 percent. Of course, this frequency is very high, but in our example we only use
four documents, in production you'll want to have different values: lower ones.
In order to do that, we will create a books index with the following commands:

curl -XPOST 'localhost:9200/books' -d '{

 "settings" : {

 "number_of_shards" : 1,

 "number_of_replicas" : 0

 },

 "mappings" : {

 "book" : {

 "properties" : {

 "tag" : {

 "type" : "string",

 "index" : "not_analyzed",

 "fielddata" : {

 "filter" : {

 "frequency" : {

 "min" : 0.5,

Chapter 5

[179]

 "max" : 0.99

 }

 }

 }

 }

 }

 }

 }

}'

Now let's index some sample documents using the bulk API:

curl -s -XPOST 'localhost:9200/_bulk' --data-binary '

{ "index": {"_index": "books", "_type": "book", "_id": "1"}}

{"tag":["one"]}

{ "index": {"_index": "books", "_type": "book", "_id": "2"}}

{"tag":["one"]}

{ "index": {"_index": "books", "_type": "book", "_id": "3"}}

{"tag":["one"]}

{ "index": {"_index": "books", "_type": "book", "_id": "4"}}

{"tag":["four"]}

'

Now let's check a simple term's faceting by running the following query (because as
we already discussed faceting uses the field data cache to operate):

curl -XGET 'localhost:9200/books/_search?pretty' -d ' {

 "query" : {

 "match_all" : {}

 },

 "facets" : {

 "tag" : {

 "terms" : {

 "field" : "tag"

 }

 }

 }

}'

ElasticSearch Administration

[180]

The response for the preceding query would be as follows:

{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 .
 .
 .
 "facets" : {
 "tag" : {
 "_type" : "terms",
 "missing" : 1,
 "total" : 3,
 "other" : 0,
 "terms" : [{
 "term" : "one",
 "count" : 3
 }]
 }
 }
}

As you can see terms faceting was only calculated for the one term and the four
term was omitted. If we assume that the four term was misspelled, then we
achieved what we wanted.

Clearing the caches
As we've mentioned earlier, that while changing the field data filtering it is crucial to
clear the caches after the changes are done. Also this can be useful, when you want
to change some of the queries where you explicitly set the cache key. ElasticSearch
allows us to clear the caches using the _cache rest: the endpoint, whose usage will
be discussed now.

Chapter 5

[181]

Index, indices, and all caches clearing
The simplest thing we can do is just clear all the caches by running the
following command:

curl -XPOST 'localhost:9200/_cache/clear'

Of course, as we are used to, we can choose a single index or multiple indices
to clear the caches for them. For example, if we like to clear the cache for the
mastering index we should run the following command:

curl -XPOST 'localhost:9200/mastering/_cache/clear'

And if we like to clear caches for the mastering and books indices we should run
the following command:

curl -XPOST 'localhost:9200/mastering,books/_cache/clear'

Clearing specific caches
In addition to the clearing caches methods mentioned previously, we can also clear
only a cache of a given type. The following caches can be cleared:

•	 filter: This cache can be cleared by setting the filter parameter to true.
In order to exclude this cache type from clearing one we should set this
parameter to false.

•	 field_data: This cache can be cleared by setting the field_data parameter
to true. In order to exclude this cache type from clearing one we should set
this parameter to false.

•	 bloom: In order to clear the bloom cache (used in posting formats that use
the bloom filter, which was discussed in the Using Codecs section in Chapter 3,
Low-level Index Control), the bloom parameter should be set to true. In order
to exclude this cache type from clearing one we should set this parameter
to false.

For example, if we like to clear the field data cache for the mastering index,
but leave the filter cache and the bloom cache untouched, we can run the
following command:

curl -XPOST 'localhost:9200/mastering/_cache/clear?field_data=true&filter
=false&bloom=false'

ElasticSearch Administration

[182]

Clearing fields-related caches
In addition to clearing all the caches or specific ones, we are allowed to clear the
cache that is only specific to given fields. In order to do that we need to add the
fields parameter to our request, with the value of all the fields we want to clear
the caches for separated by the comma character. For example, if we would like to
clear the caches for the title and price fields of the mastering index we should
run the following request:

curl -XPOST 'localhost:9200/mastering/_cache/clear?fields=title,price'

Summary
In this chapter we've learned how to choose the right directory implementation to
allow ElasticSearch to access the underlying I/O system in the most effective way.
We've seen how to configure the nodes discovery module both using the multicast
and unicast methods. We discussed the gateway module which allows us to control
when the cluster recovery kicks in and of course we've looked at the recovery module
and its configuration. In addition to that, we've learned how to analyze segment-level
information returned by ElasticSearch. Finally we've seen how ElasticSearch caching
works, how to alter it, and control the way the field data cache is built.

In the next chapter we'll fight with fire: we'll learn how to deal with troublesome
situations. We will start with discussing how garbage collection works in Java,
how to monitor garbage collector's work, and how to look at the information
provided by JVM. In addition to that we'll discuss throttling, which allows us to
control how much ElasticSearch and the underlying Apache Lucene library will
be allowed to stress out the I/O subsystem. We'll see what warmers can give us in
terms of query's performance and we'll learn how to use them. Finally we'll learn
how to use the hot threads API provided by ElasticSearch and how the ElasticSearch
API can be used to provide useful information and statistics while diagnosing and
fighting problems.

Fighting with Fire
In the previous chapter we looked at ElasticSearch administration properties a
bit deeper. We learned how to choose the right Lucene Directory implementation
and which of the available implementations is the right choice in our environment.
We also learned how ElasticSearch Discovery module works, what multicast and
unicast discovery is all about, and how to use Amazon EC2 discovery. In addition
to that we now know what the Gateway module is and how to configure its recovery
behavior. We've used some additional ElasticSearch API that we think may be of
use and we've seen how to check what segments our indices are built of. We've also
seen how to visualize that information. Finally, we've learned what the cache types
in ElasticSearch are, what they are used for, how to configure them, and how to
clear them with the use of ElasticSearch API. By the end of this chapter, you will
have learned:

•	 What is garbage collector, how it works, and how to diagnose problems
that it can cause

•	 How we can control the amount of I/O operations used by ElasticSearch
•	 How can warmers speed up our queries and an example of such case
•	 What are hot threads and how to get the list of them
•	 Which ElasticSearch API can be useful when diagnosing problems with

nodes and cluster

Fighting with Fire

[184]

Knowing the garbage collector
You know that ElasticSearch is a Java application and because of that it runs in the
Java Virtual Machine. Each Java application is compiled into a so called byte code,
which can be executed by the JVM. In the most general way of thinking, you can
imagine that the JVM is just executing other programs and controls their behavior.
But this is not what you will care about unless you are developing plugins for
ElasticSearch, which we will discuss in Chapter 9, Developing ElasticSearch Plugins.
What you will care about is the garbage collector—the piece of JVM that is
responsible for memory management. When objects are dereferenced, they can be
removed from memory by the garbage collector, when the memory is running low,
the garbage collector starts working, and so on. In this section, we will see how to
configure garbage collector, how to avoid memory swapping, how to log garbage
collector behavior, diagnose problems, and use some Java tools that will show us
how it all works.

You can learn more about the architecture of Java Virtual Machine
at many places on the World Wide Web, for example, on Wikipedia:
http://en.wikipedia.org/wiki/Java_virtual_machine

Java memory
When we specify the amount of memory using the Xms and Xmx parameters (or the
ES_MIN_MEM and ES_MAX_MEM properties), we specify the minimum and maximum
size of Java Virtual Machine heap space. It is basically a reserved space of physical
memory that can be used by the Java program, which in our case is ElasticSearch.
A Java process will never use more heap memory than we've specified with the
Xmx parameter (or the ES_MAX_MEM property). When a new object is created in Java
application, it is placed in the heap memory. After it is no longer used, garbage
collector will try to remove that object from heap to free the memory space and
for JVM to be able to reuse it in the future. You can imagine, that if you don't have
enough heap memory for your application to create new objects on heap, then bad
things will happen, such as JVM will throw the OutOfMemory exception, which is a
sign that something is wrong with the memory, that is, either we don't have enough
of it or we have some memory leak and we don't release the object that we don't use.

The JVM memory is divided into the following regions:

•	 Eden space: It is the part of the heap memory where the JVM initially
allocates most of the object types.

•	 Survivor space: It is the part of the heap memory that stores objects which
survived the garbage collection of the eden space heap part. The survivor
space is divided into survivor space 0 and survivor space 1.

Chapter 6

[185]

•	 Tenured generation: It is the part of the heap memory that holds objects that
were living for some time in the survivor space heap part.

•	 Permanent generation: It is the non-heap memory that stores all the data for
the virtual machine itself, such as the classes and methods for objects.

•	 Code cache: It is the non-heap memory that is present in the HotSpot JVM
that is used for compilation and storage of native code.

The previous classification can be simplified. The eden space and the survivor space
are called the young generation heap space, and the tenured generation is often
called old generation.

The life cycle of Java object and garbage collections
In order to see how garbage collector works, let's get through the lifecycle of a
sample Java object.

When a new object is created in a Java application, it is placed in the young generation
heap space, inside the eden space part. Then when the next young generation garbage
collection is run and the object survives that collection (so basically if it was not one
time use object and the application still needs it), it will be moved to the survivor part
of the young generation heap space (first to survivor 0 and then, after another young
generation garbage collection, to survivor 1).

After living sometime in the survivor 1 space, the object is moved to tenured
generation heap space, so it will now be a part of the old generation. From now
on the young generation garbage collector won't be able to move that object in
heap space. Now that object will be living in the old generation until our application
decides that it is not needed anymore. In such case, when the next full garbage
collection comes in, it will be removed from the heap space and will make place
for new objects.

Based on the previous paragraph, we can say (and it is actually true) that, at least
till now, Java uses generational garbage collection; the more garbage collections
our object will survive the further it gets promoted. Because of that we can say
that there are two types of garbage collectors working side-by-side: the young
generation garbage collector (also called minor) and the old generation garbage
collector (also called major).

Fighting with Fire

[186]

Dealing with garbage collection problems
When dealing with garbage collection problems, the first thing you need to identify
is the source of the problem. It is not straightforward work and usually requires
some effort from the system administrator or the people responsible for handling
the cluster. In this section, we will show two methods of observing and identifying
problems with garbage collector: first is turning on logging for garbage collector in
ElasticSearch and the second is using the jstat command, which is present in most
Java distributions.

Turning on logging of garbage collection work
ElasticSearch allows us to observe periods when garbage collector is working too long.
In the default elasticsearch.yml configuration file, you can see the following entries,
which are commented out by default:

monitor.jvm.gc.ParNew.warn: 1000ms
monitor.jvm.gc.ParNew.info: 700ms
monitor.jvm.gc.ParNew.debug: 400ms
monitor.jvm.gc.ConcurrentMarkSweep.warn: 10s
monitor.jvm.gc.ConcurrentMarkSweep.info: 5s
monitor.jvm.gc.ConcurrentMarkSweep.debug: 2s

As you can see the configuration specifies three log levels and the thresholds for each
of them. For example, for the info logging level, if the young generation collection will
take 700 milliseconds or more, ElasticSearch will write information to logs. In case of
old generation, it will be written to logs if it will take more than 5 seconds.

What you'll see in the logs is something like this:

[EsTestNode] [gc][ConcurrentMarkSweep][964][1] duration [14.8s],
 collections [1]/[15.8s], total [14.8s]/[14.8s], memory [8.6gb]-
 >[3.4gb]/[11.9gb], all_pools {[Code Cache] [8.3mb]-
 >[8.3mb]/[48mb]}{[Par Eden Space] [13.3mb]
 >[3.2mb]/[266.2mb]}{[Par Survivor Space] [29.5mb]
 >[0b]/[33.2mb]}{[CMS Old Gen] [8.5gb]->[3.4gb]/[11.6gb]}{[CMS
 Perm Gen] [44.3mb]->[44.2mb]/[82mb]}

As you can see, the previous line from the logfile says that it is about the
ConcurrentMarkSweep garbage collector, so it's about old generation collection.
We can see that the total collection time took 14.8 seconds. Before the garbage
collection operation, there was 8.6gb of heap memory used (out of 11.9gb).
After garbage collection work, the amount of heap memory used was reduced
to 3.4gb. After that you can see the information in more detailed statistics
about which parts of the heap were taken into consideration by the garbage
collector: code cache, eden space, survivor space, old generation heap space,
and the perm generation space.

Chapter 6

[187]

When turning on logging of garbage collector work at a certain threshold,
we can see when things are not running the way we would like by just looking
at the logs. However, if you would like to see more, Java comes with a tool
for that, the jstat command.

Using JStat
Running the jstat command to look at how our garbage collector works is as
simple as running the following command:

jstat -gcutil 123456 2000 1000

The -gcutil switch tells the command to monitor garbage collector work, the 123456
is the virtual machine identifier on which ElasticSearch is running, 2000 is the interval
in milliseconds between samples, and 1000 is the number of samples to be taken.
So in our case, the previous command will be running for a little more than 33 minutes
(2000 * 1000 / 1000 / 60).

In most cases, the virtual machine identifier will be similar to your process ID or even
the same, but not always. In order to check what Java processes are running and
what their virtual machines identifiers are, one can just run a jps command which is
provided with most JDK distributions. A sample command would be like this:

jps

And the result would be as follows:

16232 Jps

11684 ElasticSearch

In the result of the jps command, we see that each line contains of JVM identifier
followed by the process name. If you want to learn more about the jps command,
please refer to Java documentation: http://docs.oracle.com/javase/7/docs/
technotes/tools/share/jps.html

Please remember to run the jstat command from the same account
ElasticSearch is running or if that is not possible, run the jstat
command with administrator privileges (for example, using sudo
command on Linux systems). It is crucial to have access rights to the
process running ElasticSearch, or the jstat command won't be able
to connect to that process.

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html

Fighting with Fire

[188]

Now, let's look at a sample output of the jstat command:

 S0 S1 E O P YGC YGCT FGC FGCT GCT
 12.44 0.00 27.20 9.49 96.70 78 0.176 5 0.495 0.672
 12.44 0.00 62.16 9.49 96.70 78 0.176 5 0.495 0.672
 12.44 0.00 83.97 9.49 96.70 78 0.176 5 0.495 0.672
 0.00 7.74 0.00 9.51 96.70 79 0.177 5 0.495 0.673
 0.00 7.74 23.37 9.51 96.70 79 0.177 5 0.495 0.673
 0.00 7.74 43.82 9.51 96.70 79 0.177 5 0.495 0.673
 0.00 7.74 58.11 9.51 96.71 79 0.177 5 0.495 0.673

The previous example comes from the Java documentation and we decided to take it
because it nicely shows what jstat is all about. Let's start by describing what each of
the columns means:

•	 S0: It indicates survivor space 0 utilization as a percentage of space capacity
•	 S1: It indicates survivor space 1 utilization as a percentage of space capacity
•	 E: It indicates eden space utilization as a percentage of space capacity
•	 O : It indicates old space utilization as a percentage of space capacity
•	 YGC: It indicates the number of young garbage collection events
•	 YGCT: It indicates time of young garbage collections in seconds
•	 FGC: It indicates the number of full garbage collections
•	 FGCT: It indicates time of full garbage collections in seconds
•	 GCT: It indicates total garbage collection time in seconds

And now, let's get back to our example. As you can see, there was a young garbage
collection event after sample three and before sample four. We can see that the
collection took 0.001 of a second (0.177 YGCT in fourth sample minus 0.176 YGCT
in third sample). We also know that the collection promoted objects from eden space
(which is 0% in fourth sample and was 83.97% in third sample) to old generation
heap space (which was increased from 9.49% in third sample to 9.51% in fourth
sample). And this example shows you how you can analyze the output of jstat.
Of course, it can be time consuming and requires some knowledge about how
garbage collector works and what is stored in the heap. However, sometimes it
is the only way to see the reason ElasticSearch can get stuck at certain moments.

Chapter 6

[189]

Please remember that if you ever see that ElasticSearch is not working correctly,
the S0, S1, or E columns are at 100 percent, and the garbage collector working is not
able to handle those heap spaces, than either your young is too small and you should
increase it (of course if you have sufficient physical memory available) or you run
into some memory problems, such as memory leaks, when some resources are not
releasing unused memory. On the other hand, when your old generation space is at
100 percent and garbage collector is struggling with releasing it (frequent garbage
collections), but it can't, then it probably means that you just don't have enough
heap space for your ElasticSearch node to operate properly. In such case, what you
can do without changing your index architecture is to increase the heap space that
is available for JVM that is running ElasticSearch (for more information about JVM
parameters please refer to http://www.oracle.com/technetwork/java/javase/
tech/vmoptions-jsp-140102.html).

Creating memory dumps
One additional thing that we didn't mention till now is the ability to dump the heap
memory to a file. Java allows us to get a snapshot of memory for the given point in
time and we can use that snapshot to analyze what is stored in memory and find
problems. In order to dump Java process memory, one can use the jmap (http://
docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html)
 command, for example, like this:

jmap -dump:file=heap.dump 123456

The 123456, in our case, is the identifier of the Java process we want to get the
memory dump for and -dump:file=heap.dump specifies that we want the dump
to be stored in the file named heap.dump. Such dump can be further analyzed in
specialized software, such as jhat (http://docs.oracle.com/javase/7/docs/
technotes/tools/share/jhat.html) but usage of such programs is beyond
the scope of this book.

More information on garbage collector work
Tuning garbage collection is not a simple process. The default options set for us in
ElasticSearch deployment are usually sufficient for most cases and the only thing
you'll need to do is adjust the amount of memory for your nodes. The topic of tuning
the garbage collector work is beyond the scope of this book, it is very broad and
called black magic by some developers. However, if you would like to read more
about garbage collector, what the options are, and how they affect your application,
I can suggest a great article that can be found at http://www.oracle.com/
technetwork/java/javase/gc-tuning-6-140523.html. Although the article at the
link is concentrated on Java 6, most of the options, if not all, can be successfully used
with deployments running on Java 7.

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Fighting with Fire

[190]

There is one thing to remember, what you usually try to aim for is more
and smaller garbage collections rather than one, but longer. This is
because you want your application to be running at the same constant
performance and the garbage collector work to be transparent for
ElasticSearch. When a big garbage collection happens, it can stop the
world garbage collection event, where ElasticSearch will be frozen for a
short period of time, which will make your queries very slow and will
stop your indexing process for some time.

Adjusting garbage collector work in ElasticSearch
We now know how garbage collector works and how to diagnose problems with it,
so it would be also nice to know how we can change ElasticSearch startup parameters
to change how garbage collector works. It depends on how you run ElasticSearch.
We will look at the two most common ones: the standard startup script provided
with ElasticSearch distribution package and when using service wrapper.

Using standard startup script
When using a standard startup script, in order to add additional JVM parameters,
we should include them in the JAVA_OPTS environment property. For example,
if we wanted to include -XX:+UseParNewGC -XX:+UseConcMarkSweepGC to our
ElasticSearch startup parameters in Linux like systems, we would do the following:

export JAVA_OPTS="-XX:+UseParNewGC -XX:+UseConcMarkSweepGC"

In order to check if the property was properly considered, we can just run
another command:

echo $JAVA_OPTS

And the previous command should result in the following output in our case:

-XX:+UseParNewGC -XX:+UseConcMarkSweepGC

Service wrapper
ElasticSearch allows user to install service wrapper as a service using Java service
wrapper (https://github.com/elasticsearch/elasticsearch-servicewrapper).
If you are using the service wrapper, setting up the JVM parameters is different when
compared to the method shown previously.

Chapter 6

[191]

What we need to do is modify the elasticsearch.conf file which will probably
be located in /opt/elasticsearch/bin/service/ (if your ElasticSearch was
installed in /opt/elasticsearch). In the mentioned file, you will see the
following properties:

set.default.ES_HEAP_SIZE=1024

wrapper.java.additional.1=-Delasticsearch-service
wrapper.java.additional.2=-Des.path.home=%ES_HOME%
wrapper.java.additional.3=-Xss256k
wrapper.java.additional.4=-XX:+UseParNewGC
wrapper.java.additional.5=-XX:+UseConcMarkSweepGC
wrapper.java.additional.6=-XX:CMSInitiatingOccupancyFraction=75
wrapper.java.additional.7=-XX:+UseCMSInitiatingOccupancyOnly
wrapper.java.additional.8=-XX:+HeapDumpOnOutOfMemoryError
wrapper.java.additional.9=-Djava.awt.headless=true

The first property is responsible for setting the heap memory size for ElasticSearch,
while the rest are additional JVM parameters. If you would like to add another
parameter, you can just add another wrapper.java.additional, followed by dot
and the next available number, for example:

wrapper.java.additional.10=-server

One thing to remember is that tuning garbage collector work is not
something that you do once and forget. It requires experimenting as its
work is very dependent on your data, queries, and all that combined.
Don't be afraid to make changes when something is wrong, but also
observe them and look how ElasticSearch works after making changes.

Avoiding swapping on Unix-like systems
Although this is not strictly about garbage collection and heap memory usage,
we think that it is crucial to see how to disable swap. Swapping is a process
of writing memory pages to disk (swap partition in Unix based systems),
when the amount of physical memory is not sufficient or the operating system
decides that for some reason it is better to have some part of RAM memory
written into disk. If the swapped memory pages will be again needed,
operating system will load them from swap partition and allow processes
to use them. As you can imagine, such a process takes time and resources.

Fighting with Fire

[192]

When using ElasticSearch, we have to avoid its process memory from being
swapped. You can imagine that having the parts of memory used by ElasticSearch
written to disk and then again reading from it can hurt the performance of both
searching and indexing. Because of that ElasticSearch allows us to turn off swapping
for it. In order to do that one should set bootstrap.mlockall to true in the
elasticsearch.yml file.

But the previous setting is only a beginning. You also need to ensure that the JVM
resizes the heap by setting the Xmx and Xms parameters to the same values (you can do
that by specifying the same values for the ES_MIN_MEM and ES_MAX_MEM environment
variables for ElasticSearch). Please also remember that you need to have enough
physical memory to handle the settings you've set.

Now, if we run ElasticSearch, we can run into the following message in the logs:

[2013-06-11 19:19:00,858][WARN][common.jna]
 Unknown mlockall error 0

This means that our memory locking is not working. So now, let's modify two files
on our Linux operating system (this will require administration rights). We assume
that the user that will run ElasticSearch is elasticsearch.

First, we modify /etc/security/limits.conf and we add the following entries:

elasticsearch - nofile 64000
elasticsearch - memlock unlimited

The second thing is modifying the /etc/pam.d/common-session file and adding
the following:

session required pam_limits.so

After re-logging to the es user account, you should be able to start ElasticSearch and
not see the mlockall error message.

Chapter 6

[193]

When it is too much for I/O – throttling
explained
In the Choosing the right directory implementation - the store module section in Chapter 5,
ElasticSearch Administration, we've talked about the store type, which means we are
now able to configure the store module to match our needs. However, we didn't
write everything about the store module—we didn't write about throttling.

Controlling I/O throttling
As you remember from the Segment merging under control section in Chapter 3, Low-level
Index Control, Apache Lucene stores the data in the immutable segments files that can
be read many times, but written only once. The merge process is asynchronous and
in general, should not interfere with indexing and searching, from a Lucene point of
view. However, problems may occur because merging is expensive when it comes to
I/O; it requires reading the segments that are going to be merged and writing new
ones. If searching and indexing happen concurrently, it can be too much for the I/O
subsystem, especially on systems with low I/O. And this is where the throttling kicks
in; we can control how much I/O ElasticSearch will use.

Configuration
Throttling can be configured both on a node level and on the index level, so you can
either configure how many resources a node will use or how many resources will be
used for the index.

Throttling type
In order to configure throttling type on node level, one should use the indices.
store.throttle.type property, which can take the value of none, merge, and all.
The none value will tell ElasticSearch that no limiting should take place and is the
default value. The merge value tells ElasticSearch that we want to limit I/O usage
for merging the nodes, and the all value specifies that we want to limit all the store
module based operations.

In order to configure throttling type on the index level, one should use the index.
store.throttle.type property which can take the same values as the indices.
store.throttle.type property with an additional one, the node. The node value
will tell ElasticSearch that instead of using per index throttling limiting, we will use
the node level configuration. This is the default value.

Fighting with Fire

[194]

Maximum throughput per second
In both cases, when using index or node level throttling, we are able to set
the maximum bytes per second that I/O can use. For the value of this property,
we can use 10mb, 500mb, or anything that we need. For the index level configuration,
we should use the index.store.throttle.max_bytes_per_sec property
and for the node level configuration, we should use the indices.store.throttle.
max_bytes_per_sec property.

The previous mentioned properties can be set both in
elasticsearch.yml file and also can be updated
dynamically using the cluster update settings for the node
level configuration and using the index update settings for
index level configuration.

Node throttling defaults
On the node level, since ElasticSearch 0.90.1, throttling is enabled by default.
The indices.store.throttle.type property is set to merge and the
indices.store.throttle.max_bytes_per_sec property is set to 20mb.
ElasticSearch versions before 0.90.1 don't have throttling enabled by default.

Configuration example
Now, let's imagine that we have a cluster that consists of four ElasticSearch nodes
and we want to configure throttling for the whole cluster. By default, we want the
merge operation not to process more than 50 megabytes per second for a node.
We know that we can handle such operations without affecting search performance
and this is what we are aiming at. In order to achieve this, we would run the
following request:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{
 "persistent" : {
 "indices.store.throttle.type" : "merge",
 "indices.store.throttle.max_bytes_per_sec" : "50mb"
 }
}'

Chapter 6

[195]

In addition to that we have a single index called payments, that is very rarely used
and we've placed it on the smallest machine in the cluster. This index doesn't have
replicas and is built of a single shard. What we would like to do for that index is limit
the merges to process a maximum of 10 megabytes per second. So, in addition to the
previous command, we would run one like this:

curl -XPUT 'localhost:9200/payments/_settings' -d '{
 "index.store.throttle.type" : "merge",
 "index.store.throttle.max_bytes_per_sec" : "10mb"
}'

However, this command alone won't work, because currently ElasticSearch doesn't
refresh the throttle settings for the index. So, we will close and open our payments
index to force refresh by running the following commands:

curl -XPOST 'localhost:9200/payments/_close'

curl -XPOST 'localhost:9200/payments/_open'

After running the previous commands, we can check our index settings by running
the following command:

curl -XGET 'localhost:9200/payments/_settings?pretty'

In response, we should get the following JSON code:

{
 "payments" : {
 "settings" : {
 "index.number_of_shards" : "5",
 "index.number_of_replicas" : "1",
 "index.version.created" : "900099",
 "index.store.throttle.type" : "merge",
 "index.store.throttle.max_bytes_per_sec" : "10mb"
 }
 }
}

As you can see, after updating the index setting, closing the index, and opening it
again, we've finally got our settings working.

Fighting with Fire

[196]

Speeding up queries using warmers
If you worked with ElasticSearch, and we assume you did, it is very probable that
you've heard of or used warmers API. This is a functionality that allows us to add
queries that will be used to warm up index segments. And this is exactly what
warmer is (a query or queries that are registered in ElasticSearch and which are
used to prepare the index for searching). In this section, we will recall how we
can add warmers, how we can manage them, and what they can be used for.

Reason for using warmers
One of the questions you may be asking yourself is if the warmers are really that
useful. The answer to this question actually depends on your data and your queries,
but in general, they are useful. As we've mentioned earlier (for example, during
cache discussion in the Understanding ElasticSearch caching section in Chapter 5,
ElasticSearch Administration), ElasticSearch needs to preload some data into the
caches in order to be able to use certain features, such as parent-child relationships,
faceting, or field-based sorting. The preload can take time and resources, which
will make your queries slower for some time. What's more is that if your index
is changing rapidly, the caches will need to be refreshed often and the query
performance will suffer even more.

That's why, ElasticSearch 0.20 introduced the warmers API. Warmers are standard
queries that are run against cold segments (not yet used) before ElasticSearch
will allow searching on them. This is also done not only during start up, but also
whenever a new segment is committed. Because of that, with proper warming
queries, we can preload all the needed data into caches and also warm up operating
system I/O cache (by reading the cold segment). By doing this, when the segment
is finally exposed to queries, we can be sure that we will get the optimal search
performance and all the needed data will be ready.

At the end of the warmers section, we will show you a simple example of how
warmers can improve initial query performance and notice the difference yourself.

Chapter 6

[197]

Manipulating warmers
ElasticSearch allows us to create warmers, retrieve them, and of course, delete them.
Each warmer is associated with a given index or index and type. We can include
warmers with the index creation request, include them in our templates, or use
the PUT Warmers API to create them. Finally, we can completely disable warmers
without the need of deleting them. So if we don't want them to be running only for
a certain amount of time, we can do that easily.

Using the PUT Warmer API
The simplest way to add warmers to your index, or index and type is to use the PUT
Warmer API. In order to do that we need to send a PUT HTTP request to the _warmer
REST end point with the query in the request body. For example, if we would like to
add a simple match_all query with some terms faceting as a warmer for an index,
named mastering, and type, named doc, we could use the following command:

curl -XPUT 'localhost:9200/mastering/doc/_warmer/testWarmer' -d '{
 "query" : {
 "match_all" : {}
 },
 "facets" : {
 "nameFacet" : {
 "terms" : {
 "field" : "name"
 }
 }
 }
}'

As you can see, each warmer has its own name which should be unique (in the
previous case, it is testWarmer) and which we can use to retrieve or delete it.

If we want to add the same warmer, but for the whole mastering index, we would
have to omit the type name and the command would look like this:

curl -XPUT 'localhost:9200/mastering/_warmer/testWarmer' -d '{
 ...
}'

Fighting with Fire

[198]

Adding warmers during index creation
In addition to using Put Warmer API, we can define warmers during index creation.
In order to do that we need to add additional warmers section on the same level
as mappings. For example, if we would like to create the mastering index with the
doc document type and add the same warmer as we used in the Put Warmer API,
we would send the following request:

curl -XPUT 'localhost:9200/mastering' -d '{
 "warmers" : {
 "testWarmer" : {
 "types" : ["doc"],
 "source" : {
 "query" : {
 "match_all" : {}
 },
 "facets" : {
 "nameFacet" : {
 "terms" : {
 "field" : "name"
 }
 }
 }
 }
 }
 },
 "mappings" : {
 "doc" : {
 "properties" : {
 "name": { "type": "string", "store": "yes", "index":
 "analyzed" }
 }
 }
 }
}'

As you can see, in addition to the mappings section, we've included a warmers one,
which is used to provide warmers for the index we are creating. Each warmer is
identified by its name (testWarmer in this case) and has two properties: types and
source. The types property is an array of document types in the index, which the
warmer should be used to. If we want the warmer to be used for all document types,
we should leave that array empty. The source property should contain our query
source. We can have multiple warmers included in a single index create request.

Chapter 6

[199]

Adding warmers to templates
ElasticSearch also allows us to include warmers for templates in the very same
manner as we would add those when creating an index. For example, if we
would like to include a warmer for a sample template, we would run the
following command:

curl -XPUT 'localhost:9200/_template/templateone' -d '{
 "warmers" : {
 "testWarmer" : {
 "types" : ["doc"],
 "source" : {
 "query" : {
 "match_all" : {}
 },
 "facets" : {
 "nameFacet" : {
 "terms" : {
 "field" : "name"
 }
 }
 }
 }
 }
 },
 "template" : "test*"
}'

Retrieving warmers
All the defined warmers can be retrieved using the GET HTTP method and sending
a request to the _warmer REST endpoint, which should be followed by a name.
We can retrieve a single warmer by using its name, for example, like this:

curl -XGET 'localhost:9200/mastering/_warmer/warmerOne'

Or we can use a wildcard character to retrieve all warmers, whose names start with
the given phrase. For example, if we would like to get all warmers that start with
the w character, we could use the following command:

curl -XGET 'localhost:9200/mastering/_warmer/w*'

Finally, we can get all warmers for the given index with the following command:

curl -XGET 'localhost:9200/mastering/_warmer/'

Of course, we can also include the document type in all the previous commands
to operate not on the warmers for the whole index, but only for the ones for the
desired type.

Fighting with Fire

[200]

Deleting warmers
Similar to the ways ElasticSearch allows us to retrieve the warmers, we can
delete them by using the DELETE HTTP method and the _warmer REST
endpoint. For example, if we want to remove a warmer named warmerOne
from the mastering index, we would run the following command:

curl -XDELETE 'localhost:9200/mastering/_warmer/warmerOne'

We can also delete all the warmers with the name starting with the given phrase.
For example, if we want to delete all the warmers that start with the w letter and
belong to the mastering index, we would run the following command:

curl -XDELETE 'localhost:9200/mastering/_warmer/w*'

And we can also delete all warmers for the given index. We do that by sending
the DELETE HTTP method to the _warmer REST endpoint without providing the
warmer name. For example, deleting all the warmers for the mastering index
could be done with the following command:

curl -XDELETE 'localhost:9200/mastering/_warmer/'

And of course, we can also include the type in all the previous commands to operate
not on the warmers for the whole index, but only for the ones for the desired type
just like we did while retrieving warmers.

