Making Everything Easi

odmg w'th

Learn to:

+ Go from no coding experience
to being handy with JavaScript

- Add interactive elements
to a web page or site

+ Develop simple apps built
on JavaScript

Chris Minnick
Eva Holland

. al it

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Coding with
JavaScript

by Chris Minnick and Eva Holland

DUMMIES

vww . allitebooks.cond

http://www.allitebooks.org

Coding with JavaScript For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www .wiley.com
Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners.

John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport .wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015938674

ISBN: 978-1-119-05607-2

ISBN 978-1-119-05607-2 (pbk); ISBN 978-1-119-05605-8 (ePDF); ISBN 978-1-119-05606-5 (ePub)
Manufactured in the United States of America

109 87654321

vww . allitebooks.cond

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance

INErOAUCHIONcneeeeeeaeeeeeeeeaeeneencenacenceaceaceencencenceancans |

Part I: Getting Started with JavaScriptcccccccccccee 5

Chapter 1: The World’s Most Misunderstood Programming Language 7
Chapter 2: Writing Your First JavaScript Program..........cccccevveviervienciiniiencieneeneenen. 19
Chapter 3: Working with Variables..........cccociiiiiiirininiiieeeseceeee e 39
Chapter 4: Understanding AYTAYSc.ccceevveeierieniieneeseesreesteeseeeseesaeseesssesssesseesseesens 55
Chapter 5: Working with Operators, Expressions, and Statements............c..c.......... 67
Chapter 6: Getting into the Flow with Loops and Branches...........ccccccceevvvvinvnnnnnen. 81

Part 11: Organizing Your JavaScriptcccceeeeeeeeeeee 95

Chapter 7: Getting Functionalcccooiiiiiiiiiiinineeeee e 97
Chapter 8: Making and Using ODJECEScccecveviiiierieiiececieereereeee e ee e nveenns 117
Part 111: JavaScript on the Webcccccuueeeee. 131
Chapter 9: Controlling the Browser with the Window Objectccccceviinienens 133
Chapter 10: Manipulating Documents with the DOM..........c.cccceviveiiriiinviinienieeene 147
Chapter 11: Using Events in JavaScCript.........ccccecerirenininiieeeeceeeceeeeeee 169
Chapter 12: Integrating Input and QUEPULcceevieeieiieciieiieece e 181
Chapter 13: Working with CSS and Graphicscccceeveevirviinniniiniinienienieseeeee 195
Part IU: Beyond the Basicsccccaaaaaacccunnneennen 211
Chapter 14: Searching with Regular EXpressions..........ccccceceevieviincieniieniienieneeneenne 213
Chapter 15: Understanding Callbacks and ClOSUYES..........ccceecvievveeienienienreseenieenne 225
Chapter 16: Embracing AJAX and JSON.........cccooiirererinieeeeere et 237
Part U: JavaScript and HTMLSccceeeeccaaccneeenne. 253
Chapter 17: HTMLS APISc.oooiiiceececeeeeeeeetteeee ettt ettt s taesaneese e 255
Chapter 18: JQUETY ...ccueoviiieeiieeeceeteete ettt et teesaeesteste st e et e ssaessaesssessaesseenseenee 271
Part Vl: The Part of Tensccccceeceeeeeeaceeeeceaseeeeeees 289
Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 291
Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them..................... 303
Chapter 21: Ten Online Tools to Help You Write Better JavaScript 313

JRAEKc.aaannaeeaaiaeaaennceeancceanceanncencncencaenasceenscecascencs 325

vww . allitebooks.cond

http://www.allitebooks.org

vww.allitebooks.cond

http://www.allitebooks.org

Table of Contents

INErOAUCTIONeeneeeeeeeeeeeeaaeneeneenacencencensenncensenceaseances]

ADOUL THiS BOOKcvvviiiiiiiiiieiiee ettt ceaan e ens 1
Foolish ASSUMPLIONS........ccciiiiiieiieeeceeeee et 2
Icons Used In This BOOKcoovuiiiiiiiiiiieiee et 3
Beyond the BOOKocouiiiiieeee e 4
Where t0 GO from HETE.......ooouviiiiiiiieeieeeeeeeeeeee et 4

Part I: Getting Started with JavaScriptccccceeeeeec 5

Chapter 1: The World's Most Misunderstood

Programming Languageccoiiiiiiiiiiiii e 1
What IS JAVASCIIPL? ...eoiiiiieeeeeeee e e 8
The Eich-man cometh..........cocoviiiiiiiniiniccceceeeee 8
MOCha-lICIOUScoeiiiiiiiiicic e 9

We need more effects! ... 9
JavaSCript GrOWS UDcooeiriiiiiieiieiecieeteceeee ettt 9
Dynamic scripting languagecocccovvieiniiiiniiiniienieeieeeeeeeee 10
What Does JavaScript DO?........coceevieeiiiniinienieectcecece et 12
WHhY JAVaSCHIPL?...c..oiiiiiiiiiiteeeeeeee ettt st st 13
JavaScript is easy to learnc.cccceevveeieeieniecieceeeee e 13
Where is JavaScript? JavaScript is everywhere!............ccooveneennnen. 14
JavaScript is powerfullcccccivviiiiieiieeiee e 18
JavaScript is in demandccccoeeuiriervieniiene e 18
Chapter 2: Writing Your First JavaScript Program 19
Setting Up Your Development Environment............cccceeveeviencieniieneeneennen. 19
Downloading and installing Chromecccoceevivverviinninniencieneenne. 20
Downloading and installing a code editorcccceeverviinvienienenne. 21
Reading JavaScript COAec.oovuimiieieiiiciecieeeeete et 29
Running JavaScript in the Browser Window............cccecevvievieninencneecenen. 29
Using JavaScript in an HTML event attribute..........ccccccceevveerenenee. 30
Using JavaScript in a script elementccooceevievievincincieniennnne, 31
Including external JavaScript files.........cccocevvieninnenniniinienieneene, 33
Using the JavaScript Developer Console..........ccccovvvvervienciiniieniieneeneenen. 36
Commenting YOUTr COAE........cuuriimimnienrieirienieenieeieere e ereereeane e e 37

vww . allitebooks.cond

http://www.allitebooks.org

(/i Coding with JavaScript For Dummies

Chapter 3: Working with Variables 39
Understanding Variablesccocveeieiieiiieiiieieciecieeeeeee e 39
Declaring Variablesccccoeiiiieiienienieeiiecieeieeeeete st esve e v enee s 41
Understanding Global and Local SCOpe........cccceecveriirieniinennierienieeieeen. 42
Naming Variables.........cocoviiriiniinieieeneeeeeetest e 44
Creating Constants Using the const Keyword...........ccccceevevieiiecieenennn. 46
Working with Data TYDPES ..c...oovueriiriirieiiiieeeee ettt 46

NUMDEr data tYPEe ...vecvieiieeieeieeeeeeeeeete ettt 47
SErING data tYPe...veeveeieeiieieeteeeee et 49
Boolean data tyPe.......cccecveeieeeieieiieseceeeeeee et 52
INAN dAta tYPE.c.veeeireeeieierieeeeeteterte ettt et tesse e eaessesseenens 53
undefined data tYPe......cceeveeierieieeieeceeie et 53

Chapter 4: Understanding Arraysc.coiiiiiininnnnnns 55
MaKING @ LISt ..cveeiieiiciiciecececteseee ettt ae e e 55
Array Fundamentals..........ccccooerieiiiiiienieneneeeeeeeee et 57

Arrays are zero indexed...........ccceeveeienienieneeneeeee e 57
Arrays can store any type of data.........ccccceeveenienieeiiencienienieneeneens 58
Creating ATTAYSccvevverrerreerieietestesteereeseetessessessesseessessessessessasssessessessessensens 59
Using the new keyword methodcoccevviviiiniiniieniiniinieceeee, 59
Array HEETALooviiiieieeieeeceee ettt e 59
POPUIAtING AYTAYSccciiriiiieiieiieieieieee ettt sttt ettt ettt 60
Understanding Multidimensional Arraysccccceceeeveereeneeseeseesveesvennnns 60
Accessing Array Elements..........ccooceeeiiieniinienieciicicceeeese e 62
Looping through arrayscccecceeveevieneeneeiinienierieseeseeneese e 63
Array Propertiescoccvviiiieriieniiinieeeertceee et 63
Array MmethOdscooeeieieiiieeieeeeeeee e 64
Using array methodsccooccveeeiiieiiiniieeieeeeeeeee e 64

Chapter 5: Working with Operators, Expressions,

and Statements i 67
EXPress YOUISEIf ..ottt 68
Hello, OPETALOYcc.eeieiiiiiieiieteete ettt sttt ettt 68

OPperator PreCEdENCEivveeierieerieerieeteeie e ere e ee e e e e saeesaeeneas 68
TYPES Of OPEFALOYS ...cuveeeieiiieiieiieeeeceee ettt ettt saeesaeeaeeneas 72
AsSigNMeENt OPEratorS......ccccevieeiiriinienierieeeeieete ettt seeseeenee 72
CompPAriSON OPEYALOISvieceveeiiieeriecieeeieeeiee e esere e e e aeeeaneas 73
ArithmetiC OPEratorS.........cceecvieiiiiecieeeeeeeee e 73
SEYING OPETALOY ...ttt sttt eaeene 75
BitWiS€ OPEratorS.....ccoccveevieiietieeieeetectetee ettt sa e 75
LOZICAl OPEIrAtOrS.....cccvieeiieiiieiieeieeeeese ettt 77
Special OPEratOrS......cccevciiriirierieieeeeteee et 78
Combining OPEratorS.......ccceviirieriiiiiereeieee ettt 80

vww . allitebooks.cond

http://www.allitebooks.org

Table of Contents (/ii

Chapter 6: Getting into the Flow with Loops and Branches 81
Branching OUtc.oooiiiiieiiiiiieeeeeeee ettt 81

1 <) (=1 YRR RORRRRRRNY 82

SWILCH ettt ecenaar e e ennaes 84

Here We Go: LOOP D€ LOOPooeeiiiieeeeece ettt 85

O e e e et e e a e e eetareeeennres 86

(o) QD | o NSRRI 88

WHILE J0OPS....uiiiieieeecece ettt 90

AO. . WHILE e 91

break and CONINUE..........ccueiiiiiviiiiiiecceeeec e e 92

Part 1l: Organizing Your JavaScriptccuueeeeeeeeeeeee 95

Chapter 7: Getting Functionalcooeet. 97
Understanding the Function of Functions..........ccccccoeeveevienieninniesiecieene. 97
Using Function Terminologyccccceeeeviirriieieniienienieneeseenieesieeseeeneeneens 99

Define a funCtionc..coeoiriririeiiininenececce e 99
Function head..........ccoooeoininiiiiiiccceeeeceeeeeeee e 99
FUNCtion BOAYcccvieiiiiii et 99
Call @ fUNCHION.eiieieiie e 100
Defining parameters and passing arguments...........c.ccccceeeveeueennen. 100
Return a value ..o 100
The Benefits of Using FUNCHIONSc.cccovvieviieniiniinienieececieeeeieeiens 101
Writing FUNCLIONS ...oouveviiiiiiiieceeececeee et 104
Returning ValUESccocveviiviinirieieieeseseeee et s 105
Passing and Using Arguments............ccocoeerieienienieneneneeeeeeseesee e 106
Passing arguments by value.........c.cccceevieeiinienieneecieeeeeeeie e 107
Passing arguments by reference............cccecevveeveenieeneeneeneeniennen. 109
Calling a function without all of the arguments..............c.cccc..... 109
Setting default parameter values..........ccoccevvievieneenenninneenenniennen. 109
Calling a function with more argument than parameters............. 110
Getting into arguments with the arguments object 110
FUNCHION SCOPE ..ttt et a e e 111
Anonymous FUNCHIONccciiiiiiiiicececcceeee e 111
Knowing the differences between anonymous and named
FUNCHIONS ..ottt 112
Self-executing anonymous functions.........c..cceceeveevennernennenneennen. 112
Do it Again with Recursion..........ccocoeevirininenieeeee e 113
Functions within FUNCHONScccooiiiiiniee 114

vww . allitebooks.cond

http://www.allitebooks.org

VIIl Coding with JavaScript For Dummies

Chapter 8: Making and Using Objects 117
ODbject Of MY DESITE......cccieiiieiieiieieciecieeteetese et e e sveesteeveesaeeaeesee e 117
Creating ODJECEScoviiiiiieieeieceee ettt ens 119

Defining objects with object literals..........cccceevvevciinvieniineeneeniennen. 119
Defining objects with an Object constructorccccceecvevueruennen. 120
Retrieving and Setting Object Properties..........ccccoevvevievieviiecieccieeieeiens 120
DOt NOtATION.......iiiiiiiiiiiiiieeeeee ettt 120
Square bracket NOtationc.cceceeviercieeiieieceeceeceeeee e 121
Deleting Properties.........cuviviieiieiiiieeieceeeet et 123
Working with Methods.........ccoocuivieniiniiieeeceeeceeee e 123
USING thiS ..ooeiiiiiiiiie e 124
An Object-Oriented Way to Become Wealthy: Inheritance.................... 125
Constructing Objects with constructor functions......................... 127
Modifying an object tyPecccceevieeieeieciecieeeeeeeeee e 129
Creating Objects with Object.create.........ccceecvevvevieeneeneeneeieenen. 129