Disabling warmers
If you don't want to use your warmers, but you don't want to delete them, you can
use the index.warmer.enabled property and set it to false. You can set it in the
elasticsearch.yml file or by using the update setting API, for example, like this:

curl -XPUT 'localhost:9200/mastering/_settings' -d '{
 "index.warmer.enabled": false
}'

If you would like to use the warmers again, the only thing you need to do is change
the index.warmer.enabled property and set it to true.

Chapter 6

[201]

Testing the warmers
In order to test the warmers, let's run a simple test. I've created a simple index with
the following command:

curl -XPUT localhost:9200/docs -d '{
 "mappings" : {
 "doc" : {
 "properties" : {
 "name": { "type": "string", "store": "yes", "index":
 "analyzed" }
 }
 }
 }
}'

In addition to that I've created a second type, called child, which were acting as
child documents of the previously created doc type documents. To do that I've used
the following command:

curl -XPUT 'localhost:9200/docs/child/_mapping' -d '{
 "child" : {
 "_parent":{
 "type" : "doc"
 },
 "properties" : {
 "name": { "type": "string", "store": "yes", "index":
 "analyzed" }
 }
 }
}'

After that I've indexed a single document with the doc type and about 80,000
documents of type child, which were pointing to that document using the parent
request parameter.

Fighting with Fire

[202]

Querying without warmers present
After the indexation process ended restart ElasticSearch and run the following query:

{
 "query" : {
 "has_child" : {
 "type" : "child",
 "query" : {
 "term" : {
 "name" : "document"
 }
 }
 }
 }
}

As you can see, it is a simple query that returns the parent document with a given
term in at least one of the child's documents. The response returned by ElasticSearch
was as follows:

{
 "took" : 479,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "docs",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"name":"Test 1234"}
 }]
 }
}

The execution time was 479 milliseconds. Sounds pretty high, right? If we would run
the same query once again, the execution time would drop.

Chapter 6

[203]

Querying with warmer present
In order to improve the initial query performance, we need to introduce a simple
warmer that will not only warm the I/O cache, but also force ElasticSearch to load
the parent documents identifiers into memory to allow faster parent child queries.
As we know, ElasticSearch does that during the first query with the given
relationship. So with that information, we can use the following command
to add our warmer:

curl -XPUT 'localhost:9200/docs/_warmer/sampleWarmer' -d '{
 "query" : {
 "has_child" : {
 "type" : "child",
 "query" : {
 "match_all" : {}
 }
 }
 }
}'

Now, if we restart ElasticSearch and run the same query as we did in the test without
the warmer, we will get more or less the following result:

{
 "took" : 38,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "docs",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"name":"Test 1234"}
 }]
 }
}

Fighting with Fire

[204]

Now we can see how warmer improved the execution time of the query right after
ElasticSearch was restarted. The query without the warmers took almost half of a
second, while the query executed with the warmers present was executed faster
than 40 milliseconds.

Of course, the performance gain is not only from the fact that the ElasticSearch was
able to load the document identifiers to memory, but also because operating system
was able to cache index segments. Nevertheless, the performance gain is significant
and if you use queries that can be warmed up (for example, use heavy filtering,
parent-child relationships, faceting, and so on), it's a good way to go.

Very hot threads
When you are in trouble and your cluster works slower than usual and uses large
amounts of CPU power, you know you need to do something to make it work again.
This is the case when the Hot Threads API can give you necessary information to
find the root of problems. A hot thread is a Java thread that uses high CPU volume
and executes for longer period of time. Hot Threads API returns information
about which part of ElasticSearch code are hot spots from the CPU side or where
ElasticSearch is stuck for some reason.

When using Hot Threads API, you can examine all nodes, a selected few of them,
or particular node using the /_nodes/hot_threads or /_nodes/{node or nodes}/
hot_threads endpoints. For example, to look at hot threads on all the nodes, we
would run the following command:

curl localhost:9200/_nodes/hot_threads

The API supports the following parameters:

•	 threads (default: 3): It is the number of threads that should be analyzed.
The ElasticSearch will take the specified number of the most "hot" threads
by looking at the information determined by the type parameter.

•	 interval (default: 500ms): ElasticSearch checks threads two times to
calculate the percentage of time spent in particular thread on operation
defined by the type parameter. The time between these checks is defined
by the interval parameter.

Chapter 6

[205]

•	 type (default: cpu): It is the type of thread state to examine. The API can
check CPU time taken by given thread (cpu), time in BLOCKED state (block),
or at WAITING (wait) state. If you would like to know more about the thread
states, see: http://docs.oracle.com/javase/6/docs/api/java/lang/
Thread.State.html

•	 snapshots (default: 10): It is the number of stack trace (nested sequence of
method calls at a certain point of time) snapshots to take.

It is time to move on to the example of how to use the Threads API with the earlier
mentioned parameters. For example, the following command will tell ElasticSearch
to examine threads in the WAITING state with an interval of one second:

curl 'localhost:9200/_nodes/hot_threads?type=wait&interval=1s'

Hot Threads API usage clarification
Unlike other API responses where you can expect JSON to be returned, the Hot
Threads API returns formatted text, where you can distinguish several sections.
Before we see this, we would like to tell you something about the logic behind
Hot Threads API. ElasticSearch takes all the running threads and collects various
information about CPU time spent in each thread, number of times particular
thread was blocked or in waiting state, how long it was blocked or in waiting state,
and so on. The next thing is waiting for a particular amount of time (specified by
the interval parameter). After that time passes, ElasticSearch collects the same
information once again and sorts it on the basis of the time threads that were
running (in descending order). Of course, the mentioned time is measured for a
given operation type specified by the type parameter. After that the first N threads
(where the N is the number of threads specified by the threads parameter)
are analyzed by ElasticSearch. What ElasticSearch does is that at every few
milliseconds, it takes a few snapshots (the number of snapshots is specified by
the snapshot parameter) of stack traces of the threads. The last thing that needs
to be done is grouping of stack traces to visualize changes in the thread state.

Fighting with Fire

[206]

Hot Threads API response
Now, let's go through the sections returned by the Hot Threads API. For example,
the following screenshot is a fragment of a just started ElasticSearch Hot Threads
API response:

Now let's discuss the Hot Threads API response by looking at a more useful example
of response than the one shown in the previous screenshot:

The first section of the response can be a thread as a general header and looks
like this:

::: [Cecilia][0d7etUE3TQuVi9kGRsOpuw][inet[/192.168.0.100:9300]]

Thanks to it, we can see which node it talks about, which is handy when Hot Threads
API call goes to many nodes.

The next lines can be divided into sections which start with something like this:

22.5% (112.3ms out of 500ms) cpu usage by thread
 'elasticsearch[Cecilia][search][T#993]'

Chapter 6

[207]

In our case, we see that the thread, named search, takes 22.5% of all CPU time
at the time when the measurement was done. The cpu usage command indicates
that we are using type equal to cpu (other values you can expect here are block
usage for threads in blocked state and wait usage for threads in waiting states).
The thread name is very important here (thanks to it we can guess what functionality
of ElasticSearch causes problems). In our example, we see that this thread is about
searching (the search value). Other example values that you can expect to see
are: recovery_stream (for recovery module events), cache (for caching events),
merge (for segments merging threads), index (for data indexing threads),
and so on.

The next part of the Hot Threads API response is a section starting with the
following information:

10/10 snapshots sharing following 5 elements

The previous information will be followed by the stack trace. In our case, 10/10 means
that 10 snapshots taken has the same stack trace, which in most cases mean that for the
current thread, all examination time was spent in the same part of ElasticSearch code.

Real-life scenarios
The section you are about to read is designed in a different way than the previous
ones. What we wanted is to get you off describing ElasticSearch features and instead,
take you on a short trip where you can see how to use different API to see what
is happening to your cluster. Please note that the examples given in the following
sections are real life examples we encountered.

Slower and slower performance
So, we deployed our application to production and it is a great success. After some
time, our system administrator comes in and says that our monitoring system reports
some performance degradation, by some he means at least 30 percent higher query
latency. Maybe it is nothing that we should worry about (actually we should!), but in
the broader perspective, we have to do something with it.

Let's connect to our cluster and gather some statistics. We can do that by running the
following command:

curl 'localhost:9200/_stats?pretty'

Fighting with Fire

[208]

The detailed description of this command is beyond the
scope of this book. If you want more information, please see
our previous book: ElasticSearch Server on Packt's website
or look at http://www.elasticsearch.org/guide/
reference/api/admin-indices-stats/.

The previous command returns much information regarding all indices and
also broken down by each of the indices present in the cluster. Our system
administrator has the habit of running this command once every hour and
stores the result. This allows us to examine what has changed from previously
run inspections (it is worth having historical statistical information, isn't it?)
and actually see what is happening. In our case, the indices have approximately
the same number of documents and they are almost the same when it comes
to disk space as in historical data; so we can assume that it's nothing regarding
indexing. Indexation statistics also doesn't show anything interesting.
But statistics of get and search operations are quite enigmatic:

"get" : {
 "total" : 408709,
 "time" : "3.6h",
 "time_in_millis" : 13048877,
 "exists_total" : 359320,
 "exists_time" : "2.9h",
 "exists_time_in_millis" : 10504331,
 "missing_total" : 49389,
 "missing_time" : "42.4m",
 "missing_time_in_millis" : 2544546,
 "current" : 0
},
"search" : {
 "query_total" : 136704,
 "query_time" : "15.1h",
 "query_time_in_millis" : 54427259,
 "query_current" : 0,
 "fetch_total" : 84127,
 "fetch_time" : "10.8m",
 "fetch_time_in_millis" : 648088,
 "fetch_current" : 0
}

http://www.elasticsearch.org/guide/reference/api/admin-indices-stats/
http://www.elasticsearch.org/guide/reference/api/admin-indices-stats/

Chapter 6

[209]

Believe it or not, but comparing with the older information, we see that volume
of information read from ElasticSearch increased. Let's do some math: during 3.6
hours the server handles 408709 get requests and the request average takes about
32 ms. For searching, we see that the total amount of time ElasticSearch spent on
querying was 15.1 hours during which 136704 searches were handled, which
gives us an average search request time of 400ms. Those numbers can't be used to
say anything about how our traffic is distributed; so the average response times
can be used for comparison, but not for drawing conclusions about performance.
For us, it is important that the numbers are increasing (in the same time frame we
have more searches and gets served comparing to historical data). What we would
like to achieve is to still have the same average response time that was before the
increase in traffic. Probably the easiest way for preparing for more traffic is by
dividing that traffic to more nodes than we have now. This means that we need
to set up new nodes and place our indices shards there; so what we need to do is
raise the number of replicas. Of course, we can do that easily with ElasticSearch.
For example, to do that for our messages index, we would run the following
command (assuming we did not have more than two replicas before the
command was run):

curl -XPUT localhost:9200/messages/_settings -d '{
 "index.number_of_replicas" : 3
}'

After the previous command, we can check our cluster state by running the
following command:

curl localhost:9200/_cluster/state?pretty

Our cluster was already properly balanced and the previous command reported that
we now have unassigned shards:

{
 "state" : "UNASSIGNED",
 "primary" : false,
 "node" : null,
 "relocating_node" : null,
 "shard" : 1,
 "index" : "messages"
}

Fighting with Fire

[210]

If you use additional reporting plugins, such as paramedic or head, you will see this
more clearly way: our index contains unallocated replicas, which will be placed on a
new node (or nodes) if they will join the cluster. Now if we would run a new node,
after a while, ElasticSearch will start and assign those unassigned shards (or some
of them, depending on the settings) to this node and that node will automatically
handle the incoming requests. The only thing to do is ask our system administrator
about new statistics after a while and check if the load of machine decreases (or use
some automated monitoring system and do it yourself).

Heterogeneous environment and
load imbalance
Another case we would like to share is when we saw reports indicating overall
performance degradation during indexing. This was a problem because there was a
strong business requirement that put emphasis on fast publication of new messages in
the application. We had to improve indexing speed and reduce or eliminate its impact
on performance. The first idea we had was to move indexing to the stronger server.

As in the previous example, we can use admin indices stats API to gather some
information about traffic. Again, we used the following command:

curl 'localhost:9200/_stats?pretty'

In the reply, the most interesting fragment (or the one we were focused on) was the
following one:

"indexing" : {
 "index_total" : 1475514,
 "index_time" : "1.2h",
 "index_time_in_millis" : 4400308,
 "index_current" : 167,
 "delete_total" : 2608506,
 "delete_time" : "1.3h",
 "delete_time_in_millis" : 4997302,
 "delete_current" : 0
}

Chapter 6

[211]

This is a quite good result but we want more. As we said before, we move the indexing
to a more powerful server. It is not a problem; we have several servers with various
hardware and we can move data between them (in order to learn more about the
process of shard allocation, please refer to the entire Chapter 4, Index Distribution
Architecture). In the beginning, our ElasticSearch cluster was built from equal nodes
and each of them had the same responsibilities. Of course, there is a master node,
but every node can be elected for this role. The question is: what can we do if we want
to have specialized nodes? In the Gateway and recovery configuration section of Chapter
5, ElasticSearch Administration, we described the node.data and node.master settings.
Let's recall this and look at which roles can be given for ElasticSearch node by using
the following mentioned settings:

•	 node.data = true and node.master = true: These are the standard
situation. The node can hold data, process queries, and can be elected
as a master node.

•	 node.data = true and node.master = false: In this case, the node will
never be elected as a master but can hold data and process queries.

•	 node.data = false and node.master = true: In this case, node can be
a master and can process queries but data will not be put on such nodes.
However, such nodes can process queries.

•	 node.data = false and node.master = false: Such nodes will never
be elected as a master and will contain no data, but can be used as
process queries.

We would like to stop here and give some small clarification. As you see, the node
does not have to hold data to process queries due to distributed nature of
ElasticSearch. When you send a query to the node, it is forwarded to nodes that
hold shards necessary to execute the query and get the data (you can read about
which shard are chosen by ElasticSearch and how to control it in the Query execution
preference section of Chapter 4, Index Distribution Architecture). The replies from the
nodes holding the data are merged and processed by one of the ElasticSearch nodes
and sent back to the client. In the more complicated query (for example, faceting),
this merging and processing is a resource consuming task. We use faceting a lot
in our application, so we decided to separate part of the nodes as so called
aggregator nodes: without data and master responsibility, so they only process
queries. Thanks to it, we can send queries only to these nodes and not stress the
data nodes with query aggregation and thus, give data nodes additional processing
power to handle greater load from indexing.

Fighting with Fire

[212]

My server is under fire
The last example we would like to discuss is again about an issue. Under certain
conditions, a random ElasticSearch node from the cluster is heavily loaded for no
visible reason. When everything failed, you have been asked for help (OK, we were,
but let's assume that you are a consultant for now). This time, finding problems
took some time. You waited for the problem to occur again (because there were no
monitoring software present and the nodes were restarted) and just after that you
fired the following command:

curl localhost:9200/_nodes/hot_threads

You saw that there are a very large amount of searches, few indexing threads and
even less threads regarding caches. In addition to that we've noticed a thread
responsible for segments merge operation. That can be a good catch and we should
check it. After a while, by using the iostat operating system command (we were
working on Linux based nodes), we confirmed that something strongly uses I/O
operations: both reads and writes. This leads to accumulation of incoming search
requests, increase response time, and finally, the node becomes unresponsive
because of that. "Let's buy SSD drives"; this is one of the solutions we could propose,
which is a very good idea, but for now, you decide to limit the I/O operations used
by the segments merge process. You can find more information about this in the
When it is too much for the I/O - throttling explained section of this chapter. In order to
adjust throttling, we used the following command:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{
 "persistent" : {
 "indices.store.throttle.type" : "merge",
 "indices.store.throttle.max_bytes_per_sec" : "20mb"
 }
}'

This, in fact, fixed the problem. The one thing that we experimented with was the
appropriate value of throttling, but finally, we decided to go with 20mb, which was
enough in our case, both when it comes to merging the speed and merging the
process, without interfering with the overall node work.

Chapter 6

[213]

Summary
In this chapter, we've learned what garbage collector is, how it works, and how to
diagnose problems with it when they happen. We've also seen how to limit and control
the amount of I/O operations used by the store module and what the query speed
improvements warmers can bring us. We've learned what hot threads are, how to get
them using ElasticSearch API, and how to interpret the response ElasticSearch gives
us. Finally, we've used ElasticSearch API to get the statistics that helped us diagnose
problems with ElasticSearch.

In the next chapter, we'll concentrate on improving user search experience in general.
We will use the newly introduced suggest API to correct the user spelling mistakes
and we will use faceting to allow users to quickly find what they are looking for.
We will also see how to improve the query relevance with different types of queries
that are available in ElasticSearch.

Improving the User
Search Experience

In the previous chapter we learned what is a garbage collector, how it works, and how
to diagnose problems with it when they happen. We've discussed how to limit and
control the amount of I/O operations used by the store module and what query speed
improvement warmers can bring us. We've learned what are hot threads, how to get
them using the ElasticSearch API, and how to interpret the response ElasticSearch
gives us. We've used the ElasticSearch API to get the statistics that helped us to
diagnose problems associated with ElasticSearch. In this chapter we'll focus on the
user search experience. By the end of this chapter, you will have learned:

•	 How to use the ElasticSearch Suggest API to correct user
spelling mistakes

•	 How to use term suggester to suggest single words
•	 How to use the phrase suggester to suggest whole phrases
•	 How to configure suggest capabilities to match your needs
•	 How to use completion suggester for the autocomplete functionality
•	 How to improve query relevance by using different

ElasticSearch functionalities

Improving the User Search Experience

[216]

Correcting user spelling mistakes
One of the simplest ways to improve user search experience is to correct their
spelling mistakes, either automatically or by just showing the correct query
phrase and allowing the user to use it. For example, this is what Google shows
us when we enter elasticsaerch instead of elasticsearch:

Since 0.90.0.Beta1, ElasticSearch allows us to use the Suggest API to correct
user spelling mistakes. However, the documentation states that this functionality
is still under development and it may change drastically in the upcoming
ElasticSearch versions.

Test data
For the purpose of this section, we decided that we need a bit more data than
10 documents. In order to get the data we needed, we decided to use the Twitter
river plugin to index some public tweets from Twitter. First, we need to install
the plugin by running the following command:

bin/plugin -install elasticsearch/elasticsearch-river-twitter/1.4.0

And then we run the following command:

curl -XPUT 'localhost:9200/_river/my_twitter_river/_meta' -d '{

 "type" : "twitter",

 "twitter" : {

 "oauth" : {

 "consumer_key" : "***",

 "consumer_secret" : "***",

 "access_token" : "***",

 "access_token_secret" : "***"

 }

Chapter 7

[217]

 },

 "index" : {

 "index" : "twitter",

 "type" : "status",

 "bulk_size" : 100

 }

}'

In order to get your authentication details you need to log in to https://dev.
twitter.com/apps/, create a new Twitter application, and create an access
token after that. I've indexed about 100,000 documents using the river to the
twitter index.

Getting into technical details
The Suggest API is not the simplest one available in ElasticSearch. In order to get the
desired suggestion, we can either add a new suggest section to the query or we can
use a specialized REST endpoint that ElasticSearch exposes. In addition to that we
have two suggest implementations that allow us to correct user spelling mistakes
with various options that we can tune, depending on the use case (and one more
implementation that was introduced in ElasticSearch 0.90.3, but we will get to that
later). All this gives us a powerful and a flexible mechanism that we can use in order
to make our search better.

Of course, the suggest functionality works on our data, so if we have small set of
documents in the index the appropriate suggestion may not be found. While dealing
with less data, ElasticSearch has fewer words in the index and because of that, it has
fewer candidates for suggestions. On the other hand, the more the data, the bigger
the possibility that we will have data that has some mistakes, however as we will
see, ElasticSearch handles that pretty well.

Please note that the layout of this chapter is a bit different. We start by
showing you a simple example on how to query for suggestions and
how to interpret Suggest API response without getting much into all the
configuration options. This is because we don't want to overwhelm you
with technical details, but we want to show you what you can achieve.
The nifty configuration parameters come later.

https://dev.twitter.com/apps/
https://dev.twitter.com/apps/

Improving the User Search Experience

[218]

Suggesters
Before we continue with querying and analyzing the responses, we will write a few
words about the available suggesters type: the functionality responsible for finding
a suggestion while using the ElasticSearch Suggest API. ElasticSearch allows us to
use three suggesters currently: the term one, the phrase one, and the completion
one. The first two allow us to correct spelling mistakes, while the third one allows
us to develop very fast and autocomplete functionality. With ElasticSearch 0.90.3
we have the possibility of using the prefix-based suggester which is very handy
for implementing the autocomplete functionality and which we will discuss in the
Completion suggester section. However, for now, let's not focus on any particular
suggester type, but let's look at the query possibilities and the responses returned by
ElasticSearch. We will try to show the general principles and then we will get into
more details about each of the available suggesters.

Using the _suggest REST endpoint
The first possibility where we can get suggestions for a given text is using a
dedicated _suggest REST endpoint. What we need to provide is the text to
analyze and the type of used suggester (term or phrase). So, if we like to get
suggestions for the words graphics desiganer (we've made the spelling
mistake purposefully), we will run the following query:

curl -XPOST 'localhost:9200/twitter/_suggest?pretty' -d '{

 "first_suggestion" : {

 "text" : "graphics desiganer",

 "term" : {

 "field" : "_all"

 }

 }

}'

As you can see, each suggestion request is sent to ElasticSearch in its own object,
with the name we chose (in the preceding case it is first_suggestion). Next we
specify the text we want, the suggestion to be returned by using the text parameter.
Finally we add the suggester object, which is either term or phrase currently.
The suggester object contains its configuration, which for the term suggester
used in the preceding example, is the field we want to use for suggestions
(the field property).

Chapter 7

[219]

We can also send more than one suggestion at a time, by adding multiple suggestion
names. For example, if in addition to the preceding suggestion, we also like to
include one for the word, worcing we should use the following command:

curl -XPOST 'localhost:9200/twitter/_suggest?pretty' -d '{

 "first_suggestion" : {

 "text" : "graphics desiganer",

 "term" : {

 "field" : "_all"

 }

 },

 "second_suggestion" : {

 "text" : "worcing",

 "term" : {

 "field" : "description"

 }

 }

}'

Understanding the REST endpoint suggester response
Let's now look at the example response we can expect from the _suggest REST
endpoint call. Although the response will differ for each suggester type, let's look at
the response returned by ElasticSearch for the first command we've sent previously
that used the terms suggester:

{
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "first_suggestion" : [{
 "text" : "graphics",
 "offset" : 0,
 "length" : 8,
 "options" : [{
 "text" : "graphic",
 "score" : 0.85714287,
 "freq" : 9
 }]

Improving the User Search Experience

[220]

 }, {
 "text" : "desiganer",
 "offset" : 9,
 "length" : 9,
 "options" : [{
 "text" : "designer",
 "score" : 0.875,
 "freq" : 60
 }, {
 "text" : "designers",
 "score" : 0.7777778,
 "freq" : 7
 }, {
 "text" : "desaigner",
 "score" : 0.7777778,
 "freq" : 1
 }, {
 "text" : "designed",
 "score" : 0.75,
 "freq" : 3
 }]
 }]
}

As you can see in the preceding response, the term suggester returns a list of
possible suggestions for each term that was present in the text parameter of our
first_suggestion section. For each term, the term suggester ElasticSearch will
return an array of possible suggestions with additional information. Looking at
the data returned for the desiganer term we can see the original word (the text
parameter), its offset in the original text parameter (offset parameter), and its
length (length parameter).

The options array contains suggestions for the given word and will be empty if
ElasticSearch doesn't find any suggestions. Each entry in this array is a suggestion
and is characterized by the following properties:

•	 text: This property defines the text of the suggestion.
•	 score: This property defines the suggestion score, the higher the score the

better the suggestion may be.

Chapter 7

[221]

•	 freq: This property defines the frequency of the suggestion. The frequency
represents how many times the word appears in the documents, in the
index where we are running the suggestion query against. The higher the
frequency, the more documents have the suggested word in its fields and the
higher the chance that the suggestion is the one we are looking for.

Please remember that the phrase suggester response will differ
from the one returned by the terms suggester and we will discuss
response of the phrase suggester later in this section.

Including suggestions requests in a query
In addition to using the _suggest REST endpoint, we can include the suggest
section in addition to the query section in a normal query sent to ElasticSearch.
For example, if we want to get the same suggestion we've got in the first example,
but during query execution we should send the following query:

curl -XGET 'localhost:9200/twitter/_search?pretty' -d '{

 "query" : {

 "match_all" : {}

 },

 "suggest" : {

 "first_suggestion" : {

 "text" : "graphics desiganer",

 "term" : {

 "field" : "_all"

 }

 }

 }

}'

Improving the User Search Experience

[222]

There is also one more possibility: if we have the same suggestion text, but we want
multiple suggestion types, we can embed our suggestions in the suggest object and
place the text property as the suggest object option. For example, if we like to
get suggestions for the graphics desiganer text for the description field and
for _all field we should run the following command:

curl -XGET 'localhost:9200/twitter/_search?pretty' -d '{

 "query" : {

 "match_all" : {}

 },

 "suggest" : {

 "text" : "graphics desiganer",

 "first_suggestion" : {

 "term" : {

 "field" : "_all"

 }

 },

 "second_suggestion" : {

 "term" : {

 "field" : "description"

 }

 }

 }

}'

Suggester response
As you can guess, the response will include both query results and the suggestions,
and you are right. The response for the preceding command would be as follows:

{
 "took" : 21,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 50175,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "twitter",
 "_type" : "status",

Chapter 7

[223]

 "_id" : "346196614853046274",
 "_score" : 1.0
 },
 ...
 }]
 },
 "suggest" : {
 "first_suggestion" : [{
 "text" : "graphics",
 "offset" : 0,
 "length" : 8,
 "options" : [{
 "text" : "graphic",
 "score" : 0.85714287,
 "freq" : 9
 }]
 }, {
 "text" : "desiganer",
 "offset" : 9,
 "length" : 9,
 "options" : [{
 "text" : "designer",
 "score" : 0.875,
 "freq" : 60
 }, {
 "text" : "designers",
 "score" : 0.7777778,
 "freq" : 7
 }, {
 "text" : "desaigner",
 "score" : 0.7777778,
 "freq" : 1
 }, {
 "text" : "designed",
 "score" : 0.75,
 "freq" : 3
 }]
 }]
 }
}

As we can see we've got both the search results and the suggestions whose structure
we've already discussed earlier in this section.

We now know how to make a query with suggestions returned or how to use the
_suggest REST endpoint. Let's now get into more details of each of the available
suggesters type.

Improving the User Search Experience

[224]

The term suggester
The term suggester works on the basis of edit distance, which means that the
suggestion with fewer characters that need to be changed or removed to make
the suggestion look as the original word is the best one. For example, let's take
the words worl and work. In order to change the worl term to work we need to
change the l letter to k, so it means a distance of 1. The text provided to the
suggester is of course analyzed and then terms are chosen to be suggested.

Configuration
We have already seen how the term suggester works and what it can give us.
Now let's discuss its configuration options.

Common term suggester options
The common term suggester options can be used for all the suggester implementations
that are based on the term suggester. Currently those are the phrase suggesters and of
course the base term suggester. The available options are as follows:

•	 text: This option represents the text for which we want to get the
suggestions. This parameter is required in order for the suggester
to work.

•	 field: This is another required parameter that we need to provide.
The field parameter allows us to set the field for which the suggestions
should be generated. For example, if we only want to consider the title
field terms in suggestions we should set this parameter's value to title.

•	 analyzer: This option represents the name of the analyzer which should
be used to analyze the text provided in the text parameter. If not set,
ElasticSearch will use the analyzer used for the field provided by the
field parameter.

•	 size: This option represents the maximum number of suggestions that
is allowed to be returned by each term provided in the text parameter.
Default is 5.

•	 sort: This option allows us to specify how suggestions should be sorted in
the result returned by ElasticSearch. By default, it is set to score, which tells
ElasticSearch that the suggestions should be sorted by the suggestion score
first, next by the suggestion document frequency, and finally by the term.
The second possible value is frequency, which means that the results are
first sorted by the document frequency, then by score, and finally by the term.

Chapter 7

[225]

•	 suggest_mode: This is another suggestion parameter that allows us to
control which suggestions should be included in the ElasticSearch's response.
Currently there are three values that can be passed to this parameter:
missing, popular, and always. The default missing value will inform
ElasticSearch to generate suggestions to only those words provided in the
text parameter that doesn't exist in the index. If this property will be set
to popular, then the term suggester will only suggest terms that are more
popular (existing in more number of documents) than the original term for
which the suggestion was generated. The last value, always will result in the
suggestion generated for each of the words in the text parameter.

Additional term suggester options
In addition to the common term suggest options ElasticSearch allows us to use
additional ones that will only make sense for the term suggester. Those options
are as follows:

•	 lowercase_terms: This option, when set to true will inform ElasticSearch to
lowercase all the terms that are produced from the text field after analysis.

•	 max_edits: The default value of this option is 2 and specifies the maximum
edit distance that the suggestion can have to be returned as a term
suggestion. ElasticSearch allows us to set this value to 1 or 2. Setting this
value to 1 can result in fewer suggestions or no suggestions at all for words
with many spelling mistakes, prefix_len: because usually spelling mistakes
do not appear at the beginning of the word. ElasticSearch allows us to set
how many initial characters of the suggestion must match with the initial
characters of the original term. By default, this property is set to 1. If we are
struggling with suggester's performance, increasing this value will improve
the overall performance, because fewer suggestions will only be processed.

•	 min_word_len: The default of this option is 4 and specifies the minimum
number of characters a suggestion must have in order to be returned on
suggestions list.

•	 shard_size: This option defaults to the value specified by the size
parameter and allows us to set the maximum number of suggestions
that should be read from each shard. Setting this property to values
higher than the size parameter can result in a more accurate document
frequency (this is because of the fact that terms are held in different
shards for our indices unless we have a single-shard index created)
being calculated but will also result in the spellchecker's
performance degradation.

Improving the User Search Experience

[226]

•	 max_inspections: This option defaults to 5 and specifies how many
candidates will ElasticSearch inspect, in order to find the words that can be
used as suggestions. ElasticSearch will inspect a maximum of shard_size
values multiplied by the max_inspections candidates for suggestions.
Setting this property to values higher than the default 5 may improve the
suggester's accuracy, but can also degrade the performance.

•	 min_doc_freq: This option defaults to 0, which means not enabled. It allows
us to limit the returned suggestions to only those that appear in the number
of documents higher than the value of this parameter (this is per shard value,
and not a globally counted one). For example, setting this parameter to 2,
will result in a suggestion that appears in at least two documents in a given
shard. Setting this property to values higher than 0 can improve returned
suggestions quality, however it can also result in some suggestion not being
returned because it has low shard document frequency. This property can
help us in removing suggestions that come from a few documents and may
be erroneous. This parameter can be specified as a percentage: if we want to
do so its value must be less than 1. For example 0.01 means 1%, which again
means that the minimum frequency of the given suggestion needs to be
higher than 1% of the total term frequency (of course per shard).

•	 max_term_freq: This option defaults to 0.01 and specifies the maximum
number of documents the term from the text field should exist, for it to be
considered as a candidate for spellchecking. Similar to the min_doc_freq
parameter, it can be either provided as an absolute number (for example, 4 or
100) or it can be a percentage value if it is beyond 1 (for example 0.01 means
1%). Please remember that this is also a per-shard frequency. The higher the
value of this property the better the overall performance of the spellchecker.
In general, this property is very useful when we want to exclude terms that
appear in many documents from spellchecking, because those are usually
correct terms.

•	 accuracy: This option defaults to 0.5 and can be a number between 0 to 1.
This option specifies how similar the term should be when compared with
the original one. The higher the value, the more similar the terms need to be.
This value is used in comparison during string distance calculation for each
of the terms from the original input.

Chapter 7

[227]

•	 string_distance: This option specifies which algorithm should be used
to compare how similar terms are to each other. This is an expert setting.
The following options are available: the internaldefault comparison
algorithm based on optimized implementation of the Damerau Levenshtein
similarity algorithm, damerau_levenshtein is the implementation of the
Damerau Levenshtein string distance algorithm (http://en.wikipedia.
org/wiki/Damerau–Levenshtein_distance), levenstein which is an
implementation of Levenshtein distance (http://en.wikipedia.org/
wiki/Levenshtein_distance), jarowinkler which is an implementation
of the Jaro-Winkler distance algorithm (http://en.wikipedia.org/wiki/
Jaro-Winkler_distance) and finally the ngram, which is an n-gram based
distance algorithm.

Because we've used the terms suggester during the initial examples,
we decided to skip showing how to query the terms suggester and
how the response would look like in this place. If you want to see how
to query this suggester and what the response looks like, please refer to
the beginning of the suggesters section.

The phrase suggester
The term suggester provides a great way to correct user spelling mistakes on a per
term basis. However, if we want to get back the phrases, it is not possible using
that suggester. That's why the phrase suggester was introduced. It is built on top
of the term suggester and adds additional phrase calculation logic to it, so that
whole phrases can be returned instead of individual terms. It uses the n-gram based
language models to calculate how good the suggestion is and will probably be a
better choice for suggesting whole phrases instead of the term suggester. The n-gram
approach divides terms in the index into grams: word fragments are built of one or
more letters. For example, if we want to divide the word mastering into bi-grams
(two letter n-gram) it would look similar to this: ma as st te er ri in ng.

If you want to read more about the n-gram language models please refer
to the Wikipedia's article available at http://en.wikipedia.org/
wiki/Language_model#N-gram_models and continue from there.

http://en.wikipedia.org/wiki/Language_model#N-gram_models
http://en.wikipedia.org/wiki/Language_model#N-gram_models

Improving the User Search Experience

[228]

The usage example
Before we continue with all the possibilities we have to configure the phrase
suggester, let's start by showing the example of how to use it. This time we
will run a simple query to the _search endpoint with only suggests section
in it. We do that by running the following command:

curl -XGET 'localhost:9200/twitter/_search?pretty' -d '{

 "suggest" : {

 "text" : "graphics desiganer",

 "our_suggestion" : {

 "phrase" : {

 "field" : "_all"

 }

 }

 }

}'

As you can see in the preceding command it is almost the same as we did while
using the term suggester, but instead of specifying the term suggester's type,
we've specified the phrase type. The response of the preceding command would
be as follows:

{

 "took" : 58,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 50175,

 "max_score" : 1.0,

 "hits" : [

 ...

]

 },

 "suggest" : {

Chapter 7

[229]

 "our_suggestion" : [{

 "text" : "graphics desiganer",

 "offset" : 0,

 "length" : 18,

 "options" : [{

 "text" : "graphics designer",

 "score" : 4.665424E-5

 }, {

 "text" : "graphics designers",

 "score" : 2.3448094E-5

 }, {

 "text" : "graphics designed",

 "score" : 1.9354089E-5

 }, {

 "text" : "graphic desiganer",

 "score" : 1.7957824E-5

 }, {

 "text" : "graphics desaigner",

 "score" : 1.3458714E-5

 }]

 }]

 }

}

As you can see the response is very similar to the one returned by the term suggester,
but instead of a single word being returned as the suggestion for each term from the
text field it is already combined and ElasticSearch returns whole phrases. Of course,
we can configure additional parameters in the phrase section and now we will look
at what parameters are available for usage. Of course, by default the returned
suggestions are sorted by their score.

Configuration
The phrase suggester configuration parameter can be divided into three groups:
basic parameter which defines the general behavior, the smoothing models
configuration for balancing the n-gram's weights, and the candidate generators
configuration which are responsible for producing the list of terms suggestions
that will be used to return final suggestions.

Improving the User Search Experience

[230]

Basic configuration
Because the phrase suggester is based on the term suggester it can also use some of
the configuration options provided by it. Those options are: text, size, analyzer,
and shard_size. Please refer to the term suggester's description earlier in this
chapter to find out what they mean.

In addition to the properties mentioned previously, the phrase suggester exposes
the following basic options:

•	 gram_size: This option specifies the maximum size of the n-gram that is
stored in the field specified by the field property. If the given field doesn't
contain n-grams, this property should be set to 1 or not passed with the
suggestion request. If not set, ElasticSearch will try to detect the correct value
of this parameter by itself. For example, for fields using a shingle filter
(http://www.elasticsearch.org/guide/reference/index-modules/
analysis/shingle-tokenfilter/) the value of this parameter will be set to
the max_shingle_size property (of course, if not set explicitly).

•	 confidence: This option specifies the parameter which allows us to limit
the suggestion based on their score. The value of this parameter is applied
to the score of the input phrase (the score is multiplied by the value of this
parameter) and this score is used as a threshold for generated suggestions.
If a suggestion score is higher than the calculated threshold it will be included
in the returned results, if not then it will be dropped. For example, setting this
parameter to 1.0 (which is its default value) will result in suggestions that
are scored higher than the original phrase. On the other hand, setting it to 0.0
will result in the suggester returning all the suggestions (limited by the size
parameter) no matter what their score is.

•	 max_errors: This property allows us to specify the maximum number
(or percentage) of terms which can be erroneous (not correctly spelled)
in order to create a correction using it. The value of this property can be
either an integer number such as 1, 5 or a float between 0 and 1 which
will be treated as a percentage value. If we set a float, it will specify the
percentage of terms that can be erroneous, for example a value of 0.5
will mean 50%. If we specify an integer number, for example 1, 5
ElasticSearch will treat it as the maximum number of erroneous terms.
By default it is set to 1, which means that at most a single term can be
misspelled in a given correction.

•	 separator: This option defaults to the whitespace character and specifies the
separator that will be used to divide the terms in the resulting bigram field.

•	 force_unigrams: This option defaults to true and specifies if the
spellchecker should be forced to use a gram size of 1 (unigram).

Chapter 7

[231]

•	 token_limit: This option defaults to 10 and specifies the maximum number
of tokens the corrections list can have in order to it to be returned. Setting this
property to a value higher than the default one may improve the suggester's
accuracy at the cost of its performance.

•	 real_word_error_likehood: This option specifies a percentage value,
which defaults to 0.95 and specifies how likely it is that a term is misspelled
even though it exists in the dictionary (built of the index). The default value
of 0.95 informs ElasticSearch that 5% of all terms that exist in its dictionary
are misspelled. Lowering the value of this parameter will result in more
terms being taken as misspelled ones even though they may be correct.

Configuring smoothing models
Smoothing model is a functionality of the phrase suggester whose responsibility is
to measure the balance between the weights of infrequent n-grams which don't exist
in the index and the frequent ones that do exist in the index. It is rather an expert
option and if you want to modify those, you should check suggester responses for
your queries in order to see if your suggestions are proper for your case. Smoothing
is used in language models to avoid situations where probability of a given term is
equal to zero. ElasticSearch phrase suggester supports multiple smoothing models.

You can find out more about language models at http://
en.wikipedia.org/wiki/Language_model.

In order to set which smoothing model we want to use we need to add an object
called smoothing and include a smoothing model name we want to use inside it.
Of course, we can include the properties we need or want to set for the given
smoothing model. There are three smoothing models available in ElasticSearch.
For example we can run the following command:

curl -XGET 'localhost:9200/_search?pretty&size=0' -d '{

 "suggest" : {

 "text" : "graphics desiganer",

 "generators_example_suggestion" : {

 "phrase" : {

 "analyzer" : "standard",

 "field" : "_all",

 "smoothing" : {

 "linear" : {

 "trigram_lambda" : 0.1,

Improving the User Search Experience

[232]

 "bigram_lambda" : 0.6,

 "unigram_lambda" : 0.3

 }

 }

 }

 }

 }

}'

Let's look at which smoothing models can be used with the phrase suggester
in ElasticSearch.

Stupid backoff
Stupid backoff is the default smoothing model used by the ElasticSearch phrase
suggester. In order to alter it or force its usage we need to use the stupid_backoff
name. The stupid backoff smoothing model is an implementation that will use a
lower ordered n-gram (and will give it a discount equal to the value of the discount
property) if higher order n-gram count is equal to 0. To illustrate the example,
let's assume that we have a bigram ab and a unigram c which are common and
they exist in our index used by suggester. However, we don't have the trigram
abc present. What the stupid backoff model will do is use the ab bigram model,
because the abc doesn't exist and of course the ab bigram model will be given a
discount equal to the value of the discount property.

The stupid backoff model provides a single property that we can alter: the discount.
By default it is set to 0.4 and it is used as a discount factor for the lower-ordered,
n-gram model.

You can read more about the n-gram smoothing models by visiting at http://
en.wikipedia.org/wiki/N-gram#Smoothing_techniques and http://
en.wikipedia.org/wiki/Katz's_back-off_model (which is similar to the
stupid backoff model described).

Laplace
The Laplace smoothing model is also called additive smoothing. When used (in order
to use it, we need to use the laplace value as its name), a constant value equal to the
value of the alpha parameter (which is by default 0.5) will be added to counts to
balance the weights of frequent and infrequent n-grams.

Chapter 7

[233]

As mentioned, the Laplace smoothing model can be configured using the alpha
property, which is by default set to 0.5. The usual values for this parameter are
typically equal or below 1.0.

You can read more about additive smoothing at http://en.wikipedia.org/wiki/
Additive_smoothing.

Linear interpolation
Linear interpolation is the last smoothing model that takes the values of the lambdas
provided in the configuration and uses them to calculate weights of trigrams,
bigrams and unigrams. In order to use the linear interpolation smoothing model,
we need to provide the name, linear in the smoothing in the suggester query
object and provide three parameters: trigram_lambda, bigram_lambda,
and unigram_lambda. The sum of the values of the three mentioned parameters
must be equal to 1. Each of these parameters is weights for a given type of n-grams,
for example the bigram_lambda parameter value will be used as a weight for bigrams.

Configuring candidate generators
In order to return possible suggestions for a term from a text provided in the text
parameter ElasticSearch uses the so called candidate generators. You can think of
candidate generators as term suggesters although they are not exactly the same: they
are similar, because they are used for every single term in the provided query given
to a suggester. After the candidate terms are returned they are scored in combination
with suggestions for other terms from the text and this way the phrase suggestions
are built.

Direct generators
Currently direct generator is the only candidate generator available in ElasticSearch
although we can expect more of them to be present in the future. ElasticSearch allows
us to provide multiple direct generators in a single phrase suggester request. We can
do that by providing the list named direct_generators. For example we can run the
following command:

curl -XGET 'localhost:9200/_search?pretty&size=0' -d '{

 "suggest" : {

 "text" : "graphics desiganer",

 "generators_example_suggestion" : {

 "phrase" : {

 "analyzer" : "standard",

 "field" : "_all",

http://en.wikipedia.org/wiki/Additive_smoothing
http://en.wikipedia.org/wiki/Additive_smoothing

Improving the User Search Experience

[234]

 "direct_generator" : [

 {

 "field" : "_all",

 "suggest_mode" : "always",

 "min_word_len" : 2

 },

 {

 "field" : "_all",

 "suggest_mode" : "always",

 "min_word_len" : 3

 }

]

 }

 }

 }

}'

The response should be very similar to the one previously shown so we decided to
omit it.

Configuring direct generators
Direct generators allow us to configure their behavior by using similar parameters to
those that are exposed by terms suggester. Those common configuration parameters
are: the field (which is required), size, suggest_mode, max_edits, prefix_length
(which is the same as the prefix_len parameter), min_word_len (in this case
defaults to 4), min_word_len, max_inspections, min_doc_freq, max_term_freq.
Please refer to the term suggester description to see what those parameters mean.

In addition to the mentioned properties, direct generators allow us to use the
pre_filter and post_filter properties. These two properties allow us to
provide an analyzer name that ElasticSearch will use. The analyzer specified
by the pre_filter property will be used for each term passed to the direct
generator and the filter specified by the post_filter property will be used
after it is returned by the direct generator, just before these terms are passed
to the phrase scorer for scoring.

Chapter 7

[235]

For example, we can use the filtering functionality of the direct generators to
include synonyms just before the suggestions are passed to the scorer, by using
the post_filter property. For example, let's update our Twitter index setting to
include simple synonyms and let's use them in filtering. To do that we start with
updating the settings with the following commands:

curl -XPOST 'localhost:9200/twitter/_close'

curl -XPUT 'localhost:9200/twitter/_settings' -d '{

 "settings" : {

 "index" : {

 "analysis": {

 "analyzer" : {

 "sample_synonyms_analyzer": {

 "tokenizer": "standard",

 "filter": [

 "sample_synonyms"

]

 }

 },

 "filter": {

 "sample_synonyms": {

 "type" : "synonym",

 "synonyms" : [

 "graphics => made"

]

 }

 }

 }

 }

 }

}'

curl -XPOST 'localhost:9200/twitter/_open'

We need to first close the index, update the setting, and then open it again because
ElasticSearch won't allow us to change settings on the opened indices.

Improving the User Search Experience

[236]

Now we can test our direct generator using synonyms with the following command:

curl -XGET 'localhost:9200/_search?pretty&size=0' -d '{

 "suggest" : {

 "text" : "made desiganer",

 "generators_with_synonyms" : {

 "phrase" : {

 "analyzer" : "standard",

 "field" : "_all",

 "direct_generator" : [

 {

 "field" : "_all",

 "suggest_mode" : "always",

 "post_filter" : "sample_synonyms_analyzer"

 }

]

 }

 }

 }

}'

The response of the preceding command should be as follows:

{

 "took" : 27,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 50175,

 "max_score" : 1.0,

 "hits" : []

 },

 "suggest" : {

 "generators_with_synonyms" : [{

Chapter 7

[237]

 "text" : "made desiganer",

 "offset" : 0,

 "length" : 14,

 "options" : [{

 "text" : "made designer",

 "score" : 1.3923876E-4

 }, {

 "text" : "made designers",

 "score" : 6.893026E-5

 }, {

 "text" : "make desiganer",

 "score" : 6.1075225E-5

 }, {

 "text" : "made designed",

 "score" : 5.1168725E-5

 }, {

 "text" : "made desaigner",

 "score" : 5.1012223E-5

 }]

 }]

 }

}

As you can see, instead of the graphics term, the made term was returned in
the result of the phrase suggester and this is what we were looking for in this
example. So, our synonyms configuration was taken into consideration.
However, please remember that the synonyms was taken before the scoring of
the fragments, so it can happen that the suggestions with the synonyms are not
the ones that are scored the most and you will not be able to see them in the
suggester's results.

Completion suggester
With the release of ElasticSearch 0.90.3 we were given the opportunity to use a
prefix-based suggester. This allows us to create the autocomplete functionality in a
very effective way, because complicated structures are stored in the index instead of
being calculated during query time. Although this suggester is not about correcting
user spelling mistakes we thought that it will be good to show at least a simple
example of this highly efficient suggester.

Improving the User Search Experience

[238]

The logic behind completion suggester
The prefix suggester is based on the data structure called FST (Finite State
Transducer) (http://en.wikipedia.org/wiki/Finite_state_transducer).
Although it is highly efficient, it may require significant resources to build on
systems with large amount of data in them, systems that ElasticSearch is perfectly
suitable for. If we like to build these structures on the nodes after each restart or
cluster state change we may lose performance. Because of that ElasticSearch creators
decided to create FST-like structures during index time and store it in the index so
that it can be loaded into memory when needed.

Using completion suggester
In order to use a prefix-based suggester we need to properly index our data with a
dedicated field type called completion, which stores the FST-like structures in the
index. In order to illustrate how to use this suggester, let's assume that we want to
create an autocomplete feature to allow us to show book authors, that we store in an
additional index. In addition to the author's name we want to return the identifiers
of the books she/he wrote, by searching them with an additional query. We start
with creating the authors index by running the following command:

curl -XPOST 'localhost:9200/authors' -d '{

 "mappings" : {

 "author" : {

 "properties" : {

 "name" : { "type" : "string" },

 "ac" : {

 "type" : "completion",

 "index_analyzer" : "simple",

 "search_analyzer" : "simple",

 "payloads" : true

 }

 }

 }

 }

}'

Chapter 7

[239]

Our index will contain a single type called author. Each document will have two
fields: the name, which is the name of the author and the ac field, which is the field we
will use for autocompletion. The ac field is the one we are interested in. We've defined
it using the completion type, which will result in storing the FST-like structures in the
index. In addition to that we've used the simple analyzer for both index and query
time. The last thing is the payload, the additional information we will return along
with the suggestion, in our case it will be an array of book identifiers.

The type property for the field we will use for autocomplete is
mandatory and should be set to completion. By default, the
search_analyzer and index_analyzer properties will be set
to simple and the payloads property will be set to false.

Indexing data
In order to index data we need to provide some additional information. In addition
to the ones we usually provide during indexing, let's look at the following commands
that index two documents describing their authors:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : {

 "input" : ["fyodor", "dostoevsky"],

 "output" : "Fyodor Dostoevsky",

 "payload" : { "books" : ["123456", "123457"] }

 }

}'

curl -XPOST 'localhost:9200/authors/author/2' -d '{

 "name" : "Joseph Conrad",

 "ac" : {

 "input" : ["joseph", "conrad"],

 "output" : "Joseph Conrad",

 "payload" : { "books" : ["121211"] }

 }

}'

Improving the User Search Experience

[240]

Notice the structure of the data for the ac field. We provide the input, output and
payload properties. The payload property is used to provide additional information
that will be returned. The input property is used to provide input information that
will be used for building the FST alike structures and will be used for matching the
user input to decide if the document should be returned by suggester. The output
property is used to inform the suggester for which data should be there in the
document.

Please remember that the payload property must be a JSON object
that starts with the { character and ends with } character.

If the input and output property is the same in your case and you don't want to
store payloads, you may index the documents just like you usually index your data.
For example, the command to index our first document would look as follows:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : ["Fyodor Dostoevsky"]

}'

Querying data
Finally let's look how to query our indexed data. If we like to find documents that
have the author's name starting with fyo, we would run the following command:

curl -XGET 'localhost:9200/authors/_suggest?pretty' -d '{

 "authorsAutocomplete" : {

 "text" : "fyo",

 "completion" : {

 "field" : "ac"

 }

 }

}'

Before we look at the results, let's discuss the query. As you can see we've run the
command in the _suggest endpoint, because we don't want to run a standard query,
we are just interested in autocomplete results. The rest of the query is exactly the
same as the standard suggester query run against the _suggest endpoint, with the
query type set to completion.

Chapter 7

[241]

The results of the preceding command looks like this:

{

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "authorsAutocomplete" : [{

 "text" : "fyo",

 "offset" : 0,

 "length" : 10,

 "options" : [{

 "text" : "Fyodor Dostoevsky",

 "score" : 1.0, "payload" : {"books":["123456","123457"]}

 }]

 }]

}

As you can see, in response, we've got the document we were looking for along with
the payload information.

Custom weights
By default the term frequency will be used to determine the weight of the document
returned by the prefix suggester. However, this may not be the best solution when
you have multiple shards for your index or your index is composed of multiple
segments. In such cases, it is useful to define the weight of the suggestion, by
specifying the weight property for the field defined as completion: the weight
property should be set to an integer value, not a float, the one similar to the boost for
queries and documents. The greater the weight property's value, the more important
the suggestion is. This gives us plenty of opportunities to control how the returned
suggestions will be sorted.

Improving the User Search Experience

[242]

For example, if we like to specify a weight for the first document in our example,
we will run the following command:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : {

 "input" : ["fyodor", "dostoevsky"],

 "output" : "Fyodor Dostoevsky",

 "payload" : { "books" : ["123456", "123457"] },

 "weight" : 80

 }

}'

Now if we run our example query the results would be as follows:

{

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "authorsAutocomplete" : [{

 "text" : "fyo",

 "offset" : 0,

 "length" : 10,

 "options" : [{

 "text" : "Fyodor Dostoevsky",

 "score" : 80.0, "payload" : {"books":["123456","123457"]}

 }]

 }]

}

Look how the score of the result changed. In our initial example it was 1.0 and now
it is 80.0: because we've set the weight parameter to 80 during indexing.

Chapter 7

[243]

Additional parameters
There are two additional parameters supported by the prefix suggester that we
didn't talk till now: preserve_separators and preserve_position_increments,
both can be set to true or false. Setting the preserve_separators to false
suggester will omit separators, for example, whitespace (of course proper analysis
is required). Setting the preserve_position_increments property to false
is needed if the first word in the suggestion is a stop word and we are using an
analyzer that throws these stop words away. For example, if we have The Clue
as our document, then the The word will be discarded by the analyzer, by setting
the preserve_position_increments property to false, the suggester will be
able to return our document by specifying c as the text.

Improving query relevance
ElasticSearch, in fact search engines in general, are used for searching. Of course some
use cases may require to browse some portion of the data indexed, but in order
to use most of them scoring should come to play. As we said in the Default Apache
Lucene scoring explained section of Chapter 2, Power User Query DSL. ElasticSearch
leverages the Apache Lucene library document scoring capabilities and allows us
to use different query types to manipulate score of results returned by our queries.
What's more, we can change the low level algorithm used to calculate score that
was described in the Altering Apache Lucene scoring section of Chapter 3, Low-level
Index Control.

Given all this, when we start designing our queries, we usually go for the simplest
query that return the documents we want. However, given all the things we can do
in ElasticSearch when it comes to scoring control, such queries return results that are
not the best when it comes to user search experience. That's because ElasticSearch
can't guess what our business logic is and what documents are the ones that are
the best from our point of view when running a query. In this section we will try to
follow a real-life example of query relevance tuning. We want to make this chapter
a bit different, instead of only giving you insight, we have decided to give you a full
example of how query tuning process may look like. Although some of the examples
you find in this section may be general purpose ones, when using them in your own
application, make sure that they make sense for you.

Just to give you a little insight on what is coming, we will start with a simple query
that returns the results we want, we will alter the query introducing different
ElasticSearch queries to make the results better, we will use filters, we will lower the
score of the documents we think of as garbage and finally we will introduce faceting
to render drill-down menus for users to allow results narrowing. Finally, as a bonus,
we will see how we can look at changes we make to our queries and measure the
change of users search experience.

Improving the User Search Experience

[244]

The data
Of course in order to show you the results of the query modifications we do, we need
data. We would love to show you the real-life data we were working with, but we
can't, that's understandable. However there is a solution to that: for the purpose of
this book we decided to index Wikipedia data. In order to do that, we've installed
the Wikipedia river, by running the following command:

bin/plugin -install elasticsearch/elasticsearch-river-wikipedia/1.1.0

The Wikipedia river will create the wikipedia index for us if there is non-existing.
However, we know that we need to adjust the index fields and in order not to
reindex the data we create the index upfront. In order to do that we use the
following command:

curl -XPOST 'localhost:9200/wikipedia/' -d '{

 "settings": {

 "index": {

 "analysis": {

 "analyzer": {

 "keyword_ngram": {

 "tokenizer": "ngram",

 "filter": ["lowercase"]

 }

 }

 }

 }

 },

 "mappings": {

 "page" : {

 "properties" : {

 "category" : {

 "type" : "multi_field",

 "fields" : {

 "category" : {"type" : "string", "index" : "analyzed"},

 "untouched" : {"type" : "string", "index" : "not_analyzed" }

 }

 },

 "disambiguation" : { "type" : "boolean" },

Chapter 7

[245]

 "link" : { "type" : "string", "store" : "no", "index" : "not_
analyzed" },

 "redirect" : { "type" : "boolean" },

 "special" : { "type" : "boolean" },

 "stub" : { "type" : "boolean" },

 "text" : {"type" : "string", "index" : "analyzed"},

 "title" : {

 "type" : "multi_field",

 "fields" : {

 "title" : {"type" : "string", "index" : "analyzed"},

 "simple" : {"type" : "string", "index" : "analyzed", "analyzer" :
"simple" },

 "ngram" : {"type" : "string", "index" : "analyzed", "analyzer" :
"keyword_ngram" }

 }

 }

 }

 }

 }

}'

For now, what we have to know is that we have a page type that we are interested in
and whether that represents a Wikipedia page. We will use two fields for searching:
the text and title fields. The first one holds the content of the page and the second
one is responsible for holding its title.

What we have to do next is start the Wikipedia river. Because we were interested
in the latest data in order to instantiate the river and start indexing we've used the
following command:

curl -XPUT 'localhost:9200/_river/wikipedia/_meta' -d '{

 "type" : "wikipedia"

}'

And that's all; ElasticSearch will index the newest Wikipedia dump available to the
index called wikipedia. All we have to do is wait. We were not patient, and we
decided that we'll only index the first 10 million documents and after the Wikipedia
river hits that number of documents we deleted it. We've checked the final number
of documents by running the following command:

curl -XGET 'localhost:9200/wikipedia/_search?q=*&size=0&pretty'

Improving the User Search Experience

[246]

The response was as follows:

{
 "took" : 24,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 10425183,
 "max_score" : 1.0,
 "hits" : []
 }
}

We can see that we have 10,425,183 documents in the index.

When running examples from this chapter, please consider
the fact that the data we've indexed changes over time, so
the examples shown in this chapter may result in a different
document if we run it after some time.

The quest for improving relevance
After we have our indexed data we are ready to begin the process of searching.
We will start from the beginning, using a simple query that will return the results
we are interested in. After having that, we will try to improve query relevance.
We will also try to pay attention to performance and notice about the performance
changes when they will probably happen.

Chapter 7

[247]

The standard query
As you know, by default, ElasticSearch includes the content of the documents in
the _all field. So, why we need to bother with specifying multiple fields in a query,
when we can use a single one, right? Going in that direction, let's assume that we've
constructed the following query and now we send it to ElasticSearch to retrieve our
precious documents by using the following command:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "match" : {

 "_all" : {

 "query" : "australian system",

 "operator" : "OR"

 }

 }

 }

}'

Because we are only interested in getting the title field (ElasticSearch will use the
_source field to return the title field, because the title field is not stored) we've
added the fields=title request parameter and of course we want it to be in human
friendly formatting, so we add the pretty parameter.

However, the results were not as perfect as we would like them to be.
The top documents were as follows (the whole response can be found
in the response_query_standard.json file provided with the book):

{
 ...
 "hits" : {
 "total" : 562264,
 "max_score" : 3.3271418,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "3706849",
 "_score" : 3.3271418,

Improving the User Search Experience

[248]

 "fields" : {
 "title" : "List of Australian Awards"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "26663528",
 "_score" : 2.9786692,
 "fields" : {
 "title" : "Australian rating system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "7239275",
 "_score" : 2.9361649,
 "fields" : {
 "title" : "AANBUS"
 }
 },
 ...
]
 }
}

While looking at the title of the second document it seems that it is more relevant
than the first one, isn't it? Let's try to improve things.

The Multi match query
What we can do first is not use the _all field at all. The reason for this is because
we need to tell ElasticSearch what importance each of the fields have. For example,
in our case, the title field is more important than the content of the field,
which is stored in the text field. In order to inform that to ElasticSearch we
will use the multi_match query. In order to send such a query to ElasticSearch
we will use the following command:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "multi_match" : {

 "query" : "australian system",

 "fields" : ["title^100", "text^10", "_all"]

 }

 }

 }

}'

Chapter 7

[249]

The top results of the preceding query were as follows (the whole response can be
found in response_query_multi_match.json file provided with the book):

{
 ...
 },
 "hits" : {
 "total" : 562264,
 "max_score" : 5.3996744,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "7239222",
 "_score" : 5.3996744,
 "fields" : {
 "title" : "Australian Antarctic Building System"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "26663528",
 "_score" : 5.3996744,
 "fields" : {
 "title" : "Australian rating system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "21697612",
 "_score" : 5.3968987,
 "fields" : {
 "title" : "Australian Integrated Forecast System"
 }
 },
 ...
]
 }
}

What we did is instead of running the query against a single _all field, we chose
to run it against the title, text, and the _all fields. In addition to that we've
introduced boosting: the higher the boost value, the more important the field will
be (default boost value for a field is 1.0). So we said that the title field is more
important than the text field and the text field is more important than _all.

Improving the User Search Experience

[250]

If you look at the results now, they seem to be a bit more relevant, but still not
as good as we would like them to be. For example, look at the first and second
documents. The first documents title is Australian Antarctic Building System
and the second document title is Australian rating system, and so on. I would
like the second document to be higher than the first one.

Phrases comes into play
The next idea that should come into our minds is introduction of phrase queries so that
we can overcome the problem that was described previously. However, we still need
the documents that don't have phrases included in the results, just below the ones with
the phrases present. So, we need to modify our query by adding the bool query on
top. Our current query will come into the must section and the phrase query will go
into the should section. An example command that sends the modified query would
look as follows:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "bool" : {

 "must" : [

 {

 "multi_match" : {

 "query" : "australian system",

 "fields" : ["title^100", "text^10", "_all"]

 }

 }

],

 "should" : [

 {

 "match_phrase" : {

 "title" : "australian system"

 }

 },

 {

 "match_phrase" : {

 "text" : "australian system"

 }

 }

]

 }

 }

}'

Chapter 7

[251]

Now if we would look at the top results, they are as follows (the whole response can
be found in the response_query_phrase.json file provided with the book):

{
 ...
 },
 "hits" : {
 "total" : 562264,
 "max_score" : 3.5905828,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "363039",
 "_score" : 3.5905828,
 "fields" : {
 "title" : "Australian honours system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "7239222",
 "_score" : 1.7996382,
 "fields" : {
 "title" : "Australian Antarctic Building System"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "26663528",
 "_score" : 1.7996382,
 "fields" : {
 "title" : "Australian rating system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "21697612",
 "_score" : 1.7987131,
 "fields" : {
 "title" : "Australian Integrated Forecast System"
 }
 },
 ...
]
 }
}

Improving the User Search Experience

[252]

However, our results are still not as good as we would like to have them, although it
is a bit better. That's because we don't have all the phrases matched. What we can do
is introduce the slop parameter, which will allow us to define how many words in
between can be present for a match to be considered as a phrase match. For example,
our australian system query will be considered a phrase match for a document
with title australian education system and with a slop of 1 or more. So let's
send our query with the slop parameter present by using the following command:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "bool" : {

 "must" : [

 {

 "multi_match" : {

 "query" : "australian system",

 "fields" : ["title^100", "text^10", "_all"]

 }

 }

],

 "should" : [

 {

 "match_phrase" : {

 "title" : {

 "query" : "australian system",

 "slop" : 1

 }

 }

 },

 {

 "match_phrase" : {

 "text" : {

 "query" : "australian system",

 "slop" : 1

 }

 }

 }

]

 }

 }

}'

Chapter 7

[253]

And now let's look at the results (the whole response can be found in
response_query_phrase_slop.json file provided with the book):

{
 ...
 "hits" : {
 "total" : 562264,
 "max_score" : 5.4896,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "7853879",
 "_score" : 5.4896,
 "fields" : {
 "title" : "Australian Honours System"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "363039",
 "_score" : 5.4625454,
 "fields" : {
 "title" : "Australian honours system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "11268858",
 "_score" : 4.7900333,
 "fields" : {
 "title" : "Wikipedia:Articles for deletion/Australian
university system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "26663528",
 "_score" : 3.6501765,
 "fields" : {
 "title" : "Australian rating system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "12324081",
 "_score" : 3.6483011,

Improving the User Search Experience

[254]

 "fields" : {
 "title" : "Australian Series System"
 }
 },
]
 }
}

It seems that the results are now better. However, we can always do some more
tweaking and see if we can get some more improvements.

Let's throw the garbage away
What we can do now is we can remove the garbage from our results. We can do that
by removing redirect documents and special documents (for example, the ones that
are marked for deletion). In order to do that we will introduce a filter, not to mess
with the scoring of other results, (because filters are not scored), but to be able to
cache filter results (automatically by ElasticSearch) and reuse them in our queries.
The command that sends our query with filters will look as follows:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d
'{
 "query" : {
 "bool" : {
 "must" : [
 {
 "multi_match" : {
 "query" : "australian system",
 "fields" : ["title^100", "text^10", "_all"]
 }
 }
],
 "should" : [
 {
 "match_phrase" : {
 "title" : {
 "query" : "australian system",
 "slop" : 1
 }
 }
 },
 {
 "match_phrase" : {
 "text" : {
 "query" : "australian system",
 "slop" : 1
 }
 }

Chapter 7

[255]

 }
]
 }
 },
 "filter" : {
 "bool" : {
 "must_not" : [
 {
 "term" : {
 "redirect" : "true"
 }
 },
 {
 "term" : {
 "special" : "true"
 }
 }
]
 }
 }
}'

And the results returned by it will look as follows:

{
 ...
 "hits" : {
 "total" : 474076,
 "max_score" : 5.4625454,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "363039",
 "_score" : 5.4625454,
 "fields" : {
 "title" : "Australian honours system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "12324081",
 "_score" : 3.6483011,
 "fields" : {
 "title" : "Australian Series System"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "13543384",
 "_score" : 3.6483011,

Improving the User Search Experience

[256]

 "fields" : {
 "title" : "Australian Arbitration system"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "24431876",
 "_score" : 3.5823703,
 "fields" : {
 "title" : "Australian soccer league system"
 }
 },
 ...
]
 }
}

Isn't it better?