Part 111: JavaScript on the Webcceeecuueene. 131

Chapter 9: Controlling the Browser with the Window Object 133
Understanding the Browser Environment............ccoccooveevenninnennenncnnenns 133
The user interface........cocoevieiiiiiininieeee e 134
LOAAEY ...ttt e 134
HTML PAISING ...ccovtiiieiieiieieeieeieeieete et st ste st e st esieesbeesseesseesesnsess 136

CSS PArSING c..eeviiiiiiieieeteeeee ettt sttt n 136
JavaSCript PArSiNgG.......ccoccvieiieiecieceeeeece e 136
Layout and rendering......c..ccoceeveevieeiienieenienieneeneeneeseeseeseeeseeeeenn 137
Igniting the BOMccooiioiiiiiiciieectectecte ettt 137

The Navigator ObJeCt........cccueeieiiiiiieeieecececeeee e 137

The WINdOW ODJECE.....c.iiciiriirierieieeeeeiece et 140
Using the Window object’s methodscccccvveeveveierienceeeeeee, 145
Chapter 10: Manipulating Documents withthe DOM 147
Understanding the DOMccoccoviiiiiiiiiinienieieneeseeeeieeie e 147
Node RelationsShipscccciiiiieeiiiiccieeeeeeeee e 149
Using the Document Object’s Properties and Methods......................... 153
Using the Element Object’s Properties and Methods..........cccccceeuennns 155
Working with the Contents of Elements........c.ccccccoevvevvienienieneeneecieninns 159
INNETrHTML ..ot 160
Setting attribUtesccccevieviiriiiiieieeee e 161
Getting Elements by ID, Tag Name, or Classcccceevvevvievrievieesieecreenenns 161
getElementByldcooooiiiiiii e 161
getElementsByTagNaAMEcccvevieeieeieeiieieceeeeeceese e ae e 162
getElementsByClassNaAmMEcccoceevieeienienienieceeceeeeseesee e 163

vww . allitebooks.cond

http://www.allitebooks.org

Using the Attribute Object’s Propertiesc.cccovevveveeceecieceecieeieeies 165
Creating and appending elements...........ccccoocevieernienienenenenceneene. 165
Removing elementscccccecieiiieriieiienieciecieseeeeese e ese e 166

Chapter 11: Using Events in JavaScript 169

Knowing YOUr EVENES.......ccccieviiiiiiiiiiiciecicetcceesieesee e ae e eae e ens 169

Handling EVENScc.coouiiiiiiiieiececcceceetet ettt 171
Using inline event handlers............coccovvirviiniiniiinciiniinieneeeeieeen, 172
Event handling using element properties.........c.cccccceviineenernuennnen. 173
Event handling using addEventListenercccccoceviininncnnnnnnen. 174
Stopping Propagation..........cocceceverereeierienereseee et 179

Chapter 12: Integrating Input and Qutput 181

Understanding HTML FOImSccccooviiiiiniiniiiniinieneeceeeeeeeeeeeeeeeee 181
The form element..........cooeviriiiiiinininieeeeeete e 181
The label elementc..cccoeiriiiiinininineeeeeeeeeeeeeeene 183
The input element.............cccoeeiiiiiiececeeceeee e 184
The select element............ccccveieeierierinieeeeere s 185
The textarea element............ccccoceeevinininiinincnnecceeeeeeeeae 186
The button elementcccocereiirinieneeee e 186

Working with the Form ODbject..........ccccovviivievieiiieiiceciececeeceeeeeeen 187
Using FOrm propertiesccccoceevueecieniienrienienieneeseeseeseeseesaeenees 187
Using the Form object’s methods.........ccccevvieviinciiniiiniinienceienen. 188
Accessing form elements..........ccoovevienerniinienieniieneeeeeeen 190
Getting and setting form element values...........ccccccecereveencniencnne. 191
Validating user inpPutcccceverieiririieieeneeeee e 192

Chapter 13: Working with CSS and Graphics 195

Using the Style ODJECtooiviriiieieieeee e 195
Getting the current style of an elementcccceevvevveneeneeniennnen. 196
Setting style Properties.......c.cccocveeveevieecieniiiniieniereeseeseese e 199

Animating Elements with the Style Object........ccccocevviiniiniiniininennns 200

Working with IMages........ccoceviiniiniiiieiieeeeeeee e 203
Using the Image ObjecCt.........ccceeviiieciieieeeee e 203
Creating rollover buttonscccoceeieieiieneneneeeeeee e 203
Grow images ON MOUSEOVETceevueerveerreervesreeseeseesseeseessesssesssens 205
Creating an image slideShOW........cccccevviiriiniincienieciceceeecien 206

Using the Style Object’s Animation Propertiesccccovvvvvevencenninns 207

Part 1U: Beyond the Basicsuueeeeecccacaacnnnaneas 211

Chapter 14: Searching with Regular Expressions 213
Finding It Out with Regular EXpressionscccccoeveevveereesensieenieesieniens 213
Writing Regular EXPressions........cocooviiieieeniennienienieseeseeseeieesieesveeieens 215

Using the RegEXD ODJeCtcocvvviiriiiiiriieiietetcectceeeeen 216

Table of Contents

x

X

Coding with JavaScript For Dummies

Regular expression literalsccocceeeciieiiiieniiicieeeeeeeeeee e 217

Testing regular €XpresSiONScceveeeeecieecieesieeieeiee e eesreesseeeees 219

Special character in regular eXpressionsccceceeeeereeneenreennen. 219

USING MOAIfIEYSeenveiiieiieieeieceee ettt sae e saee e 220
Coding with Regular EXpPressions.......c..ccecevcierienieneeneeneeneeeenieeieniens 221
Chapter 15: Understanding Callbacks and Closures.............. 225
What Are CallDacks?.........ccevirieriririiniiinieieceeenete et 225
Passing functions as arguments............ccoccovvveviienieniienieneenennennn. 226

Writing functions with callbackscccoecieeciiiiiiciiieeee, 226

Using named callback functionsccccoeevevinencieneneneneeceene 227
Understanding CIOSUTEScccceeciieiieiieeienienieseeseeseesreesreeseeesaeesaesnseens 230
USING CLOSUIESeeviiiiiiieiieieeieete et eteet ettt steesaee s e ebeesbeebeesaeeaasnsanns 233
Chapter 16: Embracing AJAXand JSON 237
Working Behind the Scenes with AJAX.......cccoovvviiniiiniinienieececieeiens 237
AJAX €XAMPIESoviiiiiiiieeieeeee ettt e e 238

Viewing AJAX in @Ctioncceceeviiniiniinenienienieeteseeseeseesee e 240

Using the XMLHt tpRequest ODJeCt....ccceecieeeiiicieeeieeeeeeee e 243

Working with the same-origin policycccccveveecieeciiiciieciecieeene, 245

Using CORS, the silver bullet for AJAX requestscccceeeenennnen. 247

Putting Objects in Motion with JSON.........ccccectiriiniiniiiiiiieececeeies 248

Part U: JavaScript and HTML5cccccecceeeeceiaceeneee 253

Chapter 17: HTMLSAPIst 255
Understanding How APIS WOrK........cccoocoviriiiinininieeeeeee e 255
Checking HTML5 API browser support.........cccceecveveeneeneeneenieennen. 256

Getting to know HTML5’S APIS.......cccocovevievieriiceeeeeeeeee e 257

USIing GEOlOCAtION........ccveriiciieiieieteieiee ettt 259
What does geolocation do?ccceeeeeeeienieneneeeeeeieeseeeeeenens 259

How does geolocation Work?...........cccocceveiiieeiiicieenieeeeeciee e 260

How do you use geolocationcccceccueeieeieeieneenieceeseeseeieenenn 261
Combining geolocation with Google maps.........cccccceevvereereeniennnen. 263

Accessing Audio and VId€O0..........ccceevueeiieiieiieniiiniecieseeseesieeie e esee e 266
Chapter18: jAuerycoiiniiiii i i i nneens 2n
Writing More and Doing LeSS.......cccceviiiiiiieeiieniieniecieneesecsieeieesie e 271
Getting Started With JQUETYcccveviiriiniiieeteeccceceeeee e 272

The JQUETY ODJECE ...uviruiieieiiriteteeeeee ettt 273

Is Your Document Ready?ccccoeeeiiiiiieniiecieeeieeeeeeee e 274
Using jQUETY SEleCtOTS.couiriiriiieieieieeeetee et 274

Changing Things with JQUETY........ccccceeieieieieiieceeeeeeeee e 275

Table of Contents Xi

Getting and setting attributescccoceeeviivieeviieieneeeeeeee, 276
Changing CSS........ooieeee ettt 276
Manipulating elements in the DOM...........cccceevvviiviienieneeneeieenen. 277
EVENES ...ttt sttt ettt et ae et e e beebeesaeenaeenta e 278
Using on() to attach eventscccocevvievviiniiiniiencienicnieecceeeenn 279
Detaching with Off()cooeeveriiiiinieeen 280
Binding to events that don’t exist yet.........cccccceevvevvieneenieneeieenen. 281
Other event Methodscccoecieiieciiciicceeeee e 281
O CES ettt saeeae et e 282
BasiC effeCtS....ccuiiiiiiiieecec s 282
Fading effects.......ccoovviiieiiieecece e 282
SlAING €ffECtS ...ooviiiiiiieieeeeeee e 283
Setting arguments for animation methods.........c.ccccecvevvecneenennen. 283
Custom effects with animate()c.coceeeverevecninennincrnerceeeee 283
Playing with jQuery animations.........c.cccccevvveevieneenieneeneeceeieeen. 284
AJAX ettt b ettt ettt ettt neeban 285
Using the ajax() method..........c.ccoeiiieieiievieneeceeeeeee e 285
Shorthand AJAX methods.........ccoevueeieriiniinieniicccccceceeen 287

Part Vl: The Part of Tenisccceeeeeeeeeeeeeeeeeennnnnnnnnnaaes 289

Chapter 19: Ten JavaScript Frameworks and Libraries

toLearnNext ... e e 291
ANGUIAT S ..ottt et et b e sa e ae et e 291
BaCKDONE.JS ...ooviiiieiieiecieeecteceee ettt s en 293
EINDEY.JS .ottt sttt ettt ettt et sa s ae st e 294
2210 Lo J0 U SRR 295
KNOCKOUL ...t 296
1018) oL ST 297
UNAEYSCOTE.JS c.uveerrereereeieeiieesieeiteeteeteestesssesseesseesssesseessesssesssesssesssesssesssanns 297
MOAEINZY ...ttt 298
HanAIEDAYS.JS .ouviiiiiiiiiieieeieeteceete ettt st 299
JQUET Y.ttt ettt ettt st st e s e et e e be e beesbesaesateeas 300

Chapter 20: Ten Common JavaScript Bugs and

HowtoAvoidThem 303
Equality COnfuSIONceeviiivieriiiriiiienieectctctecee e 304

Avoiding misuse of assignment...........ccccooeevirniniiniinnienneneneee 304
Dodging the equals pitfalls............ccccooeeviieiiieniieeeeeeeeeeee 304
Mismatched Brackets.........ccooeeiiieiiiniininieieeeee e 305
Mismatched QUOLEScoviiiiieeiiecie et e 306
Missing Parenthesesocooviieiieiiiiiiiienicciceeeeeee e 306
MisSING SEMICOIONcc.uiiiiiiiiiirieeieeieeeeet ettt 307

Capitalization EXrorscccooevieeiiiceeee e 307

Xii

Coding with JavaScript For Dummies

Referencing Code Before It’s Loaded...........ccccovevienieniecieeciieeeieeieees 307
Bad Variable NAIMEScccveviieviieiieiecieeieeeese et e see e esveesreeaeesaeeaeenne e 310
SCOPE EXTOIS....uiiiiiiieiicieeeeeceete ettt ettt ve b ebeesaeeaeenea e 310
Missing Parameters in Function Calls..........cccocevvievieniieninninnecneeieniens 310
Counting Errors: Forgetting That JavaScript Counts from 0.................. 311

Chapter 21: Ten Online Tools to Help You Write Better

JavaSceript e 313
JSLANT ettt 313
JSFIAAIEMNIET ...ttt 314
JSBII ot 315
JAVASCIiPICOMPIESSOT.COMuviieiiieeiiieeiieeiieeteeesereesereesaeeeseeeseeessseennas 316
JSDEAULIIET.OFG ..ot 317
JavaScript RegExX generator..........occooveiiieviieviieiiciecieceeeceee e 318
JSONEOIMALETcc.tiiiiiiieiecieeeeeeeeee ettt saeesaeenea e 319
JSNINE.COM .ttt 320
Mozilla Developer Network............cccvveiiieciiicieeceeeee e 321
Douglas CroCKEOTd.........ccveiuieiieeiieiicieeieeeec ettt er e saeeaeeene e 322

LT (3 RN 72, 1

Introduction

avaScript is hot! What started as a quick-and-dirty language created for

one of the first web browsers has turned into the world’s most popular
programming language. Demand for JavaScript programmers is at an all-time
high and only continues to grow.