And now we boost
If you ever need to boost the importance of the phrase queries that we've introduced
we can do that by wrapping a phrase query with the custom_boost_factor query.
For example, if we like to have a phrase for the title field to have a boost of 1000,
we need to change the following part of the preceding query:

...
{
 "match_phrase" : {
 "title" : {
 "query" : "australian system",
 "slop" : 1
 }
 }
}
...

We will change it to the following one:

...
{
 "custom_boost_factor" : {
 "query" : {
 "match_phrase" : {
 "title" : {
 "query" : "australian system",
 "slop" : 1
 }
 }

Chapter 7

[257]

 },
 "boost_factor" : 1000
 }
}
...

Making a misspelling-proof search
If you look back at the mappings, you will see that we have the title field defined
as multi_field and one of the fields is analyzed with a defined ngram analyzer.
By default, it will create bigrams, so from the word system it will create the sy ys st
te em bigrams. Imagine that we could drop some of them during searching to make
our search misspelling-proof. For the purpose of showing how we can do this,
let's take a simple misspelled query sent with the following command:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "query_string" : {

 "query" : "austrelia",

 "default_field" : "title",

 "minimum_should_match" : "100%"

 }

 }

}'

The results returned by ElasticSearch would be as follows:

{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 0,
 "max_score" : null,
 "hits" : []
 }
}

Improving the User Search Experience

[258]

We've sent a query that is misspelled against the title field and because there is no
document with the misspelled term we didn't get any results. So now let's leverage
the title.ngram field capabilities and let's omit some of the bigrams, so that
ElasticSearch can find some documents. Our command with a modified query
looks as follows:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "query_string" : {

 "query" : "austrelia",

 "default_field" : "title.ngram",

 "minimum_should_match" : "85%"

 }

 }

}'

What we did is we changed the default_field property from title to title.ngram
in order to inform ElasticSearch, the one with bigrams indexed. In addition to that,
we've introduced the minimum_should_match property and we've set it to 85%.
This allows us to inform ElasticSearch that we don't want all the terms produced by
the analysis process to match, but only percent of them, we don't care which.

Lowering the value of the minimum_should_match property will give
us more documents, but a less accurate search. Setting the value of the
minimum_should_match property to a higher one will result in the
decrease of the documents returned, but they will have more bigrams
similar to the query ones and thus will be more relevant.

Chapter 7

[259]

The top results returned by the preceding query are as follows (the whole
result's response can be found in a file called response_ngram.json provided
with the book):

{
 ...
 },
 "hits" : {
 "total" : 67633,
 "max_score" : 1.9720218,
 "hits" : [{
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "11831449",
 "_score" : 1.9720218,
 "fields" : {
 "title" : "Aurelia (Australia)"
 }
 }, {
 "_index" : "wikipedia",
 "_type" : "page",
 "_id" : "2568010",
 "_score" : 1.8479118,
 "fields" : {
 "title" : "Australian Kestrel"
 }
 },
 ...
]
 }
}

If you would like to see how to use the ElasticSearch suggester
to handle spellchecking please refer to the Correcting user spelling
mistakes section in this chapter.

Improving the User Search Experience

[260]

Drill downs with faceting
The last thing we want to mention about is faceting. You can do multiple things
with it, for example; calculating histograms, statistics for fields, geo distance ranges,
and so on. However, one thing that can help your users to get the data they are
interested in is terms faceting. For example, if you go to amazon.com and enter the
kids shoes query you would see the following screenshot:

You can narrow the results by brand (left side of the page). The list of brands is not
static, it is generated on the basis of the results returned. We can achieve the same
with terms faceting in ElasticSearch.

Chapter 7

[261]

So now let's get back to our Wikipedia data. Let's assume that we like to allow our
users to choose the category of documents they want to see after the initial search.
In order to do that, we add the facets section to our query (however in order to
simplify the example let's use the match_all query instead of our complicated one)
and send the new query with the following command:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d '{

 "query" : {

 "match_all" : {}

 },

 "facets" : {

 "category_facet" : {

 "terms" : {

 "field" : "category.untouched",

 "size" : 10

 }

 }

 }

}'

As you can see, we've run the facet calculation on the category.untouched field,
because terms faceting is calculated on the indexed data. If we run it on the category
field we will get a single term in the faceting result, and we want the whole category
to be present. The faceting section of the results returned by the preceding
query looks as follows (the entire result's response can be found in a file called
response_query_facets.json provided with the book):

 "facets" : {
 "category_facet" : {
 "_type" : "terms",
 "missing" : 84741,
 "total" : 2054646,
 "other" : 1990915,
 "terms" : [{
 "term" : "Living people",
 "count" : 46796
 }, {
 "term" : "Year of birth missing (living people)",

Improving the User Search Experience

[262]

 "count" : 3450
 }, {
 "term" : "Australian rules footballers from Victoria
(Australia)",
 "count" : 2837
 }, {
 "term" : "Windows games",
 "count" : 2051
 }, {
 "term" : "English-language films",
 "count" : 1907
 }, {
 "term" : "Australian rugby league players",
 "count" : 1754
 }, {
 "term" : "Australian Labor Party politicians",
 "count" : 1630
 }, {
 "term" : "Unincorporated communities in West Virginia",
 "count" : 1369
 }, {
 "term" : "Unincorporated communities in Indiana",
 "count" : 1228
 }, {
 "term" : "Australian television actors",
 "count" : 709
 }]
 }
 }

Chapter 7

[263]

By default, we've got the faceting results sorted on the basis of the count property,
which tells us how many documents belong to that particular category. Now if our
user wants to narrow down its results to the English-language films category we
need to send the following query:

curl -XGET 'localhost:9200/wikipedia/_search?fields=title&pretty' -d
'{
 "query" : {
 "match_all" : {}
 },
 "filter" : {
 "term" : {
 "category.untouched" : "English-language films"
 }
 },
 "facets" : {
 "category_facet" : {
 "terms" : {
 "field" : "category.untouched",
 "size" : 10
 },
 "facet_filter" : {
 "term" : {
 "category.untouched" : "English-language films"
 }
 }
 }
 }
}'

Notice one thing: in addition to the standard filter, we've also included a
facet_filter section for our category_facet class. We need to do that
in order to have faceting narrowed down: that's right, by default,
standard filters that narrow down the query results don't narrow down
faceting and we want to show our users the next level of nesting.

Improving the User Search Experience

[264]

Summary
In this chapter we've learned how to correct user spelling mistakes both by using
the term suggester and the phrase suggester, so now we know what to do in order
to avoid empty pages that are results of misspelling. In addition to that, we've
improved our users' query experience by improving the query relevance. We started
with a simple query, and then we added multi match queries, phrase queries,
boosts, and used query slop. We've seen how to filter our garbage results and how to
improve phrase match importance. We've used n-grams to avoid misspellings as an
alternate method to using ElasticSearch suggesters. We've also discussed how to use
faceting to allow our users to narrow down the search results and thus simplify the
ways in which they can find the desired documents or products.

In the next chapter we will finally concentrate on the ElasticSearch Java API. We will
learn how to connect to local and external ElasticSearch clusters, we will learn how to
index data by sending the documents in batches and one by one. We will also discuss
update API that allows us to update the already indexed documents, and of course
we won't forget about running queries which we will describe as well as we can.
Finally we will talk about handling errors returned by the ElasticSearch API calls
and how to run the administrative commands we already talked about.

ElasticSearch Java APIs
In the previous chapter, we learned how to improve a user's search experience in
general. We saw how to use term suggester to suggest single terms and how to use
the phrase suggester which allows us to suggest whole phrases. We also changed
their configuration to match our needs. In addition to that, we've used a Wikipedia
example and we've improved simple query relevance, by going step-by-step and
introducing more and more complicated elements to it, such as phrases, filters,
and facets. Finally we've touched the surface of search analytics and we've seen
what software we can use to measure and observe. In this chapter we will focus
on the ElasticSearch Java API. By the end of this chapter you will have learned
how to use the ElasticSearch Java API to:

•	 Connect to the local or remote ElasticSearch cluster by using the client object
•	 Index your data, one document at a time and in batches
•	 Update your document contents
•	 Run different queries that are available in ElasticSearch
•	 Handle errors returned by ElasticSearch
•	 Run administrative commands to return the cluster's status and perform

administrative tasks

ElasticSearch Java APIs

[266]

Introducing the ElasticSearch Java API
Till now in our examples we have used the RESTful API, however it is not always
the most convenient method of connecting to ElasticSearch and using this search
server. In this chapter we would like to introduce you to the world of ElasticSearch
Java API and show you what you can do with it.

Comparing to the ElasticSearch REST API, the Java API is less portable when
it comes to integration and limits you to JVM-based programming languages.
However, we are almost certain, that it is not a problem for you, because you
can skip that chapter. In addition to less portability and JVM commitment,
using the REST API you can connect to different major ElasticSearch versions
if you are aware of the differences in REST endpoints and response returned by
ElasticSearch. In case of the Java API you would have to include two different
versions of ElasticSearch library in a single application, which is hard (it would
require your own class loader implementation). Luckily there are not too many
use cases, when you need to use multiple clusters that are not compatible.

Besides the preceding pints discussed, for Java world, the API library provided by
ElasticSearch is a ready-to-use solution. We can plug additional JAR archive to our
project and start communicating with ElasticSearch without the need of a boilerplate
code preparation for connecting the HTTP layer using JSON. The library provides two
ways of connecting to ElasticSearch: by creating a local node that will join the cluster
and by using transport. We will describe each of these methods later in this chapter.

In terms of possibilities, with the Java API, in addition to what we can do with
the REST API there are some more of them: from inserting, getting and deleting
documents, through search, bulk imports, obtaining information about statistics
and the state of the cluster, and using administrating operation. There is also some
operation not available in the traditional API similar to combine operations in
bulk requests. In fact, the Java API is the same code that is internally used by
ElasticSearch to perform its work.

Chapter 8

[267]

Before we go on with the details about the ElasticSearch API, we would like to
inform you about one important thing. The API we are going to discuss is very
broad. You can expect that, since we have already written, ElasticSearch uses that
API internally. Basically all the information and features we've described in the
previous chapters and those described in the previously published ElasticSearch
Server book are handled by using this API (and of course not only it). It means
that showing all methods and all calls available by the Java API would result in
duplication of the information we already discussed and this approach wouldn't be
a good idea. To be honest, we tried. And we failed to do that, because it was massive
and we were at the beginning. This chapter was bigger and bigger and we saw that
we cannot describe everything. So we chose another way: instead of describing every
method we will try to show how to utilize your existing knowledge and migrate it
to Java word. We hope that by doing so, you will be able to see how to use the Java
API provided by ElasticSearch and you will know where to look if the information
provided by this book is insufficient.

The code
For this chapter, we created the Maven project (http://maven.apache.org) and
every aspect we described is connected with a particular JUnit (http://junit.org/)
test in that project. Of course, you can use your favorite IDE to look at and test the
code: we have used Eclipse (http://eclipse.org/). From the command line you
can run every single test using the following command (of course if you have
Maven installed):

mvn -Dtest=com.elasticsearchserverbook.api.connect.ClientTest test

In the preceding example we executed tests defined in the com.
elasticsearchserverbook.api.connect.ClientTest class. When you look at the
code, note that it doesn't contain any error handling pieces. This is intended, because
we wanted to increase readability. However, please remember to add error handling
before you use that code in a real application.

There is one important thing you should remember while using the Java
API. Because the API we are about to discuss uses a low-level way of
communication with ElasticSearch nodes you have to be sure that the
version of the API at the client side matches the version of the nodes.
If the versions are different you may run into issues, for example,
not being able to connect or problems with response deserialization.

ElasticSearch Java APIs

[268]

Connecting to your cluster
As we already said there are two ways of connecting to the ElasticSearch cluster
while using the Java API. Both of these methods utilize an appropriate instance of
the Client (from org.elasticsearch.client.Client) interface: the main entry
point for all functionalities exposed by the ElasticSearch API. We will discuss the
Client interface in depth later in this chapter, now it's time to describe how to
connect ElasticSearch in a more detailed way.

Becoming the ElasticSearch node
The first and the basic method of connecting to the ElasticSearch node can be
surprising for someone who didn't have an experience with the ElasticSearch Java
API. The idea is that our application can be a part of ElasticSearch cluster as any
other node. Of course, (or at least in most cases) we don't want our application to
hold any data or be a master node. However, all the other consequences of being a
node apply. For example, the node we've created knows where the relevant shard
is placed and how to route queries in the best way. This limits the number of round
trips between client and the cluster to only the ones that are needed. Let's see an
example of the Java code. First, let's look at the following imports statements:

import static org.elasticsearch.node.NodeBuilder.nodeBuilder;
import org.elasticsearch.client.Client;
import org.elasticsearch.node.Node;

We have the Client interface, the Node interface, and the NodeBuilder class to set
up our connection. The following snippet creates a client instance:

Node node = nodeBuilder().clusterName("escluster2").client(true).
node();
Client client = node.client();

Chapter 8

[269]

We have used the NodeBuilder class for creating a node. It allows us to prepare a
desired configuration of the node and then set it up. The important information is
the name of the cluster to which we want to connect to. We use the clusterName()
method to provide that information. If we omit this, the default name will be used
(which is elasticsearch) and you may accidently connect to a different cluster than
the one you actually want (if such cluster existing on the network is visible in the
created Client). The second thing is the client() method call. Using it, we will
be able to create a node which will act as a client node, so it will be not allowed to
hold. If you omit this, strange things can happen unless you really know what you
are doing. Your cluster can lose its data or some portion of it! In fact the cluster
can decide to migrate some shards to your computer and when you turn off your
Node instance, the cluster will see that one node is down. If you have several clients
holding data, the parts of indices may be easily lost. For example if you don't have
replicas for your index and the shard is migrated to your client, after shutdown you
will lose your data for sure. So, please remember to always use the client(true)
method unless you really know what you are doing.

It is also worth mentioning the possibility to call the local(true) method. Thanks to
it, ElasticSearch will act as a standard node but only within the boundaries of the
current Java virtual machine. It means that several nodes can form cluster but only
if all of them are running in the same process. This is quite handy in the integration
testing without need to set up external nodes for tests and need to ensure separation
between the tests running in parallel.

We said that the node created by the NodeBuilder class acts
as every other node in the cluster. This also means that during
bootstrap it reads the elasticsearch.yml configuration file
from the classpath. Every setting (including the cluster's name)
may be defined in this file, but these settings are overwritten by
the values put explicitly in the code.

If you run the test that we've put it in the com.elasticsearchserverbook.api.
connect.ClientTest class, you should see something as follows in the
ElasticSearch server logs you are trying to connect to:

[2013-07-14 12:41:17,878][INFO][cluster.service]
[Jon Spectre] added {[Hayden, Alex][_bVTEUBVRDajOKmNp-Au0w]
[inet[/192.168.0.100:9301]]{client=true, data=false},}, reason: zen-
disco-receive(join from node[[Hayden, Alex][_bVTEUBVRDajOKmNp-Au0w]
[inet[/192.168.0.100:9301]]{client=true, data=false}])

ElasticSearch Java APIs

[270]

In our example, the Jon Spectre node detected the client connection from the node
named, Hayden, Alex. After finishing its work, we should close the connection and
leave the cluster. We can do that by running the following code:

node.close();

The preceding code shuts down the local node.

Using the transport connection method
This method involves connecting to the cluster without joining the cluster. You will see
in this moment that the client can connect to several nodes and use them in the round-
robin fashion. This means that every request will go to a different node and this node
is required to route this request to a proper place (of course, this is in addition to any
routing done by the ElasticSearch node itself). Let's look at the code now. As usual,
we will start by showing which import statements are needed:

import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.ImmutableSettings;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;

And, now the main part of the code illustrating the transport method connection is
as follows:

Settings settings = ImmutableSettings.settingsBuilder()
 .put("cluster.name", "escluster2").build();
TransportClient client = new TransportClient(settings);
client.addTransportAddress(new InetSocketTransportAddress("127.0.0.1",
9300));

This is an easy way. First we created the needed settings by using the
settingsBuilder() static method of the ImmutableSettings class.
In this case, the only setting we need is the cluster's name (we will describe
more transport client capabilities after this example). After that, we will
create a TransportClient object using the settings we've created earlier.
After creating the client object we should add the addresses of the nodes
that we want our TransportClient class to connect to. We do that by
calling the addTransportAddress method of the TransportClient class
and passing the InetSocketTransportAddress object. In order to create
the InetSocketTransportAddress object, we've provided the IP address
of the server on which the ElasticSearch node is running and the port on
which the transport layer of ElasticSearch is listening. Please note that the
port is not 9200, which we've used to communicate with ElasticSearch
using the HTTP REST API, but it is 9300, which is the default port on
which the transport layer listens.

Chapter 8

[271]

And now let's get back to the settings we need to set on the TransportClient class:

•	 client.transport.sniff (default: false): If set to true, ElasticSearch will
read the information about the nodes that build the cluster, so you don't have
to provide the addresses of all the nodes during transport client creation.
ElasticSearch will be smart enough to detect active nodes and dynamically
add them to the list.

•	 client.transport.ignore_cluster_name (default: false): If set to true,
ElasticSearch will ignore the cluster name and connect to the cluster even
if its name doesn't match. This can be dangerous, because you can end up
using a cluster that you didn't intend to use in the first place.

•	 client.transport.ping_timeout (default: 5s): This is the time to wait for
a ping's reply from the node. If the network latency between the client and
the cluster is high and you have connectivity problems, you may need to
increase the default value.

•	 client.transport.nodes_sampler_interval (default: 5s): This is the time
interval for checking nodes availability. Similar to the previous property,
if the network latency between the client and the cluster is high and you
have connectivity problems, you may need to increase the default value.

Please remember that similar to the previously described
connection method, when we create the TransportClient
instance, ElasticSearch will automatically try to read the
elasticsearch.yml file from the classpath.

Choosing the right connection method
So now you already know how to connect to the ElasticSearch cluster using the Java
API provided by ElasticSearch: both by creating a client node as well as using the
transport client. Which of them is better? From one side, the first method complicates
the startup sequence: the client has to join the cluster and establish connections
with the other nodes. It takes time and resources. However, setup operations can be
executed faster, because all the information about the cluster, its indices, and shards
are available to such client node. On the other side, we have the TransportClient
object. It starts faster and requires less number of resources, for example, fewer socket
connections. However sending queries and data is more resource demanding: the
TransportClient object is not aware of all the information regarding cluster and
index topology, so it won't be able to send the data to the correct node right away:
it will send the data to one of the initial transport nodes and the ElasticSearch will
have to do the rest. In addition, the TransportClient object requires you to specify
a list of initial addresses to connect to.

ElasticSearch Java APIs

[272]

While choosing the right connection method one should remember one thing - it is
not always possible to connect to your cluster using the first of the described
methods. For example if the ElasticSearch cluster you want to connect is in a
different network, the only way to connect to it using the Java API will be using
the TransportClient object.

Anatomy of the API
As we said before, the client interface is the key for communication with the cluster.
In practice, this means that with most of the operations you want to do, you will start
with calling a method, for example, prepareX(). Let's start from a simple operation
which will fetch a particular record. We start with the needed imports:

import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.client.Client;

And now, the following is the code snippet that will fetch a document from the
library index, type book, and identifier 1:

GetResponse response = client
.prepareGet("library", "book", "1")
.setFields("title", "_source")
.execute().actionGet();

The preceding code did some interesting things. We called the prepare method,
as warned before. In this case the prepareGet() method prepares the fetching
request of a particular document with the particular type from the given index.
In fact this method returns the builder object which allows us to set additional
parameters and settings, in our case we set fields that should be returned for the
document using the setFields() method. After preparation, we can create the
request from the builder object to use it in future (using the request() method)
or just fire our query using the execute() call, we do the second. And this is the
most interesting part: the ElasticSearch API is asynchronous by nature. This means
that the execute() call doesn't wait for the results retuned by ElasticSearch and
immediately returns control to the caller block and query is run in the background.
In this example, we simply use the actionGet() method, which waits for query
execution to end and return the fetched data. This was simple, but in more
complicated systems this is not enough. Now let's look at the example of how
we can use the asynchronous API. We start with the relevant import directive:

import org.elasticsearch.action.ListenableActionFuture;

Chapter 8

[273]

Now let's modify our previous example to something as follows:

ListenableActionFuture<GetResponse> future = client
.prepareGet("library", "book", "1")
.setFields("title", "_source")
.execute();
future.addListener(new ActionListener<GetResponse>() {
@Override
public void onResponse(GetResponse response) {
 System.out.println("Document: " + response.getIndex()
 + "/"
 + response.getType()
 + "/"
 + response.getId());
 }
@Override
 public void onFailure(Throwable e) {
 throw new RuntimeException(e);
 }
});

The first line is similar to the previous example. We prepared the Get request
and we've executed it, but we didn't want to wait for execution, so we did not
call the actionGet() method. The execute() method returned an object of the
ListenableActionFuture type, which we stored in the future variable.
The ListenableActionFuture type defines the addListener() method allowing
us to inform API, which code should be run when the response of the Get request
is returned. In the example, we used an anonymous object inherited from the
ActionListener<GetResponse> interface. This interface forces us to define
two methods: onResponse() called by ElasticSearch when a request is executed
successfully and the response is returned, and the onFailure() method is
executed if an error occurs. Any code defined in these methods will be run in
future, independently from the code defined after the addListener() call.
The asynchronous task can be tested using the isDone() method to check if
the request is already done or interrupted using cancel().

Now let's look closer at the response object. Every API class has its own dedicated
object holding appropriate information returned by ElasticSearch. In case of a GET
request, the API methods include checking if the desired document was found,
get information about the document, and its fields or document source. We will
see some more examples in the rest of the chapter.

ElasticSearch Java APIs

[274]

We now have the basic knowledge about conventions used by the ElasticSearch
API to communicate with the cluster. In the next subchapters we will review all
the available operations provided by the API.

Please note that you are not forced to run the actionGet() method after
the execute() method, just like we discussed in the Anatomy of the API
section of this chapter. If you are interested in asynchronous behavior,
you can still use the futures.

CRUD operations
We will have a closer look into the API operations, the CRUD (create, retrieve, update,
and delete document) commands. Let's begin from the retrieve document call.

Fetching documents
Let's begin from the retrieve document call. We've already seen the following
example when we discussed API anatomy:

GetResponse response = client
.prepareGet("library", "book", "1")
.setFields("title", "_source")
.execute().actionGet();

While in preparation, after setting the index name, type name (may be null if we don't
care what the type is), and identifier we will have the tool object. This builder object is
an instance of org.elasticsearch.action.get.GetRequestBuilder and allows us
to set the following additional information:

•	 setFields(String): This method specifies which fields should be returned
in the document. By default, this API method will return only document
source. Note that lack of _source on the list of returned fields causes the
sourceXXX() methods not to be working (as discussed in the next point).

•	 setIndex(String), setType(String), setId(String): These methods
set the index name, type of the document, and its identifier respectively.
These methods are handy when you want to reuse the builder object or
use the prepareGet() method version with no arguments.

Chapter 8

[275]

•	 setRouting(String): This method sets the routing value which is used
to determine which shard should be used to execute the request. For more
information about routing, please refer to the Routing explained section in
Chapter 4, Index Distribution Architecture.

•	 setParent(String): This method sets the parent document identifier
in a parent-child relationship. This is equivalent to setting routing to
the parent identifier.

•	 setPreference(String): This method sets the query preference. For example,
if the possible values are: _local, _primary, or the custom value. For more
information about query preference, please refer to the Query execution
preference section in Chapter 4, Index Distribution Architecture.

•	 setRefresh(Boolean): This method controls if refreshing should be done
before the operation. By default it is set to false, which means ElasticSearch
will not perform the refresh operation before executing the GET request.

•	 setRealtime(Boolean): This method is a request considered as a real-time
get operation. By default, it is set to true, which informs ElasticSearch that
the request is a real-time GET one.

When it comes to the response of the GET request, the most interesting methods for
the GetResponse object are as follows:

•	 isExists(): This method returns the information if document is found.
•	 getIndex(): This method returns the requested index name.
•	 getType(): This method returns the document type name.
•	 getId(): This method returns the requested document identifier.
•	 getVersion(): This method returns the document's version number.
•	 isSourceEmpty(): This method returns the information if the source of

the document is available or not in the current and returned document.
The possible returned values are true (when the source exists) and false
(when the source is not existent in the returned document).

•	 getSourceXXX(): This family of methods allows to obtain the source
document in various forms, for example as a text (getSourceAsString()),
map (getSourceAsMap()), or bytes array (getSourceAsBytes()).

•	 getField(String): This method returns the object describing field,
which allows us to get field name, its value, or multiple values for
multivalued fields.

ElasticSearch Java APIs

[276]

Handling errors
Of course, we should always be prepared that something will go wrong, at least
when we create software. Bad things can happen and in such cases. The important
part of all the applications is the code responsible for handling errors. ElasticSearch
handling of errors is slightly inconsistent (at least in 0.90.3 and previous). The API
sometimes throws a checked exception in several calls' response containing a
dedicated method to check the status of the operation, but in others these
methods doesn't exist. So be prepared for some surprises. In case of all CRUD
operations, ElasticSearch throws unchecked exceptions which inherit
from org.elasticsearch.ElasticSearchException.

Indexing documents
We know how to fetch documents by using the GET requests, but it would be nice to
actually have something to fetch from the index. So now we will look at how we can
prepare indexing operations using the ElasticSearch Java API. As usual we will start
with the needed imports:

import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.client.Client;

And now we will create a simple code snippet that will index a document to the
library index, under the book type and will give it an identifier of 2. The code
looks as follows:

IndexResponse response = client.prepareIndex("library", "book", "2")
 .setSource("{ \"title\": \"Mastering ElasticSearch\"}")
 .execute().actionGet();

The general principle is the same as we discussed during the GET request: we will
prepare the indexing request using a dedicated builder object (the object returned
by the prepareIndex() call is of the org.elasticsearch.action.index.
IndexRequestBuilder type), executing the request (execute() method) and
waiting for response by calling the actionGet() method. The only ugly thing is
the document source we've used to pass the whole document structure, but don't
worry. The ElasticSearch API has some methods to programmatically create
JSON documents which we will show. Note that the client object also has the
prepareIndex() method version that doesn't require you to pass the document
identifier. In such case, ElasticSearch will generate the identifier automatically.

Chapter 8

[277]

The discussed builder object allows us to set the following information:

•	 setSource(): This method allows us to set the source of the document.
The ElasticSearch API defines a few methods with the same name, but with
a different argument type. In our example we've used the version where
the input is a text: a String object. The other takes an array of bytes,
key-value pairs, a map with fields and its values, or the XContentBuilder
class allowing us to construct any JSON document.

•	 setIndex(String), setType(String), setId(String): These methods are
the same as in the GET request building, they allow us to set the index name,
its type, and document identifier.

•	 setRouting(String), setParent(String): These methods are the same
as the ones with the same names in the Get request API, please refer to the
Fetching documents section in this chapter for further information about them.

•	 setOpType(): This method exists in two variants. The first takes the
string argument: index or create. The second uses enumeration for this
(org.elasticsearch.action.index.IndexRequest.OpType.INDEX or
org.elasticsearch.action.index.IndexRequest.OpType.CREATE).
Both variants of this method allow us to choose ElasticSearch's behavior
when a document with a given identifier already exists in the index.
The default behavior is to overwrite the previous document with the
contents of the new one. When the argument is create (or an equivalent
enumeration value), then the index operation will fail if a document with
a given identifier already exists.

•	 setCreate(Boolean): This method is a shortcut of setOpType(). When the
argument is true, the indexing will fail if a document with the given identifier
already exists. The default value is false: the new document will overwrite
the previous or an already existing one.

•	 setRefresh(Boolean): This method controls if refresh should be executed
after the operation. By default it is set to false, which informs ElasticSearch
not to perform the refresh operation before executing the GET request.

ElasticSearch Java APIs

[278]

•	 setReplicationType(): This method exists in two variants. The first
takes the String argument which can be one of the following values:
sync, async, or default. The second variant of this method takes one
of the enumeration values: org.elasticsearch.action.support.
replication.ReplicationType.SYNC, org.elasticsearch.action.
support.replication.ReplicationType.ASYNC or org.elasticsearch.
action.support.replication.ReplicationType.DEFAULT. It allows
us to control the replication type during indexation. By default the index
operation is considered done when all the replicas have performed the
operation (the sync value or type). The second option is returning from the
operation without waiting for replicas (the async value or type). The third
option is informing ElasticSearch to behave in a way according to the node's
configuration (the default value or type).

•	 setConsistencyLevel(): This method defines how many replicas should
be active to allow the index operation to be performed. The possible values
are: org.elasticsearch.action.WriteConsistencyLevel.DEFAULT
(use node setting), org.elasticsearch.action.WriteConsistencyLevel.
ONE (only one replica is sufficient), org.elasticsearch.action.
WriteConsistencyLevel.QUORUM (at least 50 percent + 1 defined
replicas needs to be present), org.elasticsearch.action.
WriteConsistencyLevel.ALL (all replicas must be available).

•	 setVersion(long): This method allows us to define the version of the
document which will be updated during indexing. If the document with a
given identifier doesn't exist or the version is different, the update operation
will fail. Thanks to this the application that makes sure that nobody changed
the given document while reading the document and updating it.

•	 setVersionType(VersionType): This method informs ElasticSearch which
versioning type will be used: org.elasticsearch.index.VersionType.
INTERNAL (the default) or org.elasticsearch.index.VersionType.
EXTERNAL. This affects the way of comparing the version number by the server.

•	 setPercolate(String): This method causes the percolator to be checked on
the indexed document. The argument of this parameter is the query to limit
percolated queries. The * value means that all queries should be checked.

•	 setTimestamp(String): If the _timestamp field is enabled while mapping,
ElasticSearch will automatically generate information about the last
modification time. This method allows you to set your own value for
this timestamp.

Chapter 8

[279]

•	 setTTL(long): If the _ttl field is enabled while mapping, ElasticSearch
allows us to set the time in milliseconds, after which the document will be
removed from the index.

The IndexResponse class returned by the indexing provides the following
useful methods:

•	 getIndex(): This method returns the requested index name
•	 getType(): This method returns the document type name
•	 getId(): This method returns the indexed document's identifier
•	 getVersion(): This method returns the indexed document's version number
•	 getMatches(): This method returns the list of percolate queries that matched

the document or null if no percolation was requested

Updating documents
The third operation we wanted to discuss from the CRUD operations is an update of
the document. Again we are starting with necessary imports:

import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.Client;

In our example we will use the Map class and Maps helper provided by ElasticSearch
and because of that we need the following additional imports:

import java.util.Map;
import org.elasticsearch.common.collect.Maps;

And now let's look at the code that will change the title field of our previously indexed
document (the one that was indexed in the previous Indexing documents section):

Map<String, Object> params = Maps.newHashMap();
params.put("ntitle", "ElasticSearch Server Book");

UpdateResponse response = client.prepareUpdate("library", "book", "2")
 .setScript("ctx._source.title = ntitle")
 .setScriptParams(params)
 .execute().actionGet();

ElasticSearch Java APIs

[280]

Again, as in the GET and create operations, the general rule is the same. We run
the prepareUpdate method and we pass the index name (library in our case),
document type (book in our case), and the identifier of the document we want to
update (2 in our case). After that we set the script that will be used by ElasticSearch
by using the setScript method, we set the script parameters by using the
setScriptParams method and we run the update request waiting for it to finish
and return the UpdateResponse object.

The update request builder (which is an object of the org.elasticsearch.action.
update.UpdateRequestBuilder type) contains the following useful methods we
can use:

•	 setIndex(String), setType(String), setId(String): These methods
are same as in the GET request building, allows us to set the index name,
its type, and document identifier.

•	 setRouting(String), setParent(String): These methods are the same
as discussed in the Get request API, please refer to the Fetching documents
section in this chapter for further information about these methods.

•	 setScript(String): This method sets the script used for changing the
document we want to alter.

•	 setScriptLang(String): This method sets the information about the type
of language used in the provided script.

•	 setScriptParams(Map<String, Object>): As you are aware, the script we
pass to ElasticSearch can use variables, whose values can be defined using
this method. The keys of the map, provided as the method's arguments are
the parameter names and the values are those parameter values.

•	 addScriptParam(String, Object): Instead of using setScriptParams,
you can use a series of the addScriptParam method calls which in every
occurrence defines one variable. Please note that repetition of the parameter
with the same name will overwrite the previous definition.

•	 setFields(String...): This method sets which fields should be returned
in the document as a GET response. Note that if you set the fields by yourself
you should also define _source on the list to make the sourceXXX()
methods working.

Chapter 8

[281]

•	 setRetryOnConflict(int): The default is 0. In ElasticSearch updating a
document means retrieving the previous value, modifying its structure,
removing the previous document and indexing the new, updated one.
It means that during this process of fetching and writing the new value,
the target document may change, for example by the other application.
ElasticSearch detects this by comparing the document's version number and
returns error. As an alternative, it may retry the operation. The number of
this retries can be defined by this method.

•	 setRefresh(Boolean): This method controls if refresh should be executed
after the operation. By default it is set to false, which means that the refresh
operation will not be triggered.

•	 setReplicationType(): This method exists in two variants. The first
takes the String argument which can be one of the following values: sync,
async, or default. The second variant of this method takes one of the
enumeration values: org.elasticsearch.action.support.replication.
ReplicationType.SYNC, org.elasticsearch.action.support.
replication.ReplicationType.ASYNC, or org.elasticsearch.action.
support.replication.ReplicationType.DEFAULT. It allows us
to control the replication type during update. By default the update
operation is considered done when all the replicas have performed the
operation (the sync value or type). The second option is returning from
the operation without waiting for the replicas (the async value or type).
The third option is informing ElasticSearch to behave in a way according
to node's configuration (the default value or type).

•	 setConsistencyLevel(): This method defines how many replicas should be
active to allow the update operation to be performed. The possible values are:
org.elasticsearch.action.WriteConsistencyLevel.DEFAULT (use node
setting), org.elasticsearch.action.WriteConsistencyLevel.ONE
(only one replica is sufficient), org.elasticsearch.action.
WriteConsistencyLevel.QUORUM (at least 50 percent + 1 defined replicas
needs to be present), org.elasticsearch.action.WriteConsistencyLevel.
ALL (all replicas must be available).

•	 setPercolate(String): This method causes the percolator to be run on the
indexed document. The parameter is the query to limit percolated queries.
The * value means that all the queries are to be checked.

ElasticSearch Java APIs

[282]

•	 setDoc(): This family of methods allows to set the partial document,
which should be merged with a document from the index. This document
will be ignored if the script is defined. ElasticSearch provides versions
of this method which requires document in String, an array of bytes,
XContentBuilder, or map of fields. In addition to that the document may
be given as the IndexRequest object.

•	 setUpsertRequest(): This family of methods defines the document that
should be indexed when a requested document doesn't exist in the index.
The possible argument types are the same as in the setDoc() methods.

•	 setSource(): Instead of using multiple methods such as setScript() and
setScriptParams(), you can prepare the whole request body and it will
be parsed to set values for the script, script params, doc, upsert, lang, and
information about the document as upsert (as given in the next point).

•	 setDocAsUpsert(Boolean): The default: false. If set to true, if the
document doesn't exist, the value used in setDoc() methods will be
used as the new document.

The UpdateResponse class object returned by the update request provides the
following information:

•	 getIndex(): This method returns the requested index name.
•	 getType(): This method returns the document type name.
•	 getId(): This method returns an updated document identifier.
•	 getVersion(): This method returns an updated document version.
•	 getMatches(): This method returns the list of percolate queries that

matched the document or null if no percolation was requested.
•	 getGetResult(): This method returns the GET result, which holds

information about the updated document. Note that this request will
be available if you have used the setFields() method while creating
the request.

Deleting documents
The last basic operation in CRUD is the deletion of a document. You probably can
easily guess how the code should look like. In imports there is a class responsible for
the reply:

import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.client.Client;

Chapter 8

[283]

The main code is also obvious, which is as follows:

DeleteResponse response = client.prepareDelete("library", "book", "2")
 .execute().actionGet();

Just as we did before, we will prepare the request: the delete request now and
we will give it the information about the index, the type, and the document
identifier. The request builder (instance of org.elasticsearch.action.delete.
DeleteRequestBuilder) has no new methods apart from the ones we discussed
before, but let's recall them once again:

•	 setIndex(String), setType(String), setId(String): As in all the other
builders we discussed, the mentioned methods allow us to set the index
name, its type, and the document identifier.

•	 setRouting(String), setParent(String): These methods are the same
as in the GET request, please refer to the Fetching documents section in this
chapter for further information about these methods.

•	 setRefresh(Boolean): This method controls if refresh should be executed
after the operation. By default it is set to false, which means that the refresh
operation will not be executed.

•	 setVersion(long): This method allows us to define the version of the
document, which will be deleted during document deletion. If the document
with the given identifier doesn't exist or the version is different, the delete
operation fails. Thanks to this, the application makes sure that nobody
changes the given document.

•	 setVersionType(VersionType): This method informs ElasticSearch which
versioning type will be used: org.elasticsearch.index.VersionType.
INTERNAL (the default value) or org.elasticsearch.index.
VersionType.EXTERNAL. This affects the way of comparing the version
number by the server.

•	 setReplicationType(): This method exists in two variants. The first takes
the String argument which can be one of the following values: sync, async,
or default. The second variant of this method takes one of the enumeration
values: org.elasticsearch.action.support.replication.
ReplicationType.SYNC, org.elasticsearch.action.support.
replication.ReplicationType.ASYNC, or org.elasticsearch.action.
support.replication.ReplicationType.DEFAULT. It allows us to control
the replication type during deletion. By default the delete operation is
considered done when all replicas have performed the operation (the sync
value or type). The second option is returning from the operation without
waiting for replicas (the async value or type). The third option is informing
ElasticSearch to behave in a way according to the node's configuration
(the default value or type).

ElasticSearch Java APIs

[284]

•	 setConsistencyLevel(): This method defines how many replicas should be
active to allow the delete operation to be performed. The possible values are:
org.elasticsearch.action.WriteConsistencyLevel.DEFAULT (use node
setting), org.elasticsearch.action.WriteConsistencyLevel.ONE
(only one replica is sufficient), org.elasticsearch.action.
WriteConsistencyLevel.QUORUM (at least 50% + 1 defined replicas needs
to be present), org.elasticsearch.action.WriteConsistencyLevel.ALL
(all replicas must be available).

The DeleteResponse response, returned after running the delete operation contains
the following methods:

•	 getIndex(): This method returns the requested index name
•	 getType(): This method returns the document type name
•	 getId(): This method returns the deleted document's identifier
•	 getVersion(): This method returns the deleted document's version number
•	 isNotFound(): This method returns true if the request did not find the

document for deletion

Querying ElasticSearch
Right now we should be able to use the ElasticSearch Java API to perform basic
CRUD operations, such as creating and deleting documents. But wouldn't it be
nice to be able to search the data we have in our indices? Let's look at the search
possibilities exposed by the ElasticSearch Java API.

Preparing a query
You may be already expecting this, but again the structure code that allows us to
make a query using the Java API is very similar, almost identical when compared it
with CRUD operations. In the base query the following imports will be handy:

import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.Client;
import org.elasticsearch.search.SearchHit;

Chapter 8

[285]

Besides the client class and response, you will see the SearchHit class responsible
for holding a single document that matches the criteria and additional metadata as
a score value. The following code shows a simple query returning all the documents
from the library index. For each document, the title and _source fields are
fetched. After getting the response back, we iterate over the returned page of results
showing identifiers of the matched documents. Let's look at the code that does that:

SearchResponse response = client.prepareSearch("library")
 .addFields("title", "_source")
 .execute().actionGet();

for(SearchHit hit: response.getHits().getHits()) {
 System.out.println(hit.getId());
 if (hit.getFields().containsKey("title")) {
 System.out.println("field.title: "
 + hit.getFields().get("title").getValue());
 }
 System.out.println("source.title: "
 + hit.getSource().get("title"));
 }

When we iterate over the returned documents, we read the title field's value
two times. The first value of the title field is read from the title field of the
document, in this case the query must have the definition of the returned fields,
as you can see we can use the addFields() method to define which fields will be
returned. The second time we read the title field contents, we use the source of
the document. Please remember that by default, if no fields are defined, _source
will be returned. In our case we need to add this in addition to the title field.
Of course, _source should be enabled in mapping which is the default behavior.

Building queries
The empty query which matches all the documents is boring, you have to admit it.
You know ElasticSearch provides many ways for querying the index (or multiple
indices) to let us get the desired results. The API takes complete advantage of
these possibilities and exposes a set of setQuery() methods. Similar to the already
described setSource()method, they allow you to use various forms of setting the
query: as a String, as an array of bytes, Map, or XContentBuilder. But we will focus
on using the QueryBuilder interface, precisely speaking on the QueryBuilders class
which helps us to create the QueryBuilder implementations. Let's look at a simple
example. As usual we will start with the needed code imports:

import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;

ElasticSearch Java APIs

[286]

And now we are ready to build queries. Let's create a dismax query that will combine
two queries: a simple term query and a prefix query. The following example does that
by using the QueryBuilders class:

QueryBuilder queryBuilder = QueryBuilders
 .disMaxQuery()
 .add(QueryBuilders.termQuery("title", "Elastic"))
 .add(QueryBuilders.prefixQuery("title", "el"));

System.out.println(queryBuilder.toString());
SearchResponse response = client.prepareSearch("library")
 .setQuery(queryBuilder)
 .execute().actionGet();

Thanks to the QueryBuilders helper class. We've prepared a dismax query which
contains two queries: a term query and a prefix query. In our example we have used
the toString() method which allows us to show the JSON representation of the
generated query which could be used with the REST API:

{
 "dis_max" : {
 "queries" : [{
 "term" : {
 "title" : "Elastic"
 }
 }, {
 "prefix" : {
 "title" : "el"
 }
 }]
 }
}

After creating the query, we've created the search request, applied QueryBuilder
containing our query to it using the setQuery() method and we've executed that
request. And that's it. The QueryBuilder object has many methods for building
many kinds of queries including those which combine multiple queries together,
as the previously mentioned dismax query builder where we passed another builder
to the add() method. Let's briefly go through the QueryBuilder class to see what it
offers. All of these methods return their own builders with dedicated methods.

Chapter 8

[287]

Please note that due to a large number of functions, queries, parameters
and others, we described only a few queries which can be built using the
API. Remember that the principle for building all the queries is the same.
We also assume that you already know and understand the RESTful
version of the API. If not, take a look at the documentation available at
the ElasticSearch website or read our previous ElasticSearch Server book.

Using the match all documents query
The simplest query available in ElasticSearch and thus in its Java API is the
matchAllQuery() query. As the name suggests, this query matches all the
documents from the index (or indices) and allows you to set the boost value
and norms for the given field. As you can guess these parameters are directly
available in the builder. For example:

queryBuilder = QueryBuilders.matchAllQuery()
.boost(11f).normsField("title");

The preceding code snippet generates the following query in the JSON format:

{
 "match_all" : {
 "boost" : 11.0,
 "norms_field" : "title"
 }
}

The match query
Let's do something opposite of what we just did and instead of making a query with
the Java API and showing the JSON we will try to build the Java API query that
matches the following match query in the JSON format:

{
 "match" : {
 "message" : {
 "query" : "a quick brown fox",
 "operator" : "and",
 "zero_terms_query": "all"
 }
 }
}

ElasticSearch Java APIs

[288]

When looking at the QueryBuilders class you will easily find the matchQuery()
method which takes two arguments: the field name and its value. The methods for
setting the operator and zero_terms_query are also available. The Java version of
the preceding JSON query would look as follows:

queryBuilder = QueryBuilders
 .matchQuery("message", "a quick brown fox")
 .operator(Operator.AND)
 .zeroTermsQuery(ZeroTermsQuery.ALL);

It is quite simple, isn't it?

Using the geo shape query
Let's look at another example and again we will start with the query in the JSON
format. Let's assume that we would like to build the following query using the
Java builders available in ElasticSearch:

{
 "query": {
 "geo_shape": {
 "location": {
 "shape": {
 "type": "envelope",
 "coordinates": [[13, 53],[14, 52]]
 }
 }
 }
 }
}

As you probably expect right now, for this kind of query the QueryBuilders class
also has an appropriate method. This time it is the geoShapeQuery() method.
So, in order to build the preceding JSON query using the QueryBuilders class,
we can write a code similar to the following one:

queryBuilder = QueryBuilders.geoShapeQuery("location",
 ShapeBuilder.newRectangle()
 .topLeft(13, 53)
 .bottomRight(14, 52)
 .build());

Chapter 8

[289]

The geoShapeQuery() method takes two arguments: the name of the field and the
Shape object, which can be created using the ShapeBuilder helper. Please remember,
if some method takes an argument which is a dedicated type, try to find the builder
for this object. It really helps in coding. Note that the presented example is true for
Version 0.90.3 of ElasticSearch. For the 1.0 version the syntax is a little bit different
and looks as follows:

QueryBuilders.geoShapeQuery("location",
 ShapeBuilder.newEnvelope()
 .topLeft(13, 53)
 .bottomRight(14, 52)
));

Note that the ShapeBuilder class now in the 1.0 version of ElasticSearch is in a
different package as compared to the previous versions.

Paging
When the result list is large, it is necessary to use paging to limit the number
of documents fetched in a single request and go through the subsequent ones.
In the API, it is simple because the SearchRequestBuilder class provides two
dedicated methods for this: the setFrom(int) method for declaring offset and
the setSize(int) method for defining the page size. Let's take a look at the
following example:

SearchResponse response = client.prepareSearch("library")
 .setQuery(QueryBuilders.matchAllQuery())
 .setFrom(10)
 .setSize(20)
 .execute().actionGet();

The preceding request will return 20 documents (of course if they exist) skipping the
first 10 documents. Note that, by default ElasticSearch returns the first 10 documents.
The SearchHits class contains the totalHits() method which allows us to obtain
information about the total number of documents fulfilling the criteria of our query.

ElasticSearch Java APIs

[290]

Sorting
In order to define sorting, the ElasticSearch Java API provides two variants of the
addSort() method. Let's look at the following example which illustrates both the
versions of the method:

SearchResponse response = client.prepareSearch("library")
 .setQuery(QueryBuilders.matchAllQuery())
 .addSort(SortBuilders.fieldSort("title"))
 .addSort("_score", SortOrder.DESC)
 .execute().actionGet();

The first version used accepts the SortBuilder abstract class. Looking at the other
places in the API, you can guess that there is a dedicated class for creating a particular
instance of SortBuilder, the SortBuilders class. In the previous example, we saw
the definition of sorting by the title field using the fieldSort(String) method.
The second example of the sort method takes the name of the field and the SortOrder
enumeration value which defines the sorting order.

In addition to the described sort methods, ElasticSearch provides a method to allow
script-based sorting: the scriptSort(String, String) method, and spatial-based
sorting: the geoDistanceSort(String) method.

Filtering
From the API's perspective, creating filters is very similar to creating queries and this
is true for both the Java API as well as the REST API. Let's add a few filters by using
the Java API:

FilterBuilder filterBuilder = FilterBuilders
 .andFilter(
 FilterBuilders.existsFilter("title").filterName("exist"),
 FilterBuilders.termFilter("title", "elastic")
);
SearchResponse response = client.prepareSearch("library")
 .setFilter(filterBuilder)
 .execute().actionGet();

Chapter 8

[291]

We have created the FilterBuilder class using the FiltersBuilders utility.
You will again spot the same pattern as in the other part of the ElasticSearch
API. In this example, we've created two filters (exists filter and term filter) and
wrapped them together using the andFilter() method. If we print the contents
of the FilterBuilder class in order to see how the JSON form of our query will
look, we would see something as follows:

{
 "and" : {
 "filters" : [{
 "exists" : {
 "field" : "title",
 "_name" : "exist"
 }
 }, {
 "term" : {
 "title" : "elastic"
 }
 }]
 }
}

You can check this by calling the toString() method on our builder.

The next lines after creating the filter are responsible for query execution. And again
this is almost the same as with the query execution handling with one change:
we've set the filter using the setFilter() method.

It is worth mentioning that the API provides several methods named setFilter().
The remaining six allows us to define the filters using JSON in various forms (byte
array, String, XContentBuilder) or generate it from Map. In our example we've
used the filterName() methods that allows us to set the name of a filter. Thanks to
this, you can check which filters matched a particular document from the result set
returned by ElasticSearch. For this, look at the matchedFilters() method in the
SearchHit interface. As for searching, the list of possible filter types is very extensive
and all the ones that are available in ElasticSearch can be built using the Java API.

ElasticSearch Java APIs

[292]

Faceting
Defining faceting is in general the same as filtering, so it is very similar to what
we've already seen. In detail, we have some differences in the naming convention,
but once you are used to the Java API of ElasticSearch you'll be able to easily make
requests with faceting. Of course, we will use FacetBuilders in order to get the
FacetBuilder object and we will use the setFacets() method to add facets to our
request. The mentioned method gets JSON or Map objects and constructs facets
using that information. Let's now look at an example code:

FacetBuilder facetBuilder = FacetBuilders
 .filterFacet("test")
 .filter(FilterBuilders.termFilter("title", "elastic"));

SearchResponse response = client.prepareSearch("library")
 .addFacet(facetBuilder)
 .execute().actionGet();

We've created the filter facet as an example, but as you may have guessed the API
provides multiple possibilities of using faceting, just like the REST API does from
the terms facet, through query, range, geo, statistical to histogram faceting. Note that
it is different to the previous example, the toString() method in builder presents
nothing interesting. The SearchResult object contains the getFacets() method
which allows you to analyze the data returned by faceting.

Highlighting
In a modern, search-based application, searching in the fields containing a lot of
text, showing the user which and where the phrase was found is a valuable feature.
The Java API also exposes the highlighting functionality, which allows us to do that.
Let's look at the following example:

SearchResponse response = client.prepareSearch("wikipedia")
 .addHighlightedField("title")
 .setQuery(QueryBuilders.termQuery("title", "actress"))
 .setHighlighterPreTags("<1>", "<2>")
 .setHighlighterPostTags("</1>", "</2>")
.execute().actionGet();

Chapter 8

[293]

In the example, we created a simple query searching for the actress word in the
title of the documents. The title field is also this field which we would like to see
as highlighted. Because of that, we use the addHighlightedField() method call and
we pass it the field name we are interested in. We also defined how the words that
are found should be marked: in the example we chose simple HTML-like tagging
with the numbers.

In the response, every search hit contains the information about highlighting
connected with such hit, so in order to print out the highlighted fragments we
can use a code similar to the following one:

for(SearchHit hit: response.getHits().getHits()) {
 HighlightField hField = hit.getHighlightFields().get("title");
 for (Text t : hField.fragments()) {
 System.out.println(t.string());
 }
}

The preceding code snippet would result in the following output:

Academy Award for Best Supporting <1>Actress</1>

Please note the highlighted term. It was surrounded with the tags <1> and </1>,
which we've defined while creating our query by highlighting it.

Suggestions
In the Correcting user spelling mistakes section of Chapter 7, Improving the User Search
Experience we've have used the following query to show how a suggester works:

{
 "query" : {
 "match_all" : {}
 },
 "suggest" : {
 "first_suggestion" : {
 "text" : "graphics designer",
 "term" : {
 "field" : "_all"
 }
 }
 }
}

ElasticSearch Java APIs

[294]

Now we will try to rewrite this JSON query into the Java API. Take a look at the
following example code:

SearchResponse response = client.prepareSearch("wikipedia")
 .setQuery(QueryBuilders.matchAllQuery())
 .addSuggestion(new TermSuggestionBuilder("first_suggestion")
 .text("graphics designer")
 .field("_all")
)
 .execute().actionGet();

The first part with setQuery() is nothing interesting, because we are just using the
standard match_all query. In the next line, we construct TermSuggestionBuilder
by calling its constructor and passing in the suggester name: we will need it in order
to see which suggester returned what results. The last thing is setting the field
used to generate suggestion (the _all field). Now let's check the response our
suggester generated:

for(Entry<? extends Option> entry : response.getSuggest()
 .getSuggestion("first_suggestion").getEntries()) {
 System.out.println("Check for: "
 + entry.getText()
 + ". Options:");
 for(Option option : entry.getOptions()) {
 System.out.println("\t" + option.getText());
 }
}

As you can see for every named suggestion you can get a list of available options
and exactly the same information as described in the Correcting user spelling mistakes
section of Chapter 7, Improving the User Search Experience.

Counting
In the examples we've shown previously we were interested in the documents that
match a given criteria. However, sometimes the list of documents doesn't matter:
we only want to know the number of them that match our criteria. In such cases,
we should use the count request because it is wise in terms of performance: we skip
sorting and retrieving the documents from the index. The example code for getting
the document count looks as follows:

CountResponse response = client.prepareCount("library")
.setQuery(QueryBuilders.termQuery("title", "elastic"))
.execute().actionGet();

Chapter 8

[295]

The difference of counting from searching is the prepareCount() method call
instead of prepareSearch(). That's it!

Scrolling
If you want to use the scrolling feature in order to fetch large data sets using the
ElasticSearch Java API, please look at the following code example:

SearchResponse responseSearch = client.prepareSearch("library")
 .setScroll("1m")
 .setSearchType(SearchType.SCAN)
 .execute().actionGet();

String scrollId = responseSearch.getScrollId();
SearchResponse response = client.prepareSearchScroll(scrollId)
 .execute().actionGet();

In the example you will see two requests: the first one defines the query and
the scroll attributes such as the time when our scroll should be valid (using the
setScroll() method). In addition to that, we need to specify the search type:
we switch to the scan mode that omits sorting and fetching documents, so the
first query returns only the number of documents found and the scroll identifier
which can be used in the second query.

Then we retrieve the identifier of the scroll by using the getScrollId() method
of the SearchResponse object. Finally, we can run the second query using the
preprareSearchScroll() method. We pass it with the already retrieved scroll
identifier and in result we get the SearchResponse object that will contain our
documents set.

Performing multiple actions
Till now we've looked at how to perform single action requests, such as the search
operations or indexing documents one by one. However as you know, ElasticSearch
provides bulk functionalities, which enables us to index multiple documents with a
single request, run multiple queries, or delete documents using a query. Let's look at
how to use these functionalities by using the ElasticSearch Java API.

ElasticSearch Java APIs

[296]

Bulk
ElasticSearch bulk API allows you to pack together multiple indexes, delete and
update requests in one request, and analyze response of these requests separately.
Let's look at the following example:

BulkResponse response = client.prepareBulk()
 .add(client.prepareIndex("library", "book", "5")
 .setSource("{ \"title\" : \"Solr Cookbook\"}")
 .request())
 .add(client.prepareDelete("library", "book", "2").request())
.execute().actionGet();

The preceding request will add one document to the library book (the one
with the identifier of 5) and will delete one document (the one with the identifier
of 2). In response, we get an array of the org.elasticsearch.action.bulk.
BulkItemResponse objects available by calling the getItems() method.
You should loop through this array and check the status of particular operation
using the isFailed() method (which returns true if errors happened during
a particular operation) and getFailure() for additional information about the
failure. Each of this responses also contains the getResponse() method which
returns the IndexResponse or DeleteResponse objects, which you already
know from the index and delete operations.

The delete by query
The API gives us the possibility of deleting multiple documents: the ones that match
a given query. Let's look at the following example:

DeleteByQueryResponse response = client.
prepareDeleteByQuery("library")
 .setQuery(QueryBuilders.termQuery("title", "ElasticSearch"))
 .execute().actionGet();

The preceding code will result in deleting the documents from the library index:
the ones that match the given term query.

Multi GET
While the bulk index allows us to index multiple documents, the multi get request
allows us to group several GET requests in a single call and thus return multiple
documents in response. Let's look at the following example:

MultiGetResponse response = client.prepareMultiGet()
 .add("library", "book", "1", "2")
 .execute().actionGet();

Chapter 8

[297]

It will result in returning the documents from the library index, with the book type
that has identifiers 1 or 2.

The response object for the preceding query allows us to use the getResponses()
method which returns an array of the org.elasticsearch.action.get.
MultiGetItemResponse object. The mentioned object is similar to the one already
described in the bulk API, but getResponse() returns the GetResponse object
describing a particular GET operation.

Multi Search
The last API we want to mention is the one that allows us to group multiple query
requests together. As you can easily guess it groups multiple searches in one
requests, for example let's look at the following code:

MultiSearchResponse response = client.prepareMultiSearch()
 .add(client.prepareSearch("library", "book").request())
 .add(client.prepareSearch("news").
 .setFilter(FilterBuilders.termFilter("tags", "important")))
 .execute().actionGet();

As in the multi get operation, the response contains the getResponses()
method which returns an array of the org.elasticsearch.action.search.
MultiSearchResponse.Item objects. As you can guess, this object has the
getResponse() method returning a particular search response and the
isFailure() method informing us about the status of the operation.

Percolator
The percolator is a search turned upside down. We can use the document to find
queries that match that document. Let's say that we have the index called prcltr.
Then we can index the query to the _percolator index with the prcltr type by
using the following code example:

client.prepareIndex("_percolator", "prcltr", "query:1")
 .setSource(XContentFactory.jsonBuilder()
 .startObject()
 .field("query",
 QueryBuilders.termQuery("test", "abc"))
 .endObject())
 .execute().actionGet();

ElasticSearch Java APIs

[298]

In the preceding example our query has an identifier, query:1 and it is a simple
query checking the test field for the abc value. Now that we have our percolator
prepared, we can send a document to it by using the following code fragment:

PercolateResponse response = client.preparePercolate("prcltr", "type")
 .setSource(XContentFactory.jsonBuilder()
 .startObject()
 .startObject("doc")
 .field("test").value("abc")
 .endObject()
 .endObject())
 .execute().actionGet();

As you see the document that we've sent should match the query stored in the
percolator. We can check it using the getMatches() method. The following
simple code fragment illustrates how that can be achieved:

for (String match : response.getMatches()) {
 System.out.println("Match: " + match);
}

The preceding snippet should return the query:1 value, an identifier of our query.
This is the only one example which illustrates how the percolator works. There are
more features and all of them are available in the Java API.

ElasticSearch 1.0 and higher
There is one thing you should know. While writing this book, the version of
ElasticSearch was 0.90.3. Because of the changes that will be done in ElasticSearch
1.0 the preceding examples will not even be compiled. The _percolator index is
not an index anymore but type. So when using ElasticSearch 1.0 the preceding index
operation should look as follows:

client.prepareIndex("prcltr", "_percolator", "query:1")

The percolate interface will also be changed. In ElasticSearch 1.0 the query to the
percolator should look as the one given in the following example:

PercolateResponse response = client.preparePercolate()
 .setIndices("prcltr")
 .setDocumentType("type")
 .setPercolateDoc(PercolateSourceBuilder
 .docBuilder()
 .setDoc(XContentFactory.jsonBuilder()

Chapter 8

[299]

 .startObject()
 .field("test").value("abc")
 .endObject()))
 .execute().actionGet();

There are also some changes done in the way the results are retrieved. In ElasticSearch
1.0, the percolator returns the Match type object we can use for getting the matched
queries. So our code that fetches the matched queries will look as follows:

for (Match queryName : response.getMatches()) {
 System.out.println("Match: " + queryName.getId());
}

The explain API
The last thing about querying ElasticSearch is the explain API. The explain API helps
us in finding relevant issues and looking why a given document was or wasn't found.
Let's look at the following example:

ExplainResponse response = client
 .prepareExplain("library", "book", "1")
 .setQuery(QueryBuilders.termQuery("title", "elastic"))
 .execute().actionGet();

What we did should be obvious by know, but let's discuss it. We prepared the
explain request by running t he prepareExplain method. In our example we are
checking if the document with identifier equals to 1 will be found in reply for a
simple term query.

The response consists of the getExplanation() method which returns an
org.apache.lucene.search.Explanation object. This Lucene object describes
the way the score was calculated. The structure of the information this object
contains is dependent on how the query is constructed and which components
query contains. Unfortunately information is sometimes almost cryptic, but very
useful to determine why a given document was found for this particular query.

ElasticSearch Java APIs

[300]

Building JSON queries and documents
Let's now take a step back from running requests themselves and look on how to
construct JSON queries and documents. We will start recalling the example by
creating a new document:

IndexResponse response = client
 .prepareIndex("library", "book", "2")
 .setSource("{ \"title\": \"Mastering ElasticSearch\"}")
 .execute().actionGet();

The setSource() argument doesn't look too clear, does it? Fortunately, ElasticSearch
also has the API for creating JSON documents. It is handy not only for creating input
data, but also for querying ElasticSearch as practically all calls to the server allows to
set the request payload directly. Let's look at the example of this API usage. We will
start with the required imports:

import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentFactory;

The following is the code:

Map<String, Object> m = Maps.newHashMap();
 m.put("1", "Introduction");
 m.put("2", "Basics");
 m.put("3", "And the rest");
 XContentBuilder json = XContentFactory.jsonBuilder().prettyPrint()
 .startObject()
 .field("id").value("2123")
 .field("lastCommentTime", new Date())
 .nullField("published")
 .field("chapters").map(m)
 .field("title", "Mastering ElasticSearch")
 .array("tags", "search", "ElasticSearch", "nosql")
 .field("values")
 .startArray()
 .value(1)
 .value(10)
 .endArray()
 .endObject();

Chapter 8

[301]

This preceding built document describes the information about this book (more or
less). First, we created the map with chapter descriptions, which we will use. Then we
start the JSON definition by using the XContentFactory.jsonBuilder() call which
will result in creating a proper factory. As you can see, the called methods imitate the
desired JSON document structure (we add additional indentation to show it better).
The API provides methods such as startObject() or startArray() in order for
us to indicate that the next calls are related to the content of an object or an array.
This allows us to create nested structures by nesting calls to the mentioned methods.
End of definition of the given structure is marked by an appropriate call to
endObject() or endArray(). In fact, the API automatically closes the open tags at
the end of the definition, so in our case we can open it (using it influences the clarity
of the code so it's better not to rely on this feature).

The next important thing is the definition of fields. The ElasticSearch API provides
the field() method that allows us to define the name of the attribute (as we did
with the id field, where the field value was defined using the value() method call)
or define the field name and value at once (as we did for title field). In this second
case, we can define the nested structure by using the map() method. There is also
a dedicated nullField() method which allows us to define fields with null value.
The last thing worth mentioning is the array() method which defines the array
type field with the given name and with values defined by the second and
subsequent arguments.

As you can see, the usage of the JSON builder is simple and convenient (also because
all field() methods takes various types of parameters from Boolean to Date, which
is suitable for various data types). What you should pay attention to is the correct
order of function called, so the resulting JSON object is the one you are looking for.

When you have the builder defined, you can easily generate the string representation
of the defined JSON by using the string() method. It generates a one-line JSON code,
but if you want something more readable you can add a call to the prettyPrint()
method (it has to be called just after creating the). We did this and string() method
called for our code example generates the following JSON:

{
 "id" : "2123",
 "lastCommentTime" : "2013-08-11T09:27:43.446Z",
 "published" : null,
 "chapters" : {
 "3" : "And the rest",
 "2" : "Basics",
 "1" : "Introduction"
 },
 "title" : "Mastering ElasticSearch",
 "tags" : ["search", "ElasticSearch", "nosql"],
 "values" : [1, 10]
}

ElasticSearch Java APIs

[302]

The administration API
On previous pages you saw how to search your data and how to manipulate
documents using the Java API. However this is not the only functionality that
ElasticSearch has to offer. In the rest of the following chapter we will see how
to use the ElasticSearch Java API in order to perform administration tasks and
monitor ElasticSearch state. ElasticSearch divides administration operation into
two groups - cluster administration and indices administration. We will start
with the first one.

Please note that the administration API of ElasticSearch is very broad and
we just can't describe all the methods and responses, because we would
have to write another book, just in order to describe the API. However we
will try showing you the point where you can start.

The cluster administration API
The cluster administration API is exposed by the org.elasticsearch.client.
ClusterAdminClient interface. You can get its implementation by running the
admin().cluster() method on the Client interface, just as we did in the
following example:

ClusterAdminClient cluster = client.admin().cluster();

The work with this interface is similar to what we did when we used the Client
interface. The ClusterAdminClient interface defines several prepareXXX()
methods returning builders, which after configuration return appropriate request
objects. Similar to searching, you can use this object to send request to ElasticSearch
in a synchronous or asynchronous way and after that use a dedicated response
object. Let's review the available possibilities.

The cluster and indices health API
The cluster and indices health API allows us to fetch the basic health information
about the cluster or its indices:

ClusterHealthResponse response = client.admin().cluster()
 .prepareHealth("library")
 .execute().actionGet();

The prepareHealth() method takes the names of indices to check (or no names
at all, in such case the health for the whole cluster will be returned). In response,
you can read information about the cluster status, number of assigned shards,
number of shards, and replicas for a particular index.