This book is your key to becoming proficient in the core concepts of
JavaScript. Whether your goal is to land a high-paying job as a programmer
or to make your own personal website more interactive, you can be confident
that the content and techniques presented in this book are fully up to date
with the most current JavaScript standards and best practices.

Coupled with engaging and interactive online exercises, each chapter con-
tains complete examples of real code that you can try and test in your own
web browser at home.

Just as the only way to Carnegie Hall is to practice, practice, practice, the
only way to become a better programmer is to code, code, code!

About This Book

This book is a friendly and approachable guide to getting started with writing
JavaScript code. As programming languages go, JavaScript is fairly easy to
pick up and start using. Because it’s so accessible, many people who started
as web page authors have found themselves in the position of being responsi-
ble for maintaining, modifying, and writing JavaScript code. If that describes
you, this book will quickly and easily bring you up to speed.

Whether you know a little JavaScript or you've never seen it, this book shows
you how to write JavaScript the right way.

Topics covered in this book include the following:

v+ Understanding the basic structures of JavaScript programs
v Integrating JavaScript with HTML5 and CSS3
v Structuring your programs with functions

v Working with JavaScript Objects

2

Coding with JavaScript For Dummies

v Using advanced JavaScript techniques, such as AJAX, callbacks, and
closures

v Getting started with jQuery

Learning JavaScript isn’t only about learning the syntax of the language. It’s
also about accessing the tools and community that has been built around the
language. Professional JavaScript programmers have greatly refined the tools
and techniques used to write JavaScript over the language’s long and exciting
history. Throughout the book, we mention important best practices and tools
for testing, documenting, and writing better code faster!

To make this book easier to read, keep in mind the following:

1 As a convention for this book, all JavaScript code and all HTML and CSS
markup appears in monospaced type like this:

document .write ("Hi!") ;

v The margins on a book page don’t have the same room as your moni-
tor likely does. Therefore, long lines of HTML, CSS, and JavaScript may
break across multiple lines. Remember that your computer sees such
lines as single lines of HTML, CSS, or JavaScript. We indicate that every-
thing should be on one line by breaking it at a punctuation character or
space and then indenting any overage, like so:

document .getElementById ("anElement InTheDocument") .

addEventListener ("click",doSomething, false) ;

v+ HTML and CSS don’t care very much about whether you use uppercase
or lowercase letters or a combination of the two, but JavaScript cares
a lot! In order to make sure that you get the correct results from the
code examples in the book, always stick to the same capitalizations that
we use.

Foolish Assumptions

We have a policy at our company, WatzThis?, to never assume (but, frankly,
Eva is better at following the policy than Chris is). If you were ever 12 years
old, you've probably heard the saying about what happens when you
assume. If you don’t know, email us.

You don’t need to be a programming ninja or a hacker to understand pro-
gramming. You don’t need to understand how the guts of your computer
work. You don’t even need to know how to count in binary.

Introduction

However, we do need to make a couple of assumptions about you. We
assume that you can turn your computer on, that you know how to use a
mouse and a keyboard, and that you have a working Internet connection and
web browser. If you already know something about how to make web pages
(it doesn’t take much!), you have a jump start on the material.

The other things you need to know to write and run JavaScript code are
details we cover in this book. And the one thing you’ll find to be true is that
programming requires attention to details.

lcons Used In This Book

W

Here’s a list of the icons we use in this book to flag text and information
that’s especially noteworthy:

This icon highlights helpful tips that show you easy ways or shortcuts that
will save you time or effort.

Whenever you see this icon, pay special attention. You won’t want to forget
the information you’re about to read.

Be careful — very careful. This icon warns you of pitfalls to avoid.

This icon highlights the great exercises you can find on the website. If
you're interested in trying your hand at JavaScript, go online and visit
www . dummies.com/go/codingwithjavascript.

This icon highlights technical details that you may or may not find interest-
ing. Feel free to skip this information, but if you're the techie type, you might
enjoy reading it.

3

http://www.dummies.com/go/codingwithjavascript

Coding with JavaScript For Dummies

Beyond the Book

Here’s where you can find the online content for this book:

v~ Exercises: You can find all the exercises online by going to
www.dummies.com/go/codingwithjavascript to access the exer-
cises at Codeacademy.

v+~ Examples: You can find all the examples in the chapters at
www . dummies.com/go/codingwithjavascript. Here you will find
a directory labeled by chapter. Within the chapter, you will find each
example labeled by its listing number

+* Cheat Sheet: You can find lists of useful information at
www .dummies.com/cheatsheet/codingwithjavascript.

v Extras: You can even find additional articles related to
each part of the book. You can access this extra content at
www.dummies.com/extras/codingwithjavascript.

v+ Updates: From time to time, we will need to make updates to a book.
Code and specifications are constantly changing, so the commands and
syntax that work today may not work tomorrow. You can find this infor-
mation at www.dummies.com/extras/codingwithjavascript.

Where to Go from Here

Coding with JavaScript is fun, and once you get a little knowledge under your
belt, the world of interactive web applications is your oyster! So buckle up!
We hope you enjoy the book and our occasional pearls of wisdom.

http://www.dummies.com/go/codingwithjavascript
http://www.dummies.com/go/codingwithjavascript
http://www.dummies.com/cheatsheet/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Part|

Getting Started with
JavaScript

getting started
with

coding with

JavaScript

http://www.dummies.com

X\

X\

In this part . . .

Find out how to write your first JavaScript program.

Get the inside scoop on how to work with variables
and arrays.

Discover how to work with operators, expressions,
and statements.

Use loops and branches in your JavaScript coding.

Visithttp://www.dummies . com for great Dummies
content online.

vww . allitebooks.cond

http://www.dummies.com
http://www.allitebooks.org

Chapter 1

The World's Most Misunderstood
Programming Language

In This Chapter
Getting to know JavaScript
Figuring out what JavaScript does

Understanding why you need JavaScript

“People understand me so poorly that they don’t even understand my
complaint about them not understanding me.”

— Sgren Kierkegaard

avaScript hasn’t always been as highly regarded as it is today. Some

people have called it the best and worst programming language in the
world. Over the last few years, there have been a great number of improve-
ments made to the way programmers write JavaScript and to JavaScript
interpreters. These improvements have made JavaScript a much better lan-
guage today than it’s been in the past.