Chapter 8

[303]

The cluster state API
The cluster state API allows us to fetch information about the cluster: routing,
shard allocation, and mappings. For example, the following code will send a
request that will fetch the complete state information of the cluster:

ClusterStateResponse response = client.admin().cluster()
 .prepareState()
 .execute().actionGet();

The update settings API
The update settings API allows to set cluster-wide configuration parameters.
The configuration is divided into transient settings (which are lost after the
restart of the entire cluster) and permanent settings, where changes will be
preserved even if the cluster is fully restarted. Remember that the list of
parameters that can be updated dynamically is limited. The following example
illustrates how we can change the indices.ttl.interval property using
the discussed API:

Map<String, Object> map = Maps.newHashMap();
map.put("indices.ttl.interval", "10m");

ClusterUpdateSettingsResponse response = client.admin().cluster()
 .prepareUpdateSettings()
 .setTransientSettings(map)
 .execute().actionGet();

The reroute API
The reroute API allows you to move shards between nodes, cancel the shard
allocation, or force shard allocation. The following example shows two allocation
commands: the move command and the cancel command:

ClusterRerouteResponse response = client.admin().cluster()
 .prepareReroute()
 .setDryRun(true)
 .add(
 new MoveAllocationCommand(new ShardId("library", 3),
 "G3czOt4HQbKZT1RhpPCULw",
 PvHtEMuRSJ6rLJ27AW3U6w"),
 new CancelAllocationCommand(new ShardId("library", 2),
 "G3czOt4HQbKZT1RhpPCULw",
 true))
 .execute().actionGet();

ElasticSearch Java APIs

[304]

As you can see, each allocation command has its own class that we pass to the add
method of the builder returned by prepareReroute() method call. Please also note
that in order to specify the shard which we are interested in, we use the ShardId
class which we will construct by invoking the constructor and passing the name of
the index and the shard number.

One additional thing to notice is the setDryRun(true) method call in the
preceding example. This method prevents the execution of allocation commands.
Here, ElasticSearch only checks if the given allocation is possible. This is handy
to test if we can run the given command in our cluster (you can find more about
shard allocation in Chapter 4, Index Distribution Architecture, in the Adjusting shard
allocation section).

The nodes information API
The nodes info API provides information about a particular node or nodes given
by a node identifier or for all the nodes in the cluster. This information can contain
details about the Java virtual machine, the operating system including the network
information (such as IP address or Ethernet address or information about plugins).
For example, the following code will fetch the node information including the
plugin and network information:

NodesInfoResponse response = client.admin().cluster()
 .prepareNodesInfo()
 .setNetwork(true)
 .setPlugin(true)
 .execute().actionGet();

Note that this particular information is available only when directly requested. In the
example, the response contained information about the network and plugins because
of the setNetwork() and setPlugin() methods. There is also an all() method that
turns on fetching all the information.

The node statistics API
The node statistics call is very similar to nodes info, but returns statistics about
ElasticSearch utilization, such as indices statistics, filesystem, HTTP module, and Java
virtual machine. The following example will fetch all the statistics regarding nodes:

NodesStatsResponse response = client.admin().cluster()
 .prepareNodesStats()
 .all()
 .execute().actionGet();

Similar to nodes info API, if we want a particular information to be returned,
we should inform ElasticSearch about it by using the appropriate method or
use the all() method to include all the information.

Chapter 8

[305]

The nodes hot threads API
The nodes hot threads API allows you to examine the nodes when something goes
wrong and the CPU utilization exceeds the norm. More information about this
API can be found in Chapter 6, Fighting with Fire in the Very hot threads section.
An example usage of this API in Java looks as follows:

NodesHotThreadsResponse response = client.admin().cluster()
 .prepareNodesHotThreads()
 .execute().actionGet();

In addition to the no-argument version of the prepareNodesHotThreads()
method, it allows us to define one or more node identifiers as arguments to
limit the information to the given nodes.

The nodes shutdown API
The nodes shutdown API is a simple API that allows us to shut down the selected
nodes (or all of them). If we want, we can add the delay for the shutdown operation.
For example the, following code will shut down the whole cluster immediately:

NodesShutdownResponse response = client.admin().cluster()
 .prepareNodesShutdown()
 .execute().actionGet();

The search shards API
The search shards API is another simple API which allows us to check which shards
will be used for handling the request. It allows us to set the routing parameter value,
so it is very handy when using custom routing. For example, the following code
will check which shard (or shards) of the library index will be used to handle the
request with the routing value of 12:

ClusterSearchShardsResponse response = client.admin().cluster()
 .prepareSearchShards()
 .setIndices("library")
 .setRouting("12")
 .execute().actionGet();

If you want to learn more about this API please refer
to http://elasticsearchserverbook.com/
elasticsearch-0-90-search-shards-api/
where we have written a simple blog post about this API.

http://elasticsearchserverbook.com/elasticsearch-0-90-search-shards-api/
http://elasticsearchserverbook.com/elasticsearch-0-90-search-shards-api/

ElasticSearch Java APIs

[306]

The Indices administration API
In order to handle the administration requests of the indices, the ElasticSearch API uses
the org.elasticsearch.client.IndicesAdminClient interface. You can get the
implementation of this interface from the Client object by using the following code:

IndicesAdminClient cluster = client.admin().indices();

The work with this interface is again similar to what we've seen in the The cluster
administration API section. This interface defines several prepareXXX() methods and
these are the entry points to create requests. Let's review the available API requests.

The index existence API
The index existence API allows us to check if the indices given in the
prepareExists call exists in the cluster. An example usage of this API
is illustrated in the following code:

IndicesExistsResponse response = client.admin().indices()
 .prepareExists("books", "library")
 .execute().actionGet();

The Type existence API
Type existence API is very similar to the index existence API, but instead of checking
the existence of index or indices, we can check the existence of types in a given index
or indices. Note that indices should exist in order for the API to successfully return
the information. The following is an example call using this API which checks for the
existence of the book type in the library index:

TypesExistsResponse response = client.admin().indices()
 .prepareTypesExists("library")
 .setTypes("book")
 .execute().actionGet();

The indices stats API
The indices stats API provides information about indices, documents, storage,
and operations such as get, search and indexing, warmers and merge process,
flushing, and refreshing. This information is divided on the basis of type, and a
particular information should be requested while creating the request. For example,
the following code illustrates how to get all the information about the library index:

IndicesStatsResponse response = client.admin().indices()
 .prepareStats("library")
 .all()
 .execute().actionGet();

Chapter 8

[307]

Index status
The indices stats API gives various information about the requested indices.
In addition to that, when requested the result in enriched by information about
the recovery status of shards and snapshotting. For example, to get the status
information for the library index we should run the following code:

IndicesStatusResponse response = client.admin().indices()
 .prepareStatus("library")
 .setRecovery(true)
 .setSnapshot(true)
 .execute().actionGet();

Segments information API
The segments API returns low-level information about Lucene segments for the
given index or indices, for example:

IndicesSegmentResponse response = client.admin().indices()
 .prepareSegments("library")
 .execute().actionGet();

Creating an index API
The create index API can be used to create a new index and set the mappings or
settings for it. For example, the following code illustrates how to create the news
index, with the number of shards equal to 1 along with the provided mappings:

CreateIndexResponse response = client.admin().indices()
 .prepareCreate("news")
 .setSettings(ImmutableSettings.settingsBuilder()
 .put("number_of_shards", 1))
 .addMapping("news", XContentFactory.jsonBuilder()
 .startObject()
 .startObject("news")
 .startObject("properties")
 .startObject("title")
 .field("analyzer", "whitespace")
 .field("type", "string")
 .endObject()
 .endObject()
 .endObject()
 .endObject())
 .execute().actionGet();

ElasticSearch Java APIs

[308]

Deleting an index
The delete API allows us to irreversibly delete one or more indices. The following
code illustrates how to delete the index called news:

DeleteIndexResponse response = client.admin().indices()
 .prepareDelete("news")
 .execute().actionGet();

Closing an index
The close API allows us to close the unused indices and thus free our node and
cluster resources such as CPU cycles and memory. For example, the following
code illustrates how to close the library index:

CloseIndexResponse response = client.admin().indices()
 .prepareClose("library")
 .execute().actionGet();

Opening an index
The open API allows us to open the previously closed index. For example,
the following code will result in the closing of the library index:

OpenIndexResponse response = client.admin().indices()
 .prepareOpen("library")
 .execute().actionGet();

The Refresh API
The Refresh API allows us to perform a refresh on a given index or indices. For more
information about what refresh is, please refer to the NRT, flush, refresh and transaction
log section in Chapter 3, Low-level Index Control. The following example illustrates how
to perform the refresh operation on the index called library:

RefreshResponse response = client.admin().indices()
 .prepareRefresh("library")
 .execute().actionGet();

Chapter 8

[309]

The Flush API
The flush API performs flush on given indices. For more information refer to the
NRT, flush, refresh and transaction log section in Chapter 3, Low-level Index Control.
The example is as follows:

FlushResponse response = client.admin().indices()
 .prepareFlush("library")
 .setFull(false)
 .execute().actionGet();

The Optimize API
The Optimize API invokes the segments merge process on the given indices. Just like
the RESTful version of this API, we are allowed to set the target number of segments
or only remove the deleted documents from the index. For example, the following
code snippet executes the optimize operation on the library index, specifies that
the maximum number of segments is 2. The flush should be performed after the
operation and we are not only interested in removing the deleted documents:

OptimizeResponse response = client.admin().indices()
 .prepareOptimize("library")
 .setMaxNumSegments(2)
 .setFlush(true)
 .setOnlyExpungeDeletes(false)
 .execute().actionGet();

The put mapping API
The put mapping API allows us to create or change mapping for a particular index
or for multiple indices at once. However, please remember that the index we are
specifying must exist. The following example illustrates creating the mapping for
the news type in the news index:

 PutMappingResponse response = client.admin().indices()
 .preparePutMapping("news")
 .setType("news")
 .setSource(XContentFactory.jsonBuilder()
 .startObject()
 .startObject("news")
 .startObject("properties")
 .startObject("title")
 .field("analyzer", "whitespace")

ElasticSearch Java APIs

[310]

 .field("type", "string")
 .endObject()
 .endObject()
 .endObject()
 .endObject())
 .execute().actionGet();

The delete mapping API
It is the reverse method to put mapping. By using the delete mapping API we are
allowed to delete mappings from one or more indices. For example, the following
code illustrates how to delete the mappings for the news type in the news index:

DeleteMappingResponse response = client.admin().indices()
 .prepareDeleteMapping("news")
 .setType("news")
 .execute().actionGet();

The gateway snapshot API
The gateway snapshot API allows us to force ElasticSearch to perform snapshot
for given index or indices. Note that this API works only for shared gateway types,
which are in fact deprecated now:

GatewaySnapshotResponse response = client.admin().indices()
 .prepareGatewaySnapshot("news")
 .execute().actionGet();

The aliases API
The aliases API provides methods for managing the ElasticSearch aliases. Let's take
a look at the following example:

IndicesAliasesResponse response = client.admin().indices()
 .prepareAliases()
 .addAlias("news", "n")
 .addAlias("library", "elastic_books",
 FilterBuilders.termFilter("title", "elasticsearch"))
 .removeAlias("news", "current_news")
 .execute().actionGet();

As you see, in our example we created multiple aliases with the same request.
We've added an n alias for the news index and the elastic_books alias for the
library index. In addition to that, while creating the elastic_books alias we
also specified additional termfilter which will be used along with the alias.
We've also removed the current_news alias for the news index.

Chapter 8

[311]

The get aliases API
The get aliases API allows us to list the currently defined aliases. Let's look at the
following example:

IndicesGetAliasesResponse response = client.admin().indices()
 .prepareGetAliases("elastic_books", "n")
 .execute().actionGet();

The preceding code will result in showing information about two aliases,
the n and the elastic_book aliases. The nice thing about this is that we
are allowed to use asterisks. Thanks to it, we can create request, for example,
the prepareGetAliases("*") request which will list all the available aliases.
The described API works in Version 0.90.3 of ElasticSearch. In the 1.0 version
this is a little different: the object that holds the response for this request has
a GetAliasesResponse type instead of IndicesGetAliasesResponse.

The aliases exists API
The aliases exists API allows us to check whether at least one of the listed aliases exists.
Just as we did with the get aliases we can use asterisks in alias names. For example,
the following code snippet results in a request that checks if the aliases starting with
the names, elastic or named unknown exist:

AliasesExistResponse response = client.admin().indices()
 .prepareAliasesExist("elastic*", "unknown")
 .execute().actionGet();

The clear cache API
The clear cache API allows us to clear certain types of caches for a given index or
indices. For example, the following code clears the filter cache, the identifier cache,
and the field data cache for the library index and the title field:

ClearIndicesCacheResponse response = client.admin().indices()
 .prepareClearCache("library")
 .setFieldDataCache(true)
 .setFields("title")
 .setFilterCache(true)
 .setIdCache(true)
 .execute().actionGet();

ElasticSearch Java APIs

[312]

The update settings API
The update settings API allow us to update the settings for particular indices or all
of them. For example, the following code will set the number of replicas (the index.
number_of_replicas property) to 2 for the library index:

UpdateSettingsResponse response = client.admin().indices()
 .prepareUpdateSettings("library")
 .setSettings(ImmutableSettings.builder()
 .put("index.number_of_replicas", 2))
 .execute().actionGet();

The analyze API
This API is very handy when we want to see how the analysis process is done
for the given analyzer, tokenizer, and filters. For example, the following code
will result in a request that checks how the analysis will be performed for the
ElasticSearch Servers phrase in the library index using the whitespace
tokenizer and the nGram filter:

AnalyzeResponse response = client.admin().indices()
 .prepareAnalyze("library", "ElasticSearch Servers")
 .setTokenizer("whitespace")
 .setTokenFilters("nGram")
.execute().actionGet();

The put template API
The put template API allows you to configure the new templates for use by
ElasticSearch while creating the new indices. Of course, the templates can hold
mappings and settings. For example, the following code will result in creating
a new template called my_template that will be used for any index starting
with product. Each index created using this template will have two replicas,
one shard and a type called item with a single title field:

PutIndexTemplateResponse response = client.admin().indices()
 .preparePutTemplate("my_template")
 .setTemplate("product*")
 .setSettings(ImmutableSettings.builder()
 .put("index.number_of_replicas", 2)
 .put("index.number_of_shards", 1))
 .addMapping("item", XContentFactory.jsonBuilder()
 .startObject()
 .startObject("item")

Chapter 8

[313]

 .startObject("properties")
 .startObject("title")
 .field("type", "string")
 .endObject()
 .endObject()
 .endObject()
 .endObject())
 .execute().actionGet();

The delete template API
With the delete template API you can delete a single template or several templates
given by a pattern. For example, the following code deletes all the templates whose
names starts with my_:

DeleteIndexTemplateResponse response = client.admin().indices()
 .prepareDeleteTemplate("my_*")

 .execute().actionGet();

The validate query API
The validate query API can be used to check if the query you want to send to
ElasticSearch is valid. The response of the API provides the information about
whether the query is correct or not. By calling the setExplain method and
passing a true value to it, the API will also provide information about what
is wrong with the query. The following code illustrates the usage of this API:

ValidateQueryResponse response = client.admin().indices()
 .prepareValidateQuery("library")
 .setExplain(true)
 .setQuery(XContentFactory.jsonBuilder()
 .startObject()
 .field("name").value("elastic search")
 .endObject().bytes())
 .execute().actionGet();

ElasticSearch Java APIs

[314]

The put warmer API
The put warmer API allows us to create a warmer for a given index or several
indices. For more information about the warmers, please refer to the Speeding up
queries using warmers section in Chapter 6, Fighting with Fire. The following example
shows how to create a warmer called library_warmer that will execute a match for
all the queries with termsfacet on the tags parameter filed in the library index:

PutWarmerResponse response = client.admin().indices()
 .preparePutWarmer("library_warmer")
 .setSearchRequest(client.prepareSearch("library")
 .addFacet(FacetBuilders
 .termsFacet("tags").field("tags")))
 .execute().actionGet();

The delete warmer API
If you can put a warmer, you can also delete it and the delete warmer API provides
such functionality. For example, if we like to delete all the warmers that start with
the library_ prefix we should use the following code:

DeleteWarmerResponse response = client.admin().indices()
 .prepareDeleteWarmer()
 .setName("library_*")
 .execute().actionGet();

Summary
In this chapter we've learned how to use the Java API that is provided with
ElasticSearch. We started with discussing how to connect to local and remote
ElasticSearch cluster, how to index data in two ways - both one document after
another and by using batches. We've updated API to alter already indexed
documents and we've seen how to make queries by using Java API. We've learned
how to handle errors returned by ElasticSearch Java API. In addition to that we've
run administrative commands from our Java code and we've learned how to
perform administrative tasks exposed by the API.

In the next chapter we will get more into the internals of ElasticSearch and we
will learn how to extend its functionality. We will learn how to develop a river
plugin that will be managed by ElasticSearch. In addition to that we will extend
the analysis capabilities of ElasticSearch by developing a custom tokenizer and
filter. Finally, we will see how to develop a custom search plugin that will extend
the ElasticSearch functionality.

Developing ElasticSearch
Plugins

In the previous chapter we learned how to use the Java API that is provided with
ElasticSearch. We started with discussing how to connect to local and remote
ElasticSearch cluster and how to index data in two ways (both one document
after another and by using batches). We updated the API to alter already indexed
documents and we've seen how to make queries by using Java API. We learned
how to handle errors returned by ElasticSearch Java API. In addition to that we've
run administrative commands from our Java code and we learned how to perform
administrative tasks exposed by the API. In this chapter, we will focus on extending
ElasticSearch capabilities by writing custom plugins. By the end of this chapter,
you will be able to:

•	 Set up a general Apache Maven project that will automatically package the
code you've created, so it can be installed by ElasticSearch

•	 Develop a custom River plugin to index your data
•	 Create custom tokenizer that can be used during querying and indexing
•	 Develop a custom filter that will allow custom filtering

Developing ElasticSearch Plugins

[316]

Creating the Apache Maven project
structure
Before we start with showing how to develop a custom ElasticSearch plugin,
we would like to discuss a way to package it, so it can be installed by ElasticSearch
by using the plugin command. In order to do that, we will use Apache Maven
(http://maven.apache.org/) project management software. It aims to make
your build process easier, provide unifying build system, manage dependencies,
and so on.

Please note that even though the chapter you are currently reading
was written and tested using ElasticSearch 0.90.3, it was also tested
with 1.0.0Beta release. If you would like the code examples to work
with ElasticSearch 1.0.0Beta version, you should modify ElasticSearch
version in the pom.xml file.

Please also remember that the book you are holding in your hands is not about
Maven, but ElasticSearch, and we will keep Maven related information to the
required minimum.

Installing Apache Maven is a straightforward task. We assume that
you already have it installed. However, if you have problems with it,
please consult http://maven.apache.org/ for more information.

Understanding the basics
The result of a Maven build process is an artifact. Each artifact is defined
by its identifier, its group, and version. This is crucial when working with
Maven, because each dependency you'll use will be identified by those
three mentioned properties.

Chapter 9

[317]

Structure of the Maven Java project
The idea behind Maven is quite simple; you create a project structure that looks
something like the following screenshot:

You can see that the code is placed in the src folder (the code is in the main folder
and the unit tests are located in the test folder). Although you can change the
default layout, Maven tends to work best with the default layout.

The idea of POM
In addition to the code, you can see a file named pom.xml that is located in the
root directory in the previous image. This is a project object model file that
describes the project, its properties, and dependencies. That's right; you don't
need to manually download dependencies if they are available in one of the
available Maven repositories. During its work, Maven will download them and
use it. All you need to care about is writing an appropriate pom.xml section that
will inform Maven which dependencies should be used.

Developing ElasticSearch Plugins

[318]

For example, see the following Maven pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>pl.solr</groupId>
 <artifactId>jsonriver</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>jsonriver</name>
 <url>http://solr.pl</url>

 <properties>
 <elasticsearch.version>0.90.3</elasticsearch.version>
 <project.build.sourceEncoding>UTF-
 8</project.build.sourceEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>${elasticsearch.version}</version>
 </dependency>
 </dependencies>
</project>

This is a simplified version of a pom.xml file that we will extend in the rest of the
chapter. You can see that it starts with the root project tag and then defines the
group identifier, the artefact identifier, version, and packaging method (in our case,
the standard build command will create a jar file). In addition to that, we've specified
a single dependency: the ElasticSearch library version 0.90.3.

Chapter 9

[319]

Running the build process
In order to run the build process, what we need to do is simply run the following
command in the directory where the pom.xml file is present:

mvn clean package

It will result in running Maven. It will clean all the generated content in the working
directory, compile, and package our code. Of course, if we have unit tests, they will
have to pass in order for the package to be built. The built package will be written
into the target directory created by Maven.

If you want to learn more about Maven lifecycle, please refer to http://
maven.apache.org/guides/introduction/introduction-to-
the-lifecycle.html.

Introducing the assembly Maven plugin
In order to build the zip file that will contain our plugin code, we need to package
it. By default, Maven doesn't support pure zip files packaging, so in order to make
it all work, we will use the Maven Assembly plugin (you can find more about the
plugin at http://maven.apache.org/plugins/maven-assembly-plugin/).
In general, the described plugin allows us to aggregate the project output along
with its dependencies, documentations, and configuration files into a single archive.

In order for the plugin to work, we need to add the build section to our pom.xml
file that will contain information about the assembly plugin, the jar plugin (which is
responsible for creating proper jar), and the compiler plugin, because we want to be
sure that the code will be readable by Java 6. In addition to this, let's assume that
we want our archive to be put into the target/release directory of our project.
The relevant section of the pom.xml file should look like this:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <finalName>elasticsearch-${project.name}-
 ${elasticsearch.version}</finalName>
 </configuration>

Developing ElasticSearch Plugins

[320]

 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2.1</version>
 <configuration>
 <finalName>elasticsearch-${project.name}-
 ${elasticsearch.version}</finalName>
 <appendAssemblyId>false</appendAssemblyId>
 <outputDirectory>${project.build.directory}
 /release/</outputDirectory>
 <descriptors>
 <descriptor>assembly/release.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>generate-release-plugin</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Chapter 9

[321]

If you look closely at the assembly plugin configuration, you'll notice that we specify
the assembly descriptor, called release.xml, in the assembly directory. This file
is responsible for specifying what kind of archive we want to have as the output.
Let's put the following release.xml file in the assembly directory of our project:

<?xml version="1.0"?>
<assembly>
 <id>bin</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <dependencySets>
 <dependencySet>
 <unpack>false</unpack>
 <outputDirectory>/</outputDirectory>
 <useProjectArtifact>false</useProjectArtifact>
 <useTransitiveFiltering>true</useTransitiveFiltering>
 <excludes>
 <exclude>org.elasticsearch:elasticsearch</exclude>
 <exclude>junit:junit</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>
 <fileSets>
 <fileSet>
 <directory>${project.build.directory}/</directory>
 <outputDirectory>/</outputDirectory>
 <includes>
 <include>elasticsearch-${project.name}-
 ${elasticsearch.version}.jar</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

Developing ElasticSearch Plugins

[322]

Again, we don't need to know all the details, however it is nice to understand what is
going on, even on the general level only. So, the previous file tells Maven Assembly
plugin that we want our archive to be packed with zip (<format>zip</format>) and
we want the JUnit and ElasticSearch libraries to be excluded (the exclude section),
because they will already be present in ElasticSearch on which we will install the
plugin. In addition to that we've specified that we want our project jar to be included
(the includes section).

If you want to see the full project structure, with the full pom.xml file
and all the needed files, please look at the code of this chapter provided
with this book at Packt's website.

Creating a custom river plugin
The next extension we will develop to ElasticSearch will be a custom river plugin.
As you know, the rivers are ElasticSearch functionality (usually plugins) that allow
to index data from different sources, such as Wikipedia, Twitter, and database.
In this simple example, we will develop a river that will be able to write last
modified date of a given website and will check and update that data periodically
and the period will be configurable. The data that will be fetched by the river will
be stored in the index. So let's see what we need to do and how to do it.

Implementation details
To achieve the requirements we've described previously, we will need to develop
the following parts:

•	 Module definition class, which extends the AbstractModule class
from the org.elasticsearch.common.inject package; we will
call it JSONRiverModule.

•	 Plugin definition class, which extends the AbstractPlugin class from the
org.elasticsearch.plugins package; we will call it JSONRiverModule.

Chapter 9

[323]

•	 The river itself, which extends the AbstractRiverComponent class from the
org.elasticsearch.river package and implements River interface from
the org.elasticsearch.river package; we will call it JSONRiver.

•	 A class that we will use to periodically check a given URL address; we will
develop it as a Runnable interface implementation, because we will use
thread executors to run it. We will call that class URLChecker.

We assume that you already have a Java project created and that you are
using Maven, just like we did in the Creating Apache Maven project structure
section in the beginning of this chapter. If you would like to use an already
created and working example and start from there, please look at the code
of this book that is available with the book on Packt's website.

In addition to that, we will need a library that will allow a quick and simple
way to connect to the given URL and read the returned headers, for example,
HttpComponents from Apache (http://hc.apache.org/). To use it, we just
need to add another dependency to our Maven pom.xml file, so its dependencies
section looks like this:

<dependencies>
 <dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>${elasticsearch.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.2.5</version>
 </dependency>
</dependencies>

Developing ElasticSearch Plugins

[324]

Implementing the URLChecker class
Let's start by implementing the logic behind URL checking, because it is more or less
detached from the actual river logic. The whole code for the URLChecker class looks
as follows:

public class URLChecker implements Runnable {
 private Client client;
 private ESLogger logger;
 private String url;
 private int time;
 private HttpClient httpClient;

 public URLChecker(Client client, String url, String time,
 ESLogger logger) {
 this.client = client;
 this.url = url;
 this.time = Integer.parseInt(time);
 this.logger = logger;
 this.httpClient = new DefaultHttpClient();
 }

 @Override
 public void run() {
 while (true) {
 logger.info("Checking {}", url);
 HttpHead headMethod = new HttpHead(url);
 try {
 HttpResponse httpResp = httpClient.execute(headMethod);
 int respCode = httpResp.getStatusLine().getStatusCode();
 if (respCode < HttpStatus.SC_OK || respCode >
 HttpStatus.SC_MULTI_STATUS) {
 logger.error("Error, got {} code", respCode);
 } else {
 Header header = httpResp.getFirstHeader("Last-Modified");
 if (header != null) {
 indexLastModified(header.getValue());
 } else {
 logger.warn("{} didn't return last modified", url);
 }
 }
 } catch (Exception ex) {
 logger.error("Error during URLChecker execution", ex);

Chapter 9

[325]

 } finally {
 headMethod.releaseConnection();
 }
 logger.info("Sleeping for {} minutes", time);
 try {
 Thread.sleep(1000 * 60 * time);
 } catch (InterruptedException ie) {
 logger.error("Thread interrupted", ie);
 }
 }
 }

 protected void indexLastModified(String modified) throws
 IOException {
 client
 .prepareIndex("urls", "url", url)
 .setSource(XContentFactory.jsonBuilder().startObject()
 .field("url", url)
 .field("modified", modified).endObject())
 .execute().actionGet();
 }
}

We start with the constructor, which is very simple. We just store references to the
objects we will use and we instantiate DefaultHttpClient, which will be used to
make requests which will read the URL headers.

The next thing is the run method. If you look at the Runnable interface of Javadocs
(http://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html),
you'll notice that this method will be executed when the thread execution will
be to is started and this is exactly what we want. We want the logic in that method
to be running until the river is loaded and because of that we are using the
following loop:

while (true) {

This loop will run the code inside itself until interrupted or unchecked exception
is thrown.

Developing ElasticSearch Plugins

[326]

In the loop itself we create a new HTTP HEAD method, which will be used to fetch
headers from the given URL and we execute that method using the execute()
method of the earlier initialized DefaultHttpClient. After that we check if the
request was properly executed and processed by checking the response code and we
read the value of the Last-Modified header, which is what we wanted to do. After
that, if the read header value is not null, we call the indexLastModified() method,
which will index that data.

If you want to read in detail how Apache HttpComponents library
works at the Java code level, please refer to its tutorial available
at the following URL: http://hc.apache.org/httpclient-
legacy/tutorial.html

There is one more thing that we wanted to explicitly discuss. At the end of the
discussed loop, we can see the following code fragment:

try {
 Thread.sleep(1000 * 60 * time);
} catch (InterruptedException ie) {
 logger.error("Thread interrupted", ie);
}

Because our code is running in a virtually endless loop, we need some kind of sleep
mechanism that will prevent our header retrieving code to be executed endlessly as
soon as ElasticSearch can execute it. If we would run it without sleep, we would just
hit the URL constantly and waste CPU resources, but indexing the data again and
again. This is why we execute the sleep() method of the Thread class, which allows
us to suspend thread execution for a given amount of milliseconds. After the given
time has passed, the execution will be resumed.

The last thing regarding the URLChecker class is the data indexing method, which
looks as follows:

protected void indexLastModified(String modified) throws
 IOException {
 client
 .prepareIndex("urls", "url", url)
 .setSource(XContentFactory.jsonBuilder().startObject()
 .field("url", url)
 .field("modified", modified).endObject())
 .execute().actionGet();
}

We index the URL's last modified date to the urls index, under the url type.
If you've read Chapter 8, ElasticSearch Java APIs, you should be familiar with the
previous code; if you didn't, we strongly recommend to go through that chapter.

Chapter 9

[327]

Implementing the JSONRiver class
The JSONRiver class, the one which is responsible for the main river logic, extends
the AbstractRiverComponent class from the org.elasticsearch.river package
and implements the River interface from the org.elasticsearch.river package.

The AbstractRiverComponent class allows us to use ElasticSearch logging
capabilities and settings without the need of having them initialized and the
River interface forces us to implement the start() and stop() methods which
are called when the river is starting (the start() method) and when it is being
stopped (the stop() method). The whole code of the class looks as follows:

public class JSONRiver extends AbstractRiverComponent implements
 River {
 private URLChecker urlChecker;
 private Thread urlCheckerThread;

 @Inject
 protected JSONRiver(RiverName riverName, RiverSettings settings,
 Client client) {
 super(riverName, settings);
 String urlToCheck = (String) settings.settings().get("url");
 String timeBetweenChecks = (String)
 settings.settings().get("time");
 this.urlChecker = new URLChecker(client, urlToCheck,
 timeBetweenChecks, logger);
 }

 @Override
 public void start() {
 logger.info("Strting JSONRiver river");
 urlCheckerThread =
 EsExecutors.daemonThreadFactory(settings.globalSettings(),
 "jsonriver_thread").newThread(
 urlChecker);
 urlCheckerThread.start();
 }

 @Override
 public void close() {
 urlCheckerThread.interrupt();
 }
}

Developing ElasticSearch Plugins

[328]

Again we start with the constructor. In it, we pass the settings() method (which
contains the river settings) and the name of the river to the super class constructor.
We read the properties that will be passed when the river is registered and we
instantiate the URLChecker object instance. We will omit discussing how to read
settings, because it is a call to the settings method of the Settings type object.

The start() method is the method ElasticSearch will call when starting the river.
We start by logging a simple information and then we use executors to create a
new thread from our URLChecker class which implements the Runnable interface:

urlCheckerThread =
 EsExecutors.daemonThreadFactory(settings.globalSettings(),
 "jsonriver_thread").newThread(urlChecker);

The previous code uses the EsExecutors class, which is an ElasticSearch way
of running daemon threads inside the ElasticSearch nodes. We call the static
daemonThreadFactory() method and we pass the global settings and the name of
the thread to it (choose the one that fits you and will be unique). Such a call returns
a ThreadFactory type object (from the java.util.concurrent JDK package,
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ThreadFactory.html), which allows us to create a new thread from an object
implementing the Runnable interface. The newThread() method return Thread
that we can start by simply running its start() method, which we do as follows:

urlCheckerThread.start();

This will result in starting the actual thread and finally executes its run() method.
In our case, it will be the run() method of our URLChecker class.

Finally, the stop method will be called by ElasticSearch when the river should
be stopped, for example, during ElasticSearch node shutdown or when the river
is deleted. What we do is we use the interrupt() method of the Thread class,
which interrupts thread execution (more about it can be found at http://docs.
oracle.com/javase/7/docs/api/java/lang/Thread.html).

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadFactory.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ThreadFactory.html

Chapter 9

[329]

Implementing the JSONRiverModule class
The JSONRiverModule class is responsible for binding the river class and telling
ElasticSearch that it should be a singleton. We want only a single river instance we
create to be running inside the cluster. The whole class is very simple and its code
looks as follows:

public class JSONRiverModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(River.class).to(JSONRiver.class).asEagerSingleton();
 }
}

As you can see, the JSONRiverModule class extends the AbstractModule class from
the org.elasticsearch.common.inject package and only overwrites a single
method: configure(). In its body, we bind the general River class to our JSONRiver
and we say that we want that to be bound as a singleton.

If you want to learn more about ElasticSearch modules
binding, please refer to the Javadoc of the Binder class located
in the org.elasticsearch.common.inject package.

Implementing the JSONRiverPlugin class
The JSONRiverPlugin is a class in the code that is used by ElasticSearch to initialize
the plugin itself. It extends the AbstractPlugin class from the org.elasticsearch.
plugin package. Because we are making an extension, we are obliged to implement
the following code parts:

•	 A standard constructor that will take a single argument; in our case, it will
be empty

•	 The onModule() method that includes the code that will add our custom
river plugin, so that ElasticSearch will know about it

•	 The name() method that names of our plugin
•	 The description() method which gives a short description of our plugin

Developing ElasticSearch Plugins

[330]

What we need to do when creating the AbstractPlugin class implementation is
create three methods, onModule(), name(), and description(), just like described
previously. The name() and description() methods are very simple and they are
only responsible for returning the plugin's name and description. The whole class
code looks like this:

public class JSONRiverPlugin extends AbstractPlugin {
 @Inject
 public JSONRiverPlugin(Settings settings) {
 super();
 }

 public void onModule(RiversModule module) {
 module.registerRiver("jsonriver", JSONRiverModule.class);
 }

 @Override
 public String name() {
 return "JSONRiver";
 }

 @Override
 public String description() {
 return "JSON river plugin";
 }
}

This time we've used the onModule() method to register our river plugin. As you
can see, the onModule method takes a single argument, which is a RiversModule
class object and it exposes a registerRiver() method. We call this method, giving
it the type of the river and the module class responsible for binding the plugin.

Informing ElasticSearch about the JSONRiver
plugin class
Once we have our code ready, we can add the property file that will inform
ElasticSearch which is the class registering our plugin: the one we've called
JSONRiverPlugin. In order to do that, we create an es-plugin.properties
file in the src/main/resources directory with the following content:

plugin=pl.solr.jsonriver.JSONRiverPlugin

Chapter 9

[331]

We just specify the plugin property there, which should have a value of the class we
use for registering our plugins (the one that extends the ElasticSearch AbstractPlugin
class). This file will be included in the jar file that will be created during the build
process and will be used by ElasticSearch during plugin load process.

Testing our river
We could stop here and assume that our river works, but we won't. We will build
our plugin, install it, and finally test it to see what we can expect.

Building our river
We will start with building our plugin. In order to do that, we run a simple command:

mvn compile package

After it finishes, we can find the archive with the plugin at the target/release
directory (assuming you are using a similar project setup to the one we've
described in the beginning of the chapter).

Installing our river
In order to install the plugin, again we will use the plugin command that is located
in the bin directory of ElasticSearch distributable package. Assuming that we have
our plugin archive stored at the /home/install/es/plugins directory, we would
run the following command (we run it from the ElasticSearch home directory):

bin/plugin --install jsonriver --url file:/home/gro/es/elasticsearch-
jsonriver-0.90.3.zip

We need to install the plugin on all the nodes that are eligible for running rivers,
so by default, all the ElasticSearch nodes in our cluster.

After we've the plugin installed, we need to restart our ElasticSearch instance we
were making the installation on. After restart, we should see something like the
following code in the logs:

[2013-08-21 21:01:17,576][INFO][plugins]
 [Antimatter] loaded [JSONRiver], sites []

As you can see, ElasticSearch informed us that the plugin, named JSONRiver,
was loaded.

Developing ElasticSearch Plugins

[332]

Initializing our river
After we are done with installation, we can initialize our river. In order to do that we
need to run the command to create it, which looks as follows:

curl -XPUT 'localhost:9200/_river/jsonriver/_meta' -d '{
 "type" : "jsonriver",
 "url" : "http://lucene.apache.org",
 "time" : "1"
}'

As you can see, we create a jsonriver type river, that will check the http://solr.pl
URL once every minute (the time property value set to 1). If all worked well, you
should be able to see something like the following code in the logs on the master node:

[2013-08-21 21:01:37,623][INFO][cluster.metadata]
 [Antimatter] [_river] creating index, cause [auto(index api)],
 shards [1]/[1], mappings []
[2013-08-21 21:01:37,926][INFO][cluster.metadata]
 [Antimatter] [_river] update_mapping [jsonriver] (dynamic)
[2013-08-21 21:01:37,995][INFO][cluster.metadata]
 [Antimatter] [_river] update_mapping [jsonriver] (dynamic)

Those messages say that the _river index was created. The river logs can be found
on the node that the river is running at and should look similar to the following ones:

[2013-08-21 21:01:37,988][INFO][pl.solr.jsonriver.JSONRiver]
 [Antimatter] [jsonriver][jsonriver] Strting JSONRiver river
[2013-08-21 21:01:37,994][INFO][pl.solr.jsonriver.JSONRiver]
 [Antimatter] [jsonriver][jsonriver] Checking
 http://lucene.apache.org
[2013-08-21 21:01:38,677][INFO][pl.solr.jsonriver.JSONRiver]
 [Antimatter] [jsonriver][jsonriver] Sleeping for 1 minutes
[2013-08-21 21:02:38,677][INFO][pl.solr.jsonriver.JSONRiver]
 [Antimatter] [jsonriver][jsonriver] Checking
 http://lucene.apache.org
[2013-08-21 21:02:38,929][INFO][pl.solr.jsonriver.JSONRiver]
 [Antimatter] [jsonriver][jsonriver] Sleeping for 1 minutes

If you are not familiar with how to run rivers in ElasticSearch,
please refer to the ElasticSearch Server book or to the ElasticSearch
reference guide on rivers, which is available at the following URL:
http://www.elasticsearch.org/guide/reference/river/

Chapter 9

[333]

Checking if our JSON river works
We can finally check if our river indexed some data. Remember the code? We've said
that we want the data to be written into the urls index; so let's check it. In order to
do that we would run the following simple search that would match all docs from
the index:

curl -XGET 'localhost:9200/urls/_search?pretty'

The following response is returned by ElasticSearch:

{
 "took" : 29,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "urls",
 "_type" : "url",
 "_id" : "http://lucene.apache.org",
 "_score" : 1.0, "_source" :
 {"url":"http://lucene.apache.org","modified":"Tue, 03 Sep
 2013 21:21:03 GMT"}
 }]
 }
}

As you can see, the data is present, so our river is working as it should be.

Creating custom analysis plugin
The last thing we want to discuss when it comes to custom ElasticSearch plugins is
analysis process extension. We've chosen to show how to develop a custom analysis
plugin because this is sometimes very useful, for example, when you want to have
custom analysis process introduced that you use in your company or when you want
to use Lucene analyzer or filter that is not present in ElasticSearch itself, or as a plugin
for it. Because creating an analysis extension is more complicated as compared what
we've seen so far, we decided to leave it until the end of the chapter.

Developing ElasticSearch Plugins

[334]

Implementation details
Because developing a custom analysis plugin is the most complicated, at least from
the ElasticSearch point of view and the number of classes we need to develop,
we will have more things to do comparing to previous examples. We will need to
develop the following things:

•	 The TokenFilter class extension (from the org.apache.lucene.analysis
package) implementation that will be responsible for handling token
reversing; we will call it CustomFilter

•	 The AbstractTokenFilterFactory extension (from the org.
elasticsearch.index.analysis package) that will be responsible
for providing our CustomFilter instance to ElasticSearch; we will
call it CustomFilterFactory

•	 Custom analyzer, which will extend the org.apache.lucene.analysis.
Analyzer class and will provide Lucene analyzer functionality; we will
call it CustomAnalyzer

•	 The Analyzer provider, which we will call CustomAnalyzerProvider and
extends AbstractIndexAnalyzerProvider from the org.elasticsearch.
index.analysis package and which will be responsible for providing
analyzer instance to ElasticSearch

•	 Extension of AnalysisModule.AnalysisBinderProcessor from the org.
elasticsearch.index.analysis package, which will contain information
about under which names our analyzer and token filter will be available in
ElasticSearch; we will call it CustomAnalysisBinderProcessor

•	 An extension to the AbstractComponent class from the org.
elasticsearch.common.component package, which will inform
ElasticSearch which factories should be used for our custom analyzer
and token filter; we will call it CustomAnalyzerIndicesComponent

•	 The AbstractModule extension (from the org.elasticsearch.
common.inject package) that will inform ElasticSearch that our
CustomAnalyzerIndicesComponent should be a singleton;
we will call it CustomAnalyzerModule

•	 Finally, the usual AbstractPlugin extension (from the
org.elasticsearch.plugins package) that will register
our plugin; we will call it CustomAnalyzerPlugin

So, let's start discussing the code.

Chapter 9

[335]

Implementing TokenFilter
The funniest thing with the currently discussed plugin is that the whole analysis
work is actually done on Lucene level and what we need to do is write the
org.apache.lucene.analysis.TokenFilter extension, which we will call
CustomFilter. In order to do that, we need to initialize the super class and
override the incrementToken() method. Our class will be responsible for
reversing the tokens, so the logic we want our analyzer and filter to have.
The whole implementation of our CustomFilter looks as follows:

public class CustomFilter extends TokenFilter {
 private final CharTermAttribute termAttr =
 addAttribute(CharTermAttribute.class);

 protected CustomFilter(TokenStream input) {
 super(input);
 }

 @Override
 public boolean incrementToken() throws IOException {
 if (input.incrementToken()) {
 char[] originalTerm = termAttr.buffer();
 if (originalTerm.length > 0) {
 StringBuilder builder = new StringBuilder(new
 String(originalTerm).trim()).reverse();
 termAttr.setEmpty();
 termAttr.append(builder.toString());
 }
 return true;
 } else {
 return false;
 }
 }
}

The first thing we see in the implementation is the following line:

private final CharTermAttribute termAttr =
 addAttribute(CharTermAttribute.class);

Developing ElasticSearch Plugins

[336]

It allows us to retrieve the text of the token we are currently processing. In order
to get access to other token information, we need to use other attributes. The list
of attributes can be found by looking at the classes implementing the Lucene
org.apache.lucene.util.Attribute interface (http://lucene.apache.org/
core/4_4_0/core/org/apache/lucene/util/Attribute.html). What you need
to know now is that by using the static addAttribute method, we can bind different
attributes and use them during token processing.

Then we have the constructor, which is only used for super class initialization; so we
can skip discussing it.

Finally, there is the incrementToken() method, which returns true when there is
a token in the token stream left to be processed and false if there is no token left to
be processed. So what we do first is we check if there is a token to be processed by
calling the incrementToken() method of input, which is the TokenStream instance
stored in the super class. Then we get the term text by calling the buffer() method
of the attribute we've bound in the first line of our class. If there is a text in the term
(its length is higher than zero), we use a StringBuilder object to reverse the text,
we clear the term buffer (by calling setEmpty() on the attribute), and we append the
reversed text to the already emptied term buffer (we do that by calling the append()
method of the attribute). After that we return true, because our token is ready to be
processed further (on token filter level, we don't know if the token will be processed
further or not, so we need to be sure we return the correct information, just in case).

Implementing the TokenFilter factory
The factory for our token filter implementation is one of the simplest classes in case of
the discussed plugins. What we need to do is create an AbstractTokenFilterFactory
(from org.elasticsearch.index.analysis package) extension that overrides a
single create() method, in which we create our token filter. The code of this class
looks as follows:

public class CustomFilterFactory extends
 AbstractTokenFilterFactory {
 @Inject
 public CustomFilterFactory(Index index, @IndexSettings Settings
 indexSettings, @Assisted String name, @Assisted Settings
 settings) {
 super(index, indexSettings, name, settings);
 }

 @Override
 public TokenStream create(TokenStream tokenStream) {
 return new CustomFilter(tokenStream);
 }
}

Chapter 9

[337]

As you can see, the class is very simple. We start with the constructor, which is
needed because we need to initialize the parent class. In addition to that, we have
the create method, in which we create our CustomFilter class with the provided
TokenStream object.

Implementing custom analyzer
We wanted to keep the example of implementation as simple as possible and because
of that, we've decided not to complicate the analyzer implementation. To implement
analyzer, we need to extend the abstract Analyzer class from the Lucene org.apache.
lucene.analysis package and so, we did. The whole code of our CustomAnalyzer
class looks as follows:

If you want see more complicated analyzer implementations please look
at the source code of Apache Lucene, Apache Solr, and ElasticSearch.

public class CustomAnalyzer extends Analyzer {
 private final Version version;

 public CustomAnalyzer(final Version version) {
 this.version = version;
 }

 @Override
 protected TokenStreamComponents createComponents(String field,
 Reader reader) {
 final Tokenizer src = new WhitespaceTokenizer(this.version,
 reader);
 return new TokenStreamComponents(src, new CustomFilter(src));
 }
}

Our CustomAnalyzer class needs to hold information about the Version class.
The Version class (http://lucene.apache.org/core/4_4_0/core/org/apache/
lucene/util/Version.html) is used by Lucene to maintain version compatibility
across releases of Lucene. We need it to initialize WhitespaceTokenizer which we
use for data tokenization. We pass the Version type object in constructor, because we
will be able to access which Version ElasticSearch uses when developing analyzer
provider only.

Developing ElasticSearch Plugins

[338]

The createComponent() method is the one we need to implement and it should
return a TokenStreamComponents object (from the org.apache.lucene.analysis
package) for a given field name (the String type object—first argument of the method)
and data (the Reader type object—second method argument). What we do is create
Tokenizer using the WhitespaceTokenizer class available in Lucene. This will
result in the input data to be tokenized on whitespace characters. And then, we create
the Lucene TokenStreamComponents object, to which we give the source of tokens
(our previously created Tokenizer) and our CustomFilter. This will result in our
CustomFilter to being used by the CustomAnalyzer.

Implementing analyzer provider
Analyzer provider is an another provider implementation, in addition to
the token filter factory we've created earlier. This time, we need to extend
AbstractIndexAnalyzerProvider from the org.elasticsearch.index.
analysis package in order for ElasticSearch to be able to create our analyzer.
The implementation is very simple as we only need to implement the get
method in which we should return our analyzer. The CustomAnalyzerProvider
class code is shown as follows:

public class CustomAnalyzerProvider extends
 AbstractIndexAnalyzerProvider<CustomAnalyzer> {
 private final CustomAnalyzer analyzer;

 @Inject
 public CustomAnalyzerProvider(Index index, @IndexSettings
 Settings indexSettings, Environment env, @Assisted String
 name, @Assisted Settings settings) {
 super(index, indexSettings, name, settings);
 analyzer = new CustomAnalyzer(version);
 }

 @Override
 public CustomAnalyzer get() {
 return this.analyzer;
 }
}

Chapter 9

[339]

As you can see, we've implemented the constructor in order to be able to initialize
the super class. In addition to that, we are creating a single instance of our analyzer
which we will return when ElasticSearch requests it. Please note that this is the class
that is aware of the Lucene Version class, which we need for our analyzer. We don't
need to worry because our analyzer is thread safe and thus, a single instance can be
reused. In the get method, we are just returning our analyzer.

Before we go on, we would like to mention two things: the @IndexSettings and
@Assisted annotations. The first one will result in index setting being injected as
the Settings class object to the constructor; of course, it is done automatically.
The @Assisted annotation results in the annotated parameter value to be injected
from the argument of the factory method.

Implementing analysis binder
The binder is a part of our custom code that informs ElasticSearch under which names
our analyzer and token filter will be available. Our CustomAnalysisBinderProcessor
extends the AnalysisModule.AnalysisBinderProcessor class from org.
elasticsearch.index.analysis and we override two methods of that
class: processAnalyzers, in which we will register our analyzer and
processTokenFilters, in which we will register our token filter. If we would have
only analyzer or only token filter, we would only override a single method. The code
of the CustomAnalysisBinderProcessor method looks like the following code:

public class CustomAnalysisBinderProcessor extends
 AnalysisModule.AnalysisBinderProcessor {
 @Override
 public void processAnalyzers(AnalyzersBindings
 analyzersBindings) {
 analyzersBindings.processAnalyzer("mastering_analyzer",
 CustomAnalyzerProvider.class);
 }

 @Override
 public void processTokenFilters(TokenFiltersBindings
 tokenFiltersBindings) {
 tokenFiltersBindings.processTokenFilter("mastering_filter",
 CustomFilterFactory.class);
 }
}

Developing ElasticSearch Plugins

[340]

The first method, processAnalyzers(), takes a single AnalysisBinding object
type, which we can use to register our analyzer under a given name. We do that by
calling the processAnalyzer method of the AnalysisBinding object and pass it
with the name under which our analyzer will be available and the implementation
of AbstractIndexAnalyzerProvider which is responsible for creating our analyzer,
which in our case is the CustomAnalyzerProvider class.

The second method, procesTokenFilters, again takes a single
TokenFiltersBindings class, which enables us to register our
token filter. We do that by calling the processTokenFilter
method and passing the name under which our token filter will
be available, and the token filter factory class, which in our case
is the CustomFilterFactory.

Implementing analyzer indices component
Analyzer indices component is a node level component that will allow our analyzer
and token filter to be reused. However, we will tell ElasticSearch that the analyzer
should be usable only when on indices level, not global one (just to show you how
to do it). What we need to do is extend the AbstractComponent class from the org.
elasticsearch.common.component package. In fact, we only need to develop a
constructor for the class we called CustomAnalyzerIndicesComponent. The whole
code for the mentioned class looks as follows:

public class CustomAnalyzerIndicesComponent extends
 AbstractComponent {
 @Inject
 public CustomAnalyzerIndicesComponent(Settings settings,
 IndicesAnalysisService indicesAnalysisService) {
 super(settings);
 indicesAnalysisService.analyzerProviderFactories().put(
 "mastering_analyzer",
 new PreBuiltAnalyzerProviderFactory("mastering_analyzer",
 AnalyzerScope.INDICES, new CustomAnalyzer(
 Lucene.ANALYZER_VERSION)));

 indicesAnalysisService.tokenFilterFactories().put("mastering_filt
 r",
 new PreBuiltTokenFilterFactoryFactory(new
 TokenFilterFactory() {
 @Override
 public String name() {
 return "mastering_filter";

Chapter 9

[341]

 }

 @Override
 public TokenStream create(TokenStream tokenStream) {
 return new CustomFilter(tokenStream);
 }
 }));
 }
}

First of all, we pass the constructor argument to the super class in order to initialize
it. After that we create a new analyzer, which is our CustomAnalyzer, by using the
following code snippet:

indicesAnalysisService.analyzerProviderFactories().put(
 "mastering_analyzer",
 new PreBuiltAnalyzerProviderFactory("mastering_analyzer",
 AnalyzerScope.INDICES, new CustomAnalyzer(
Lucene.ANALYZER_VERSION)));

As you can see, we've used the indicesAnalysisService object
and its analyzerProviderFactories() method to get Map of
PreBuiltAnalyzerProviderFactory (as a value and the name as a key in
the map) and we've put a newly created PreBuiltAnalyzerProviderFactory
object with the name of mastering_analyzer. In order to create the
PreBuiltAnalyzerProviderFactory object, we've used our CustomAnalyzer
and AnalyzerScope.INDICES enum value (from the org.elasticsearch.index.
analysis package). The other values of AnalyzerScope enum are GLOBAL and
INDEX. If you would like the analyzer to be globally shared, you should use
AnalyzerScope.GLOBAL and you should use AnalyzerScope.INDEX to be
created for each index.

In a similar way, we add our token filter, but this time we use the
tokenFilterFactories() method of the IndicesAnalysisService
object, which returns a Map of PreBuiltTokenFilterFactoryFactory
as a value and a name (a string object) as a key. We put a newly created
TokenFilterFactory with the name of mastering_filter.

Developing ElasticSearch Plugins

[342]

Implementing analyzer module
Analyzer module is a simple class, called CustomAnalyzerModule, extending
AbstractModule from the org.elasticsearch.common.inject package. It is used
to tell ElasticSearch that our CustomAnalyzerIndicesComponent class should be
used as singleton (we do that because it's enough to have a single instance of that
class). Its code looks as follows:

public class CustomAnalyzerModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(CustomAnalyzerIndicesComponent.class).asEagerSingleton();
 }
}

As you can see, we implement a single configure method, which tells us to bind the
CustomAnalyzerIndicesComponent class as singleton.

Implementing analyzer plugin
Analyzer plugin is the ElasticSearch plugin implementation which will inform
ElasticSearch about the plugin. It should extend the AbstractPlugin class from
the org.elasticsearch.plugins package and thus implements at least the name
and descriptions methods. However, we want our plugin to be registered and
that's why we implement two additional methods, which we can see in the
following code snippet:

public class CustomAnalyzerPlugin extends AbstractPlugin {
 @Override
 public Collection<Class<? extends Module>> modules() {
 return ImmutableList.<Class<? extends
 Module>>of(CustomAnalyzerModule.class);
 }

 public void onModule(AnalysisModule module) {
 module.addProcessor(new CustomAnalysisBinderProcessor());
 }

 @Override
 public String name() {
 return "AnalyzerPlugin";
 }

 @Override
 public String description() {
 return "Custom analyzer plugin";
 }
}

Chapter 9

[343]

The name and description methods are quite obvious as they are returning
the name of the plugin and its description. The onModule() method adds our
CustomAnalysisBinderProcessor to the AnalysisModule object provided to it.

The last method is the one we are not yet familiar with, the modules method:

public Collection<Class<? extends Module>> modules() {
 return ImmutableList.<Class<? extends
 Module>>of(CustomAnalyzerModule.class);
}

We override that method from the super class in order to return a collection of
modules that our plugin is registering. In this case, we are registering a single
module class, the CustomAnalyzerModule class and we are returning a list with
a single entry.

Informing ElasticSearch about our custom analyzer
Once we have our code ready, we need to add one additional thing—we need to let
ElasticSearch know what the class registering our plugin is—the one we've called
CustonAnalyzerPlugin. In order to do that, we create an es-plugin.properties
file in the src/main/resources directory with the following content:

plugin=pl.solr.analyzer.CustomAnalyzerPlugin

We only specified the plugin property there, which should have a value of the
class we use for registering our plugins (the one that extends the ElasticSearch
AbstractPlugin class). This file will be included in the jar file that will be created
during the build process and will be used by ElasticSearch during plugin
load process.

Testing our custom analysis plugin
Now we want to test our custom analysis plugin just to be sure that everything
works. In order to do that, we need to build our plugin, install it on all nodes in
our cluster, and finally, use the Admin Indices Analyze API to see how our
analyzer works. Let's do that.

Developing ElasticSearch Plugins

[344]

Building our custom analysis plugin
We start with the easiest part: building our plugin. In order to do that, we run
a simple command:

mvn compile package

We tell Maven that we want the code to be compiled and packaged. After the
command finishes, we can find the archive with the plugin in the target/release
directory (assuming you are using similar project setup to the one we've describe
in the beginning of the chapter).

Installing the custom analysis plugin
To install the plugin, we will use the plugin command, just like we did before.
Assuming that we have our plugin archive stored in /home/install/es/plugins
directory we would run the following command (we run it from the ElasticSearch
home directory):

bin/plugin --install analyzer --url
 file:/home/install/es/plugins/elasticsearch-analyzer-0.90.3.zip

We need to install the plugin on all the nodes in our cluster, because we want
ElasticSearch to be able to find our analyzer and filter no mater on which node
the analysis process is done. If we don't install the plugin on all nodes, we can
be certain that we will run into issues.

In order to learn more about installing ElasticSearch plugins, please
refer to our previous book, ElasticSearch Server or to the official
ElasticSearch documentation http://www.elasticsearch.org/
guide/reference/modules/plugins/.

After we've the plugin installed, we need to restart our ElasticSearch instance we
were making the installation on. After restart, we should see something like this
in the logs:

[2013-08-24 21:45:49,344][INFO][plugins]
 [Tattletale] loaded [AnalyzerPlugin], sites []

With the previous log line, ElasticSearch informed us that the plugin,
named AnalyzerPlugin, was successfully loaded.

http://www.elasticsearch.org/guide/reference/modules/plugins/
http://www.elasticsearch.org/guide/reference/modules/plugins/

Chapter 9

[345]

Checking if our analysis plugin works
We can finally check if our custom analysis plugin works as it should. In order to do
that we start with creating an empty index called test (index name doesn't matter).
We do that by running the following command:

curl -XPOST 'localhost:9200/test/'

After that we use the Admin Indices Analyze API (http://www.elasticsearch.org/
guide/reference/api/admin-indices-analyze/) to see how our analyzer works.
We do that by running the following command:

curl -XGET
'localhost:9200/test/_analyze?analyzer=mastering_analyzer&pretty' -d
'mastering elasticsearch'

So, what we should see in response is two tokens, one which should be reversed
mastering, gniretsam and the second one which should be reversed elasticsearch,
hcraescitsale. The response ElasticSearch returned looks like the following code:

{
 "tokens" : [{
 "token" : "gniretsam",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "hcraescitsale",
 "start_offset" : 10,
 "end_offset" : 23,
 "type" : "word",
 "position" : 2
 }]
}

As you can see, we've got exactly what we expected, so it seems that our custom
analysis plugin works as intended.

Developing ElasticSearch Plugins

[346]

Summary
In this chapter you've learned how to properly setup your Maven project to be able
to automatically build your ElasticSearch plugins. You've seen how to develop
a custom river plugin that can be used to index data while being run inside our
ElasticSearch cluster. Finally, we've extended ElasticSearch analysis capabilities by
creating a plugin that included a custom token filter and new analyzer.

We've reached the end of the book and because of that we wanted to write a
small summary and say a few words to the brave reader who managed to get
to the end. We wrote this book, because we felt that the resources available
online are not enough. Of course, you could get into the source code, try on
you own, and you would manage to get the knowledge; however, we wanted
to make it easier. We went from introduction to Apache Lucene and ElasticSearch,
through querying and data handling, both on the Lucene index and ElasticSearch
level. We hope that by now, you know how Lucene works and how ElasticSearch
uses it and you will find that knowledge worthy in your journey with this great
search engine. We've discussed shard allocation process in greater details, so you
know how it works, know how to control it, and alter its behavior when you need
it. We've talked about some topics that can be useful when things are hot, such as
I/O throttling, hot threads API, and how to speed up your queries.

We also decided to write the whole chapter, the longest one, on query relevance,
user search experience, and a small introduction to search analytics. We hope
that after reading this chapter, you'll be able to improve query relevance of your
application and maybe start using search analytics to measure how your users
behave and what are the possible points you can improve.

Finally, we dedicated two chapters to discuss Java development: how to use
ElasticSearch Java API and how to extend ElasticSearch with your own plugins.
Although we didn't describe the whole methods of the Java API that ElasticSearch
provides (we would have to write another book just about it), we hope that you'll
be able to use the API and you'll know where to look if you will need deeper
knowledge. We also think that now, you'll be able to write your own plugins and
even though we didn't write about all the possibilities, we hope that you'll be able
to find the things we didn't write about.

Thank you for reading the book. We hope that you like it and that it brought you
some knowledge that you were seeking and which you'll be able to use whether
you use ElasticSearch professionally or just as a hobby.

Finally, please stop by from time-to-time to http://elasticsearchserverbook.
com/. In addition to usual posts we make, we will publish the book fragments that
didn't make it into the book or were cut down, because the book would be too broad.

http://elasticsearchserverbook.com/
http://elasticsearchserverbook.com/

Index
Symbols
_all field 248
_cache_key property 55
_local property 138
_only_node option 138
- operator 12
+ operator 12
_prefer_node option 138
_primary_first property 138
_primary property 137
_routing field 113
_source field 48, 49
_suggest REST endpoint

using 218

A
AbstractComponent class 334
AbstractModule class 322, 329
AbstractPlugin class 322, 330, 342
AbstractRiverComponent class 323, 327
acceptable_overhead_ratio property 83
accuracy option, term suggester 226
ActionGenerator

URL 140
actionGet() method 272, 274, 276
actions

performing 295
actions, performing

bulk 296
delete by query 296
Multi GET 296
Multi Search 297

addFields() method 285
addHighlightedField() method 293

additive smoothing
about 232
URL 233

addListener() method 273
addScriptParam(String, Object) method 280
addSort() method 290
addTransportAddress method 270
admin().cluster() method 302
Admin Indices Analyze API

URL 345
administration API

cluster administration API 302
Indices administration API 306

after_effect parameter 77
aliases 117
aliases API 310
aliases exists API 311
all() method 304
allocation awareness

about 126-128
forcing 128

alpha parameter 232
always value 122
Amazon EC2 discovery

about 158
configuration properties 162
gateway configuration 161
gateway recovery process 161
nodes expectations 163
nodes expectations 163
plugin configuration 159
plugin's installation 159
recovery configuration 161

analyze API
about 312
URL 91

[348]

analyzer
about 10
changing, during indexing 95, 96
changing, during searching 96, 97

analyzer indices component
implementing 340, 341

analyzer module
implementing 342

analyzer option, term suggester 224
analyzer plugin

implementing 342, 343
analyzer provider

implementing 338-340
analyzerProviderFactories method 341
andFilter() method 291
AND operator 12
Apache

URL 323
Apache JMeter

URL 140
Apache Lucene

about 8, 32, 33
architecture 8, 9
data, analyzing 10
Lucene query language 11

Apache Lucene scoring
altering 71
document, matching 26, 27
ElasticSearch viewpoint 29

Apache Lucene TF/IDF scoring formula
URL 28

Apache Maven
URL 316

Apache Maven project
about 316
build process, running 319
creating 316
Maven Assembly plugin 319-322
POM 317, 318
structure 317

API
anatomy 272, 273

append method 336
array() method 301
AwarenessAllocationDecider 123

B
balanced ShardAllocator 120
basic_model parameter 77
BigDesk

URL 140
Binder class 329
bloom_default codec 81
bloom filter

URL 81
Bloom filter based codec properties

delegate property 84
ffp property 84

bloom_pulsing codec 81
books field 59
Boolean model

URL 27
Boostrap process 18, 19
bootstrap.mlockall property 146
budget 99
buffer method 336
build process

running 319
bulk 296

C
calibrate_size_by_deletes property 102, 103
cancel command 303
candidate generators

configuring 233
direct generator 233

category_facet class 263
changes

committing 86
clear cache API 311
client class 285
Cluster 16
cluster administration API

cluster and indices health API 302
cluster state API 303
nodes hot threads API 305
nodes information API 304
nodes shutdown API 305
node statistics API 304
reroute API 303
search shards API 305
update settings API 303

[349]

cluster and indices health API 302
cluster-level recovery configuration

indices.recovery.compress 165
indices.recovery.concurrent_streams 165
indices.recovery.file_chunk_size 165
indices.recovery.max_bytes_per_sec 165
indices.recovery.translog_ops 165
indices.recovery.translog_size 165

cluster-level updates 130, 131
ClusterRebalanceAllocationDecider 122
cluster.routing.allocation.allow_rebalance

property 135
cluster.routing.allocation.cluster_

concurrent_rebalance property 135
cluster.routing.allocation.disable_allocation

property 136
cluster.routing.allocation.disable_new_

allocation property 135
cluster.routing.allocation.disable_replica_

allocation property 136
cluster.routing.allocation.node_concurrent_

recoveries property 135
cluster.routing.allocation.node_initial_

primaries_recoveries property 135
cluster state API 303
code 267
codec behavior

bloom filter based codec properties 84
configuring 82
default codec properties 83
direct codec properties 83
memory codec properties 83
pulsing codec properties 83

codecs
posting formats 81
using 78
working 79, 80

commit command 86
committed property 169
completion suggester

about 238
additional parameters 243
custom weights 241, 242
data, indexing 239, 240
data, querying 240, 241
using 238, 239

compound property 169
concurrent merge scheduler 103
ConcurrentRebalanceAllocationDecider 123
conditional modifications

scripting, using 50
Confidence option 230
configuration

directories layout 143
discovery module configuration 144
garbage collector work, logging 145
gateway configuration 143
indices configuration 143
memory setup 146
node-level configuration 143
recovery 144
slow queries, logging 145

constant_score_boolean rewrite method 34
constant_score_filter rewrite method 34
count property 263
cpu usage command 207
createComponent method 338
create method 336
CRUD operations

documents, deleting 282, 283
documents, fetching 274, 275
documents, indexing 276, 278
documents, updating 279-282

ctx variable 50
CustomAnalysisBinderProcessor

method 339
custom analysis plugin

analysis binder, implementing 339, 340
analyzer indices component,

implementing 340, 341
analyzer module, implementing 342
analyzer plugin, implementing 342, 343
analyzer provider, implementing 338, 339
building 344
creating 333
custom analyzer, implementing 337
installing 344
testing 343
TokenFilter factory, implementing 336
TokenFilter, implementing 335, 336
working 345

custom analyzer
implementing 337

[350]