In this chapter, you discover what JavaScript is and a little bit of the history
of the language. You also find out what JavaScript does and why you need to
know it.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

https://www.goodreads.com/author/show/6172.S_ren_Kierkegaard

8 Part I: Getting Started with JavaScript

What Is JavaScript?

|
Figure 1-1:
The first
web brow-
sers weren't
much to
look at.
|

Back in the very early days of the web, browsers were simple readers for web
pages (see Figure 1-1). They had virtually no capabilities themselves, except
for the ability to display text in various sized fonts. As soon as Microsoft
released its Internet Explorer browser, the browser wars were on, and the fea-
tures started flying! One browser introduced the ability to display images, then
another introduced the capability to have different fonts, and then blinking
text, moving text, and all sorts of other wacky capabilities were introduced!

E EEE
sla) & = lo|s|o] |8 &[] ¢
[P e 72 e osac reinoes i =l

Release Notes

NCSA Mosaic v2.1.1 ™ for Microsoft Windows ™

TS A Mosaic is Win32 application. NCSA Mosaic is capable of running under Windows 95, Windows MT, Windows 3.1 and Windows for Workgroups. Windows 95 and Windows NT are 32-bit
eperating systems that are desiged to run Win32 applications Windows 3 Tx and Windows for Weorkaroups(WEW) 3.1z are 16-bit eperating systeras that need a 32-bit subsystera called Win32s
nstalled before running Win32 applications

NCSA Mosaic version 2.1, 1 released on March 25, 1996 as 2 mantenance release to addresses with v2.1.0, These problems includs:

@ Lifne JPEG

9 Kodak Photo CD

@ Wndows 3. 1z winsocks

WVersion 2.1.0 adds a few new Eeatures such as the Kodak Fhoto CD technology and client side image maps. This release also represents a compiler uperade. We went from Microsofts VC++2 2 to
V4.0, With VO++ 4.0 we are ance again capable of building a release for Windows NT for the MIPS, Pewer PO and DEC a3, Urfornunately we do not have a DEC mackine and won's be able
to compile an aXP release f NCSA Mosaic. The MIPS and the Power PC versions are available Fom our fip server.

NCS A Mosaic has aliays been and will always be a freely avalable World Wide Web browser. :CSA Mosaic & Eeely available for individual, academic, Uited States Goverrment, and internal
business use, NCSA Mosaic is copynght by the University of linios and can not be commereially distubuted with out a license,

INOTE: The Eodak Photo CD Technology i crily avalsble for Win3 1%, WEW3. Tx, Wind5 and WiedUT(Intel).

Win32s Update Information

What 1z Win32s?
Win32s i a subsystem created by Micrasoft for the Win 3, 1z and WEW 3. Lt 16-bit operating systems. The Win32s librasies allow Win3. 1z and WEW 3. 1z users to rua Win32 (32-bi) applications on
their 16-bit operating syssems. Object Linking and Embedding (OLE) allows Mosaic to use its Client Tnteface (CCI) to with other

Windows NT Users and Window 95 Users
Do not fustall Win32s! These aperasing systems are 33-bit operasing systems with OLE support buslt-in

Windows 3.1 and Windows for Workgroups Users

The Latest Release of Wia32s with OLE is v1 30 Fou can o find & copy ofvl 30¢ on our fip server i the Ao saieWindorws/ Win3 12/ Win32s directory. We recornmend all Windows 3 1z nsers
upgrade to this latest version I'you are not sure which version of Wind2s you have on your system, the version number can be found in the fwindovws/systemwin32s ini fle, 1 your version is earler than
1,30.172 you shovld uperade.

Ths 1072372014 3.29.05pm]

It wasn’t long before someone got the idea that browsers could actually do
useful things themselves, rather than just acting as fancy document display
programs.

The Eich-man cometh

JavaScript got its start back in 1995 at Netscape. The creator of JavaScript,
Brandon Eich, wrote JavaScript in record time (some say in as few as ten
days!) by borrowing many of the best features from various other program-
ming languages. The rush to market also created some interesting quirks (or,
less politely described, mistakes) in the design of the language. The result

is a sort of Esperanto-like language that looks deceptively familiar to people
who are experienced with other programming languages.

Chapter 1: The World's Most Misunderstood Programming Language

Mocha-licious

The original name of JavaScript was Mocha. It was renamed LiveScript with
the first beta deployment of Netscape Navigator and was then changed to
JavaScript when it was built into the Netscape 2 browser in 1995. Microsoft
very quickly reverse-engineered JavaScript and introduced an exact clone
of it in Internet Explorer, calling it Jscript in order to get around trademark
issues.

Netscape submitted JavaScript to the standards organization known as
Ecma International, and it was adopted and standardized as EMCAScript
in 1997.

Brandon Eich, the creator of JavaScript, famously commented about
the name of the standardized language; stating that ECMAScript was an
“unwanted trade name that sounds like a skin disease.”

Not only is ECMAScript an unappealing name for a programming language,
the name given to the language by Netscape and which most people refer

to it as, is rather unfortunate as well. If you already know how to program

in Java or if you learn how to at some point, it’s a very good idea to keep in
mind that the two languages may have some similarities, but they are, in fact,
quite different animals.

We need more effects!

When JavaScript debuted, it quickly became very popular as a way to make
web pages more dynamic. So-called Dynamic HTML (DHTML) was an early
result of JavaScript being built into web browsers, and it enabled all sorts of
fun effects, like the falling snowflake effect (see Figure 1-2), pop-up windows,
and curling web page corners, but also more useful things like drop-down
menus and form validation.

JavaScript grow's up

Now entering its third decade, JavaScript has become the world’s most
widely used programming language and virtually every personal computer in
the world has at least one browser on it that can run JavaScript code.

JavaScript is flexible enough that it can be used and learned by nonpro-
grammers, but powerful enough that it can (and is) used by professional
programmers to enable functionality on nearly every website on the Internet
today, ranging from single-page sites to gigantic sites like Google, Amazon,
Facebook, and many, many others!

10

Part I: Getting Started with JavaScript

*
Lisg. of thinds | want from Santa

E 3
A Sony '
I Proof that wooly mammoths existed, in the time of
Figure 1-2 #he railroads *
JavaScript Recipe for the perfect bubble tea
made it pos-
sible to have Timeframe for the REAL Matrix sequels
snoMIakes Coal. L&s qnd’lfots of coal so that | can sell it to
falling on power, plants
your web

page. *

Dynamic scripting language

JavaScript is often described as a dynamic scripting language. In order
to understand what this means, we need to first define a couple of

terms and provide some context.

Over the years, JavaScript has had some pretty
nasty things said about it. While sometimes
rumors are interesting, they aren’t always true.
The following list explains some common mis-
conceptions about JavaScript:

v Myth: JavaScriptis not a real programming
language. Reality: JavaScript is often used
for trivial tasks in web browsers, but that
doesn’t make it any less of a programming
language. In fact, JavaScript has many
advanced features that have raised the bar
for programming languages and are now
being imitated in languages such as PHP,
C++, and even Java.

v Myth: JavaScriptis related to Java. Reality:
Nope. The name JavaScript was invented

Common misconceptions about JavaScript

purely as a marketing strategy because
Java was incredibly popular at the time
JavaScript came out.

Myth: JavaScriptis new. Reality: JavaScript
has been around for over 20 years! Some
of the professional JavaScript program-
mers we know weren’t even born when
JavaScript was created.

Myth: JavaScript is buggy and runs
differently in different browsers. Reality:
While this used to be true in some cases,
browser makers decided to support the
standardized version of JavaScript long
ago. Every browser will run JavaScript the
same today.

|
Figure 1-3:
Program-
ming
languages
are clas-
sified
according

to when the
compilation
takes place.
|

Chapter 1: The World's Most Misunderstood Programming Language

Computer programs are sets of instructions that cause computers to do
things. Every computer programming language has a set of instructions and
a certain way that humans must write those instructions. The computer can’t
understand these instructions directly. In order for a computer to under-
stand a programming language, it needs to go through a conversion process
that translates human-readable (and writable) instructions into machine
language. Depending on when this translation takes place, programming lan-
guages can be roughly divided into two types: compiled and interpreted (see
Figure 1-3).

Compiled Programming Language —

Interpreted Programming Language
T—

. % Hell Word

Compiled programming languages

Compiled programming languages are languages in which a programmer must
write the code and then run it through a special program called a compiler
that interprets the given code and then converts it into machine language.
The computer can then execute the compiled program.

Examples of compiled languages include C, C++. Fortran, Java, Objective-C,
and COBOL.

Interpreted programming languages

Interpreted languages are technically still compiled by the computer into
machine language, but the compiling takes place by the user’s web browser

11

12

Part I: Getting Started with JavaScript

right as the program is being run. Programmers who write interpreted lan-
guages don’t need to go through the step of compiling their code prior to
handing it off to the computer to run.

The benefit of programming in an interpreted language is that it’s easy to
make changes to the program at any time. The downside, however, is that
compiling code as it’s being run creates another step in the process and can
slow down the performance of programs.

Partially because of this performance factor, interpreted languages have
gotten a reputation for being less than serious programming languages.
However, because of better just-in-time compilers and faster computer pro-
cessors, this perception is rapidly changing. JavaScript is having a big impact
in this regard.

Examples of interpreted programming languages include PHP, Perl, Haskell,
Ruby and of course, JavaScript

What Does JavaScript Do?

If you use the web, you're making use of JavaScript all the time. The list of
things that can be enabled with JavaScript is extensive and ranges from
simple notices you get when you forget to fill out a required field on a form to
complex applications, such as Google Docs or Facebook. Here’s a short list of
the most common uses for JavaScript on the web:

v Nifty effects

v Input validation

v Rollover effects

v Drop-down/fly-out menus

v Drag and drop features

v Infinitely scrolling web pages

v Autocomplete

* Progress bars

v Tabs within web pages

v Sortable lists

v Magic Zoom (see Figure 1-4)

|
Figure 1-4:
So-called
Magic Zoom
effects are
enabled
using
JavaScript.
|

Chapter 1: The World's Most Misunderstood Programming Language ’3

[/ [MagicZoom examples x

€« C # | & htps/wwawmagictoolboxcom /mag czoom/examples/
* M3 gic Toolbox i:iss bl 9
i i ™ Download
&55 Magic Zoom™ examples

Overview Examples How toinstall Settings wizard

Possible uses of Magic Zoom™ -
the ultimate way to view images in high-res detail!

Howver over the Images...

Top zoom with fade and low-speed CSS with thick green barder

Zoom window tite!

Reverse opadity, shadow removed Internal zoom

httos:i/maaictoolbox sirv.comy/images/maciczoom/booklets ipg

Why JavaScript?

JavaScript has become the standard for creating dynamic user interfaces
for the web. Pretty much any time you visit a web page with animation, live
data, a button that changes when you hover over it, or a drop-down menu,
JavaScript is at work. Because of its power and ability to run in any web
browser, JavaScript coding is the most popular and necessary skill for a
modern web developer to have.

JavaScript is easy to learn

Keep in mind that programming languages were created in order to

give people a simple way to talk to computers and tell them what to do.
Compared with machine language, the language that the computer’s CPU
speaks, every programming language is easy and understandable. To give

7 4 Part I: Getting Started with JavaScript

you a sample of what sort of instructions your computer is actually obeying,
here is a machine language program to write out "Hello World".

b8 21 0a 00 00
a3 Oc 10 00 06
b8 6f 72 6c 64
a3 08 10 00 06
b8 6f 2c 20 57
a3 04 10 00 06
b8 48 65 6¢C 6C
a3 00 10 00 06
b9 00 10 00 06
ba 10 00 00 00
bb 01 00 00 00
b8 04 00 00 00
cd 80

b8 01 00 00 00
cd 80

Now look at one way you can accomplish this simple task with JavaScript:
alert ("Hello World") ;
Much easier, yes?

Once you learn the basic rules of the road (called the syntax), such as when
to use parentheses and when to use curly brackets ({}), JavaScript actually
resembles plain old English.

The first step in learning any language, including programming languages, is
to get over your fear of getting started. JavaScript makes this easy. There are
thousands of sample bits of JavaScript code on the web that anyone can just
pick up and start messing around with. You already have all the tools you
need (see Chapter 2), and it’s easy to start small with JavaScript and gradu-
ally build up to making great and wonderful things.

Where is JavaScript? JavaScript
is everywhere!

Although JavaScript was originally designed to be used in web browsers, it
has found a home in many other places. Today, JavaScript runs on smart-
phones and tablets, on web servers, in desktop applications, and in all sorts
of portable devices.

Chapter 1: The World's Most Misunderstood Programming Language ’5

JavaScript in the web browser

The most common place to find JavaScript, and what it was originally
designed to do, is running in web browsers. When JavaScript runs in this
way, it’s called client-side JavaScript.