CustomAnalyzer class 337
CustomAnalyzerModule class 343
CustomAnalyzerProvider class 338, 340
CustomFilter class 337
custom river plugin

creating 322
JSONRiver class, implementing 327, 328
JSONRiverModule class, implementing 329
JSONRiverPlugin class,

implementing 329, 330
URLChecker class, implementing 324-326

custom ShardAllocator 121
custom weights 241, 242

D
daemonThreadFactory method 328
Damerau Levenshtein string

distance algorithm
URL 227

data
analyzing 10
indexing 21, 239, 240
querying 22, 240, 241
sorting 43

data, analyzing
indexing 11
querying 11

data handling
analyzer, changing during indexing 95, 96
analyzer, changing during searching 96, 97
default analysis 97
example usage 94, 95
input analysis 90-94
pitfall 97

data, sorting
with multivalued fields 44
with multivalued geo fields 45, 46
with nested objects 47, 48

deciders
about 121
AwarenessAllocationDecider 123
ClusterRebalanceAllocationDecider 122
ConcurrentRebalanceAllocationDecider 123
DisableAllocationDecider 123
DiskThresholdDecider 124
FilterAllocationDecider 122

RebalanceOnlyWhenActiveAllocation
Decider 124

ReplicaAfterPrimaryActiveAllocation
Decider 122

SameShardAllocationDecider 121
ShardsLimitAllocationDecider 122
ThrottlingAllocationDecider 124

default codec 81
default codec properties

max_block_size property 83
min_block_size property 83

default_field property 258
default refresh time

changing 86
default similarity model

choosing 75
delegate property 84
delete by query 296
deleted_docs property 169
delete mapping API 310
delete template API 313
delete warmer API 314
description field 11
description method 329, 343
DFR similarity

configuring 77
direct codec 81
direct codec properties

low_freq_cutoff property 83
min_skip_count property 83

direct generators
about 233
configuring 234-237

directories layout 143
DisableAllocationDecider 123
discount_overlaps property 76
discovery configuration

about 155
Amazon EC2 discovery 158
local gateway 163
recovery configuration 164
Zen discovery 155

discovery.ec2.any_group property 160
discovery.ec2.availability_zones

property 160
discovery.ec2.groups property 160
discovery.ec2.host_type property 160

[351]

discovery.ec2.tag property 160
discovery module configuration 144
discovery.zen.fd.ping_interval property 158
discovery.zen.fd.ping_retries property 158
discovery.zen.fd.ping_timeout property 158
DiskThresholdDecider 124
distribution property 78
Divergence from randomness similarity

about 72
URL 72

Document 15
document count 294, 295
documents

building 300, 301
creating, Update API used 50, 51
deleting 283, 284
deleting, Update API used 50, 51
errors, handling 276
fetching 274, 275
indexing 276, 278
matching 26, 27
updating 279-282

document type 16
Drill downs

with faceting 260-263

E
EC2 plugin's installation

configuration 159
optional configuration options 159
scanning configuration 160

Eclipse
URL 267

ElasticSearch
about 15
administration 23
architecture 17, 18
caching behavior, changing 54
Cluster 16
communicating with 20
data, indexing 21
data, querying 22
Document 15
document count 294, 295
document type 16

explain API 299
faceting 292
filtering 290, 291
garbage collector work, adjusting 190
gateway 17
highlighting 292, 293
Index 15
index, configuring 23
mapping 16
monitoring 23
node 16
paging 289
query, building 285, 286
querying 284
query, preparing 284, 285
Replica 17
scrolling 295
shard 17
sorting 290
suggestion 293, 294
working 18

ElasticSearch 1.0 298, 299
ElasticSearch caching

about 170
caches, clearing 180
clearing 180
field data cache 173
fields related caches, clearing 182
filter cache 171
index, clearing 181
indices, clearing 181
specific caches, clearing 181

ElasticSearch cluster
connecting to 268
ElasticSearch node 268-270
right connection method, choosing 271
transport connection method, using 270

ElasticSearch documentation
URL 344

ElasticSearch Java API 266
ElasticSearch node

connecting to 268-270
ElasticSearch paramedic

URL 140
ElasticSearch Server

URL 208

[352]

ElasticSearch, working
Boostrap process 18, 19
failure detection 19

even_shard ShardAllocator 119
example data 35
exclude property 130
exclusion 134
execute method 326
execute() method 273, 274
explain API 299

F
FacetBuilder object 292
facet filter 65, 66
faceting

about 292
filters, using 61, 63

failure detection 19
ffp property 84
field

updating 49
field data cache

about 173
filtering 175
index-level field data cache

configuration 174
Node-level field data cache

configuration 174
field() method 301
field option, term suggester 224
field parameter 224
fields

querying 13
FilterAllocationDecider 122
FilterBuilder class 291
filter cache

about 171
index-level filter cache configuration 172
node-level filter cache configuration 173
types 171
used, for storing filter results 52, 53

filtering
about 128, 129, 175, 290, 291
by frequency term 176
by regex 177
by term frequency 177

example 178-180
field data filtering information, adding 175

filters
used, to optimize query 51

Finite State Transducer. See FST
Flush API 309
flush command 88
flushing 87
force_unigrams option 230
freq_cut_off property 83
freq property 221
FST

URL 238

G
garbage

removing 254-256
garbage collector

about 184
Java memory 184, 185
JStat, using 187-189
memory dumps, creating 189
problems, identifying with 186
swapping, avoiding on

Unix like systems 191, 192
garbage collector work

adjusting, in ElasticSearch 190
logging 145
logging, turning on 186
service wrapper 191
standard startup script, using 190
tuning 189, 190

gateway 17
gateway configuration 143
gateway.expected_data_nodes property 163
gateway.expected_master_nodes

property 163
gateway.expected_nodes property 163
gateway.recover_after_data_nodes

property 162
gateway.recover_after_master_nodes

property 162
gateway.recover_after_nodes property 162
gateway.recover_after_time property 162
gateway snapshot API 310

[353]

generation property 169
geoDistanceSort(String) method 290
geo shape query

using 288
geoShapeQuery() method 288, 289
get aliases API 311
getExplanation() method 299
getFacets() method 292
getField(String) method 275
getGetResult() method 282
getId() method 275, 279, 282, 284
getIndex() method 275, 279, 282, 284
getItems() method 296
getMatches() method 279, 282, 298
getResponse() method 296
GetResponse object 275, 297
getResponses() method 297
getScrollId() method 295
getSourceXXX() method 275
getType() method 275, 279, 282, 284
getVersion() method 275, 279, 282, 284
global property 67
global scope 67, 68
gram_size option 230
group property 125

H
heterogeneous environment 210, 211
Hot Threads API

about 204
response 206, 207
using 205

HTTP HEAD method 326

I
IB similarity

configuring 78
ImmutableSettings class 270
include property 129
inclusion 132
incrementToken method 336
index

about 15
closing 308

configuring 23
deleting 308
opening 308
updating 86

index API
creating 307

index.compund_format property 101-103
index creation

warmers, adding 198
index existence API 306
index.fielddata.cache.type property 174
indexLastModified method 326
Index-level filter cache configuration

index.cache.filter.expire property 172
index.cache.filter.max_size property 172
index.cache.filter.type property 172

index-level updates 130
index.merge.async_interval property 101
index.merge.async property 101
index.merge.policy.expunge_deletes_

allowed property 100
index.merge.policy.floor_segment

property 100
index.merge.policy.max_merge_at_once_

explicit property 100
index.merge.policy.max_merged_segment

property 99, 100
index.merge.policy.segments_per_tier

property 101
index.query.bool.max_clause_count

property 34
index.reclaim_deletes_weight property 101
index.refresh_interval parameter 86
IndexResponse class 279
index status 307
index.translog.disable_flush option 88
index.translog.flush_threshold_ops

option 88
index.translog.flush_threshold_period

option 88
index.translog.flush_threshold_size

option 88
index.warmer.enabled property 200
Indices administration API

aliases API 310
aliases exists API 311

[354]

analyze API 312
clear cache API 311
delete mapping API 310
delete template API 313
delete warmer API 314
Flush API 309
gateway snapshot API 310
get aliases API 311
index API, creating 307
index, closing 308
index, deleting 308
index existence API 306
index, opening 308
index status 307
indices stats API 306
Optimize API 309
put mapping API 309
put template API 312
put warmer API 314
Refresh API 308
segments information API 307
Type existence API 306
update settings API 312
validate query API 313

indices_all_active value 122
indicesAnalysisService object 341
indices.cache.filter.terms.expire_after_access

property 60
indices.cache.filter.terms.expire_after_write

property 60
indices.cache.filter.terms.size property 60
indices configuration 143
indices_primaries_active value 122
indices stats API 306
indices.store.throttle.type property 193
InetSocketTransportAddress object 270
Information based similarity 72
input analysis 90, 91
input property 240
interrupt method 328
interval parameter 204
inverted index 9
I/O throttling

configuring 193
controlling 193

I/O throttling configuration
example 194, 195
maximum throughput per second 194
node throttling 194
throttling type 193

isDone() method 273
isExists() method 275
isFailed() method 296
isFailure() method 297
isNotFound() method 284
isSourceEmpty() method 275

J
Javadocs

URL 325
Java memory 184, 185
Java object

lifecycle 185
Java Virtual Machine

URL 184
JDK package

URL 328
jhat

URL 189
jmap

URL 189
JSON object

URL 15
JSON queries

building 300, 301
JSONRiver class

implementing 327, 328
JSONRiverModule class

implementing 329
JSONRiverPlugin class

implementing 329, 330
JStat

using 187-189
jstat command 186, 187
JUnit

URL 267
JVM memory

Code cache 185
Eden space 184
Permanent generation 185

[355]

Survivor space 184
Tenured generation 185

JVM parameters
URL 189

K
knowledge

data volume 140

L
lambda property 78
language models

URL 231
Laplace smoothing model. See addictive

smoothing
Least Recently Used. See LRU
Levenshtein distance

URL 227
Linear interpolation smoothing model 233
load imbalance 210, 211
local gateway

about 163
backing up 164

local(true) method 269
log byte size merge policy 99
log byte size merge policy,

configuration 101
log doc merge policy 100
log doc merge policy, configuration 102
lowercase_terms option, term suggester 225
low_freq_cutoff property 83
LRU 173
LRU cache

URL 60
Lucene 8
Lucene conceptual formula 27
Lucene practical formula 28
Lucene query language

about 12
fields, querying 13
special characters, handling 14
term modifiers 13

M
map() method 301
mapping 16
Mastering 137
match all documents query

using 287
matchAllQuery() query 287
matchedFilters() method 291
match query 287
Maven Assembly plugin

about 319-322
URL 319

Maven lifecycle
URL 319

Maven project
URL 267

max_block_size property 83
max_edits option, term suggester 225
max_errors property 230
max_inspections option, term suggester 226
max_merge_docs property 102
maxMergeDocs property 102
max_merge_size property 102
max_term_freq option, term suggester 226
memory codec 81
memory codec properties

acceptable_overhead_ratio property 83
pack_fst property 83

memory setup 146
memory store

cache.memory.direct property 154
cache.memory.large_buffer_size

property 154
cache.memory.large_cache_size

property 154
cache.memory.small_buffer_size

property 154
cache.memory.small_cache_size

property 154
merge_factor property 101, 102
merge policy

log byte size merge policy 99
log doc merge policy 100
tiered merge policy 99

[356]

merge policy configuration
log byte size merge policy 101
log doc merge policy 102
tiered merge policy 100, 101

Mike McCandless
URL 81

Mike McCandless blog post
URL 104

min_block_size property 83
min_doc_freq option, term suggester 226
min_doc_freq parameter 226
minimum_should_match property 258
min_merge_docs property 102
min_merge_size property 101
min_segment_size property 176
min_skip_count property 83
min_word_len option, term suggester 225
misspelling proof search

making 257-259
MMap filesystem store 153
mode parameter 44
mode property 46
move command 303
Multi GET 296
MultiGet operation 40, 41
multi match query 248, 249
multiple indices

about 148
versus multiple shards 108

multiple routing values 118
multiple shards

versus multiple indices 108
Multi Search 297
MultiSearch operation 41-43
multivalued fields

data, sorting with 44
multivalued geo fields

data, sorting with 45, 46
Munin

URL 146

N
name method 329, 343
Near Real Time (NRT) 18
nested objects

data, sorting with 47, 48

newThread method 328
n-gram language model

URL 227
n-gram smoothing models

URL 232
node 16
NodeBuilder class 269
node.group property 126, 128
node-level configuration 143
Node-level field data cache configuration

indices.fielddata.cache.expire, property 174
indices.fielddata.cache.size property 174

nodes hot threads API 305
nodes information API 304
nodes shutdown API 305
node statistics API 304
node throttling 194
normalization parameter 77
NOT operator 12
nullField() method 301
number property 169
num_docs property 169

O
Okapi BM25 similarity

about 72
configuring 77
URL 72

onFailure() method 273
onModule method 329, 330, 343
operations

MultiGet operation 39-41
MultiSearch operation 41-43

Optimize API 309
org.apache.lucene.analysis.Analyzer

class 334
OR operator 12
over allocation

about 106, 107
example 108

P
pack_fst property 83
paging 289
path parameter 96, 113

[357]

path property 58
payload property 240
payments 195
percolator

about 297, 298
ElasticSearch 1.0 298, 299

per-field similarity
setting 73, 74

performance degradation 207-210
phrase query 250-254
phrase suggester

about 227
configuring 229
example 228, 229

phrase suggester configuration
basic configuration 230, 231
candidate generators, configuring 233-237
smoothing models, configuring 231-233

plugin command 331, 344
POM 317, 318
post_filter property 235
posting_format property 80
posting formats 81
prcltr 297
preference parameter 137
pre_filter property 234
prefix query 29-31
prepareCount() method 295
prepareExplain method 299
prepareGet() method 272, 274
prepareHealth() method 302
prepareNodesHotThreads() method 305
preprareSearchScroll method 295
preserve_position_increments

parameter 243
preserve_separators parameter 243
prettyPrint() method 301
processAnalyzer method 340
pulsing codec 81
Pulsing codec properties

freq_cut_off property 83
put mapping API 309
put template API 312
put warmer API 314
PUT Warmer API

using 197

Q
query

about 36
building 115-117, 285, 286
geo shape query, using 288
logging 145
match all documents query, using 287
match query 287
optimizing, filters used 51
preparing 284, 285
rewriting 29
speeding up, warmers used 196

QueryBuilders class 285, 288
query execution preference

about 136, 137
preference parameter 137

query object 37, 60
query relevance

data 244, 245
improving 243

query, rewriting
prefix query 29-31
properties 33-35

query_weight parameter 38

R
real life examples

heterogeneous environment 210, 211
load imbalance 210, 211
performance degradation 207-210

real-time GET operation 89
real_word_error_likehood option 231
RebalanceOnlyWhenActiveAllocation

Decider 124
recovery configuration

about 144, 164
cluster-level 165
Index-level 166

Refresh API 308
re-indexing 147
release_dates field 44
remove() method 50
Replica 17

[358]

ReplicaAfterPrimaryActiveAllocation
Decider 122

replicas 108
request() method 272
require property 129
reroute API 303
rescore

about 35
example data 35
parameters 38
query 36
query example 36, 37
summing up 39

rescore_mode parameter 38
rescore object 37
rescore_query_weight parameter 38
REST

URL 20
REST endpoint suggester response 219, 220
rewrite parameter 33
rewrite property 34
right connection method

using 271
river

building 331
initializing 332
installing 331
testing 331
working 333

RiversModule class 330
routing

about 148
advantages 113
aliases 117
indexing with 112-115
multiple routing values 118
queries, building 115-117
shards 109
testing 110-112

routing parameter 115
run method 325, 328
Runnable interface 323
run time allocation

cluster-level updates 130, 131
index-level updates 130

S
SameShardAllocationDecider 121
saturation 77
scheduling

about 103
concurrent merge scheduler 103
desired merge scheduler, setting 104
serial merge scheduler 104

score property 220
scoring_boolean rewrite method 34
script field 50
scripting

used, for conditional modifications 50
SearchHit class 285
SearchHits class 289
search property 169
SearchRequestBuilder class 289
SearchResponse object 295
SearchResult object 292
search shards API

about 305
URL 305

section field 43
segment merging

about 97, 98
segments information

visualizing 170
segments information API 307
segments merge 10
segments statistics

about 166
information, visualizing 170
segments API 167
segments API, response 167-169

Sematext
URL 140

Separator option 230
serial merge scheduler 104
service wrapper

about 191
URL 190

setConsistencyLevel() method 278, 281, 284
setCreate(Boolean) method 277
setDocAsUpsert(Boolean) method 282
setDoc() method 282

[359]

setExplain method 313
setFacets() method 292
setFields() method 272
setFields(String...) method 280
setFields(String) method 274
setFilter() method 291
setIndex(String), setType(String),

setId(String) method 274, 277, 280, 283
setNetwork() method 304
setOpType() method 277
setPercolate(String) method 278, 281
setPlugin() method 304
setPreference(String) method 275
setQuery() method 285, 286
setRealtime(Boolean) method 275
setRefresh(Boolean)

method 275, 277, 281, 283
setReplicationType() method 278, 281, 283
setRetryOnConflict(int) method 281
setRouting(String) method 275
setRouting(String), setParent(String)

method 277, 280, 283
setScriptLang(String) method 280
setScriptParams(Map<String, Object>)

method 280
setScript(String) method 280
setSize(int) method 289
setSource() method 277, 282
setSource()method 285
setTimestamp(String) method 278
settings method 328
setTTL(long) method 279
setUpsertRequest() method 282
setVersion(long) method 278, 283
setVersionType(VersionType)

method 278, 283
ShapeBuilder class 289
shard 17
shard allocation

adjusting 125
allocation awareness 126-128
altering 119
balanced ShardAllocator 120
custom ShardAllocator 121
even_shard ShardAllocator 119
exclusion 134

filtering 128, 129
inclusion 132
properties 135
requisites 133, 134
run time allocation, updating 130
ShardAllocator 119
total shards, defining 131

ShardAllocator 119
ShardId class 304
Sharding 106, 107
shards 109
shard_size option, term suggester 225
ShardsLimitAllocationDecider 122
shingle filter

URL 230
similarity model

chosen similarity model, configuring 76
configuring 74, 75
default similarity model, choosing 75, 76
Divergence from randomness 72
Information based 72
Okapi BM25 72

single point of failure (SPOF) 18
size_in_bytes property 169
size option, term suggester 224
size parameter 225
size property 169
sleep method 326
slop parameter 252
smoothing models

additive smoothing 232
configuring 231, 232
Linear interpolation smoothing model 233
Stupid backoff smoothing model 232

snapshots parameter 205
sorting 290
sort option, term suggester 224
special characters

handling 14
specific caches, clearing

bloom 181
field_data 181
filter 181

standard query 247, 248
standard startup script

using 190

[360]

start method 327, 328
stop method 327
store module

about 151
store types 152

store types
memory store 153
MMap filesystem store 153
new IO filesystem store 152
simple file system store 152

StringBuilder object 336
string_distance option, term suggester 227
string() method 301
Stupid backoff smoothing model 232
suggester 218
suggester object 218
suggester response 222, 223
suggestion

working 293, 294
suggestions requests

including, in query 221, 222
suggest_mode option, term suggester 225
swapping

avoiding, on Unix like systems 191, 192

T
tag property 125
templates

warmers, adding to 199
term frequency/inverse document

frequency. See TF/IDF
term modifiers 13
terms lookup filter

about 55-57
cache settings 60
performance 59
working 58, 59

term suggester
about 224
configuring 224

term suggester configuration
additional term suggester options 225-227
common term suggester options 224, 225

term vectors 9
text option, term suggester 224

text parameter 91, 218, 233
text property 220
TF/IDF

about 26
Lucene conceptual formula 27
Lucene practical formula 28

TF/IDF similarity
configuring 76

Thread class 326, 328
threads parameter 204
ThrottlingAllocationDecider 124
throttling type 193
tiered merge policy 99
tiered merge policy, configuration 100, 101
time property 332
title field 11, 43, 65, 293
TokenFilter

implementing 335, 336
tokenFilterFactories method 341
TokenFilter factory

implementing 336
tokenizer 10
token_limit option 231
TokenStreamComponents object 338
TokenStream object 337
top_terms_boost_N rewrite method 34
top_terms_N rewrite method 34
toString() method 286, 291, 292
totalHits() method 289
transaction log

configuring 87, 89
TransportClient class 270, 271
TransportClient object 270, 271
transport connection method

using 270
Type existence API 306
type parameter 204, 205
type property 239

U
Unix like systems

swapping, avoiding 191, 192
Update API

about 48
conditional modifications,

scripting used 50

[361]

field update 49
used, for creating documents 50, 51
used, for deleting documents 50, 51

update settings API 303, 312
URLChecker class

implementing 324-326
use case 78
user spelling mistakes

completion suggester 237
correcting 216
data, testing 216, 217
technical details 217

V
validate query API 313
value() method 301
Vector Space Model

URL 27
Version class

URL 337
version property 169
version_type 41

W
warmers

adding, during index creation 198
adding, to templates 199
deleting 200
disabling 200
manipulating 197
need for 196
PUT Warmer API, using 197
querying with 203, 204
querying without 202
retrieving 199
testing 201
used, for speeding up queries 196

weight property 241
WhitespaceTokenizer class 338
window_size parameter 38

X
Xmx parameter 184

Y
year field 51

Z
Zen discovery

about 155
fault detection 158
minimum master nodes 157
multicast 156
unicast 157

Thank you for buying
Mastering ElasticSearch

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

ElasticSearch Server
ISBN: 978-1-84951-844-4 Paperback: 318 pages

Create a fast, scalable, and flexible search solution
with the emerging open source search server,
ElasticSearch

1.	 Learn the basics of ElasticSearch like data
indexing, analysis, and dynamic mapping

2.	 Query and filter ElasticSearch for more accurate
and precise search results

3.	 Learn how to monitor and manage
ElasticSearch clusters and troubleshoot any
problems that arise

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1.	 Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable

2.	 Explore the versatility of Spring Python by
integrating it with frameworks, libraries,
and tools

3.	 Solve performance, setup, configuration,
analysis, and query problems in no time

4.	 Get to grips with, and master, the new exciting
features of Apache Solr 4

Please check www.PacktPub.com for information on our titles

Apache Tomcat 7 Essentials
ISBN: 978-1-84951-662-4 Paperback: 294 pages

Learn Apache Tomcat 7 step-by-step through
a pratical approach, achieving a wide vision
of enterprise middleware along with building
your own middleware servers, and administrating
24x7x365

1.	 Readymade solution for web technologies
for migration/hosting and supporting
environment for Tomcat 7

2.	 Tips, tricks, and best practices for web hosting
solution providers for Tomcat 7

3.	 Content designed with practical approach and
plenty of illustrations

Apache Axis2 Web Services,
2nd Edition
ISBN: 978-1-84951-156-8 Paperback: 308 pages

Create secure, reliable and east-to-use web services
using Apache Axis2

1.	 Extensive and detailed coverage of the
enterprise ready Apache Axis2 Web Services /
SOAP / WSDL engine

2.	 Attain a more flexible and extensible
framework with the world class Axis2
architecture

3.	 Learn all about AXIOM - the complete XML
processing framework, which you also can use
outside Axis2

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to ElasticSearch
	Introducing Apache Lucene
	Getting familiar with Lucene
	Overall architecture
	Analyzing your data
	Indexing and querying

	Lucene query language
	Understanding the basics
	Querying fields
	Term modifiers
	Handling special characters

	Introducing ElasticSearch
	Basic concepts
	Index
	Document
	Mapping
	Type
	Node
	Cluster
	Shard
	Replica
	Gateway

	Key concepts behind ElasticSearch architecture
	Working of ElasticSearch
	Boostrap process
	Failure detection
	Communicating with ElasticSearch

	Summary

	Chapter 2: Power User Query DSL
	Default Apache Lucene scoring explained
	When a document is matched
	TF/IDF scoring formula
	Lucene conceptual formula
	Lucene practical formula

	ElasticSearch point of view

	Query rewrite explained
	Prefix query as an example
	Getting back to Apache Lucene
	Query rewrite properties

	Rescore
	Understanding rescore
	Example Data
	Query
	Structure of the rescore query
	Rescore parameters
	To sum up

	Bulk Operations
	MultiGet
	MultiSearch

	Sorting data
	Sorting with multivalued fields
	Sorting with multivalued geo fields
	Sorting with nested objects

	Update API
	Simple field update
	Conditional modifications using scripting
	Creating and deleting documents using Update API

	Using filters to optimize your queries
	Filters and caching
	Not all filters are cached by default
	Changing ElasticSearch caching behavior
	Why bother naming the key for the cache?
	When to change ElasticSearch filter
caching behavior

	Terms lookup filter
	How does it work?
	Performance considerations
	Loading terms from inner objects
	Terms lookup filter cache settings

	Filter and scopes in ElasticSearch faceting mechanism
	Example data
	Faceting and filtering
	Filter as a part of the query
	Facet filter
	Global scope

	Summary

	Chapter 3: Low-level Index Control
	Altering Apache Lucene scoring
	Available similarity models
	Setting per-field similarity

	Similarity model configuration
	Choosing the default similarity model
	Configuring the chosen similarity models
	Configuring TF/IDF similarity
	Configuring Okapi BM25 similarity
	Configuring DFR similarity
	Configuring IB similarity

	Using codecs
	Simple use case
	Let's see how it works
	Available posting formats
	Configuring the codec behavior
	Default codec properties
	Direct codec properties
	Memory codec properties
	Pulsing codec properties
	Bloom filter based codec properties

	NRT, flush, refresh, and transaction log
	Updating index and committing changes
	Changing the default refresh time

	Transaction log
	Transaction log configuration

	Near Real Time GET

	Looking deeper into data handling
	Input is not always analyzed
	Example usage
	Changing the analyzer during indexing
	Changing the analyzer during searching
	The pitfall and default analysis

	Segment merging under control
	Choosing the right merge policy
	Tiered merge policy
	Log byte size merge policy
	Log doc merge policy

	Merge policies configuration
	Tiered merge policy
	Log byte size merge policy
	Log doc merge policy

	Scheduling
	Concurrent merge scheduler
	Serial merge scheduler
	Setting the desired merge scheduler

	Summary

	Chapter 4: Index Distribution Architecture
	Choosing the right amount of shards
and replicas
	Sharding and over allocation
	Positive example of over allocation
	Multiple shards versus multiple indices
	Replicas

	Routing explained
	Shards and data
	Let's test routing
	Indexing with routing

	Indexing with routing
	Querying

	Aliases
	Multiple routing values

	Altering default shard allocation behavior
	Introducing ShardAllocator
	The even_shard ShardAllocator
	The balanced ShardAllocator
	Custom ShardAllocator
	Deciders
	SameShardAllocationDecider
	ShardsLimitAllocationDecider
	FilterAllocationDecider
	ReplicaAfterPrimaryActiveAllocationDecider
	ClusterRebalanceAllocationDecider
	ConcurrentRebalanceAllocationDecider
	DisableAllocationDecider
	AwarenessAllocationDecider
	ThrottlingAllocationDecider
	RebalanceOnlyWhenActiveAllocationDecider
	DiskThresholdDecider

	Adjusting shard allocation
	Allocation awareness
	Forcing allocation awareness

	Filtering
	But what those properties mean?

	Run time allocation updating
	Index-level updates
	Cluster-level updates

	Defining total shards allowed per node
	Inclusion
	Requirements
	Exclusion

	Additional shard allocation properties

	Query execution preference
	Introducing the preference parameter

	Using our knowledge
	Assumptions
	Data volume and queries specification

	Configuration
	Node-level configuration
	Indices configuration
	Directories layout
	Gateway configuration
	Recovery
	Discovery
	Logging slow queries
	Logging garbage collector work
	Memory setup
	One more thing

	Changes are coming
	Re-indexing
	Routing
	Multiple Indices

	Summary

	Chapter 5: ElasticSearch Administration
	Choosing the right directory implementation – the store module
	Store type
	Simple file system store
	New IO filesystem store
	The MMap filesystem store
	Memory store
	Default store type

	Discovery configuration
	Zen discovery
	Multicast
	Unicast
	Minimum master nodes
	Zen discovery fault detection

	Amazon EC2 discovery
	EC2 plugin's installation
	Gateway and recovery configuration
	Gateway recovery process
	Configuration properties
	Expectations on nodes

	Local gateway
	Backing up the local gateway

	Recovery configuration
	Cluster-level recovery configuration
	Index-level recovery settings

	Segments statistics
	Introducing the segments API
	The response

	Visualizing segments information

	Understanding ElasticSearch caching
	The filter cache
	Filter cache types
	Index-level filter cache configuration
	Node-level filter cache configuration

	The field data cache
	Index-level field data cache configuration
	Node-level field data cache configuration
	Filtering

	Clearing the caches
	Index, indices, and all caches clearing
	Clearing specific caches
	Clearing fields related caches

	Summary

	Chapter 6: Fighting with Fire
	Knowing garbage collector
	Java memory
	The lifecycle of Java object and garbage collections

	Dealing with garbage collection problems
	Turning on logging of garbage collection work
	Using JStat
	Creating memory dumps
	More information on garbage collector work
	Adjusting garbage collector work in ElasticSearch

	Avoiding swapping on Unix like systems

	When it is too much for I/O - throttling explained
	Controlling I/O throttling
	Configuration
	Throttling type
	Maximum throughput per second
	Node throttling defaults
	Configuration example

	Speeding up queries using warmers
	Reason for using warmers
	Manipulating warmers
	Using the PUT Warmer API
	Adding warmers during index creation
	Adding warmers to templates
	Retrieving warmers
	Deleting warmers
	Disabling warmers

	Testing the warmers
	Querying without warmers present
	Querying with warmer present

	Very hot threads
	Hot Threads API usage clarification
	Hot Threads API response

	Real life scenarios
	Slower and slower
	Heterogeneous environment and
load imbalance
	My server is under fire

	Summary

	Chapter 7: Improving User
Search Experience
	Correcting user spelling mistakes
	Test data
	Getting into technical details
	Suggesters
	Using the _suggest REST endpoint
	Including suggestions requests in a query
	The term suggester
	The phrase suggester

	Completion suggester
	The logic behind completion suggester
	Using completion suggester

	Improving query relevance
	The data
	The quest for improving relevance
	The standard query
	The Multi match query
	Phrases comes into play
	Let's throw the garbage away
	And now we boost
	Making a misspelling proof-search
	Drill downs with faceting

	Summary

	Chapter 8: ElasticSearch Java API
	Introducing the ElasticSearch Java API
	The code
	Connecting to your cluster
	Becoming the ElasticSearch node
	Using the transport connection method
	Choosing the right connection method

	Anatomy of the API
	CRUD operations
	Fetching documents
	Handling errors

	Indexing documents
	Updating documents
	Deleting documents

	Querying ElasticSearch
	Preparing a query
	Building queries
	Using the match all documents query
	The match query
	Using the geo shape query

	Paging
	Sorting
	Filtering
	Faceting
	Highlighting
	Suggestions
	Counting
	Scrolling

	Performing multiple actions
	Bulk
	The delete by query
	Multi GET
	Multi Search

	Percolator
	ElasticSearch 1.0 and higher

	The explain API
	Building JSON queries and documents
	The administration API
	The cluster administration API
	The cluster and indices health API
	The cluster state API
	The update settings API
	The reroute API
	The nodes information API
	The node statistics API
	The nodes hot threads API
	The nodes shutdown API
	The search shards API

	The Indices administration API
	The index existence API
	The Type existence API
	The indices stats API
	Index status
	Segments information API
	Creating an index API
	Deleting an index
	Closing an index
	Opening an index
	The Refresh API
	The Flush API
	The Optimize API
	The put mapping API
	The delete mapping API
	The gateway snapshot API
	The aliases API
	The get aliases API
	The aliases exists API
	The clear cache API
	The update settings API
	The analyze API
	The put template API
	The delete template API
	The validate query API
	The put warmer API
	The delete warmer API

	Summary

	Chapter 9: Developing ElasticSearch Plugins
	Creating Apache Maven project structure
	Understanding the basics
	Structure of the Maven Java project
	The idea of POM
	Running the build process
	Introducing assembly Maven plugin

	Creating a custom river plugin
	Implementation details
	Implementing the URLChecker class
	Implementing the JSONRiver class
	Implementing the JSONRiverModule class
	Implementing the JSONRiverPlugin class
	Informing ElasticSearch about the JSONRiver plugin class

	Testing our river
	Building our river
	Installing our river
	Initializing our river
	Checking if our JSON river works

	Creating custom analysis plugin
	Implementation details
	Implementing TokenFilter
	Implementing the TokenFilter factory
	Implementing custom analyzer
	Implementing analyzer provider
	Implementing analysis binder
	Implementing analyzer indices component
	Implementing analyzer module
	Implementing analyzer plugin
	Informing ElasticSearch about our custom analyzer

	Testing our custom analysis plugin
	Building our custom analysis plugin
	Installing the custom analysis plugin
	Checking if our analysis plugin works

	Summary

	Index