Client-side JavaScript adds interactivity to web pages. It accomplishes this in
several ways:

v By controlling the browser itself or making use of functionality of the
browser

v+ By manipulating the structure and content of web pages

v By manipulating the styles (such as fonts and layout) of web pages

v By accessing data from other sources

In order to understand how JavaScript is able to manipulate the structure
and style of web pages, you need to know a little bit about HTML5 and CSS3.

HTML5

Hypertext Markup Language (HTML) is the language used to structure web
pages. It works by marking up content (text and images) to give web brows-
ers information about the content, such as what is a heading, what is a para-
graph, where an image goes, and so on. Listing 1-1 shows a simple HTML
document. Figure 1-5 shows how a web browser displays this document.

Listing 1-1: A Simple HTML Document

<!DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

</head>

<body>

<hl1>This is HTML</hl>

<p id="introduction">This simple document was written
with Hypertext Markup Language.</p>

</body>
</html>

Here is everything you need to know about HTML right now in order to move
forward with learning JavaScript:
v+ In HTML, the characters surrounded by angle brackets are called tags.

v The ending tag (which comes after the content being marked up) has a
slash after the first angle bracket. For example </p> is an ending tag.

7 6 Part I: Getting Started with JavaScript

v A group of two tags (beginning and ending), plus the content in between
them, is called an element.

v Elements are generally organized in a hierarchal way (with elements
nested within elements).

v Elements may contain name/value pairs, called attributes. If an element
has attributes, they go in the beginning tag. Name/value pairs assign
values, in quotes, to names (which aren’t in quotes) by putting an
equals sign between them. For example, in the following tag, width and
height are both attributes of the div element:

<div width="100" height="100"></div>

v Some elements don’t have content and therefore don’t need an ending
tag. For example, the img tag, which simply inserts an image into a web
page, looks like this:

<img src="myimage.jpg" width="320" height="200"
alt="Here is a picture of my dog.">

ece Hello, HTML x Chris
« C A [www.codingjsfordummies.... 37 =
This is HTML

This simple document was written with Hypertext Markup
I | [anguage.

Figure 1-5:
Web brow-
sers use
HTML to
render web
pages.
|

All the data necessary to show the image is included in the beginning tag
using attributes, so the img tag doesn’t require an ending tag.

When you write a web page with HTML, you can include JavaScript code
directly in that document, or you can reference JavaScript code file (which
end in . js) from the HTML document. Either way, your viewer’s web
browser will download the JavaScript code and run it when a user accesses a
&g\l\BEﬁ web page containing that JavaScript.
<&

Client-side JavaScript runs inside of your users’ web browsers.

vww . allitebooks.cond

http://www.allitebooks.org

Chapter 1: The World's Most Misunderstood Programming Language ’ 7

CSS3

Cascading Style Sheets (CSS) is the language used to add formatting and dif-
ferent layouts to web pages. The word style, when used in CSS, refers to many
aspects of how the HTML document is presented to the user, including

v Typefaces (or font faces)

v Type size

v Colors

v Arrangement of elements in the browser window
v Sizes of elements

v Borders

v Backgrounds

v Creation of rounded corners on element borders

Like JavaScript, CSS can be either placed directly into an HTML document,
or it can be linked to from the HTML document. Once it’s downloaded, it
immediately does its thing and formats the document according to your
specifications.

Style sheets in CSS are made up of CSS rules, which contain properties and
values that should be applied to an element or a group of elements. Here’s an
example of a CSS rule:

p{font-size: 14px; font-color: black; font-family: Arial,
sans-serif}

This rule, reading from left to right, specifies that all p elements (which
indicate paragraphs in HTML) should be displayed in text that is 14px large,
black, and using the Arial font. If Arial isn’t available on the user’s computer,
it should be displayed in some sans serif typeface.

The part of the CSS rule that’s outside of the curly brackets is called the
selector. It selects the elements that the properties within the curly brackets

apply to.

Throughout this book, you find out how to use JavaScript with HTML and
CSS. We provide just enough information here to be able to show you how
HTML and CSS work. If you need to learn more, you can find some excellent
books about them. One that we highly recommend is Beginning HTML5 and
CSS3 For Dummies by Ed Tittel and Chris Minnick (Wiley).

18

Part I: Getting Started with JavaScript

JavaScript is powerful!

JavaScript running in a web browser used to be slow, and JavaScript got a
bad reputation early on among programmers. Today, JavaScript code runs
80 percent as fast as compiled code. And, it keeps getting faster all the time.
What this means is that today’s JavaScript is much more powerful than the
JavaScript of just a few years ago. And, it’s many times more powerful than
the JavaScript that was first introduced in 1995.

JavaScript is in demand

JavaScript is not only the most widely known programming language, it’s also
one of the most in-demand skills in the job market. It’s projected that the job

market for JavaScript programmers will increase by 22 percent between 2010
and 2020. Exciting things are happening with JavaScript, and there has never

been a better time than right now to learn it.

Chapter 2

Writing Your First JavaScript
Program

In This Chapter
Arranging your development environment
Getting to know JavaScript code
Understanding a simple JavaScript program

Understanding the value of commenting your code

“The secret of getting ahead is getting started.”

— Mark Twain

Smple JavaScript programming isn’t difficult to understand. In this chap-
ter, you go through the process of setting up your computer for writing
JavaScript. You also write your first JavaScript program and get to know the
basic syntax behind everything you’ll do with JavaScript in your future as a

programmer.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Setting Up Your Development
Environment

It’s important to have all of your tools set up and in place before beginning
to write your first JavaScript program. We walk you through the process of
downloading and installing our favorite JavaScript development tools, which

20

Part I: Getting Started with JavaScript

are, coincidentally, the ones we use in this book. If you have similar tools that

you prefer, please feel free to use those. However, we recommend that you
still read this section of the book in order to learn why we’ve chosen these
tools and to make your own decisions about whether to use them.

After you install each of the tools, we share some tips and tricks with you for
how to get the most out of each of them.

Downloading and installing Chrome

The web browser that we prefer to use when working with JavaScript is Google

Chrome. If you prefer to use a different web browser day to day, that’s fine,
of course. All browsers will run JavaScript very fast and correctly. However,
some of the instructions in this book will be specific to Google Chrome, so
we recommend that you at least go through the process of installing it on
your computer in this chapter. We chose to use Google Chrome in this book
because it offers excellent tools for making JavaScript programmers’ jobs
easier and because it’s currently the most widely used web browser on the
Internet. (Yes, it’s even more popular than Internet Explorer.)

If you don’t have Chrome installed, follow these steps to install it:

1. Go to www.google.com/chrome.

Figure 2-1 shows you what Google Chrome looks like.

2. Hover over the Download tab and choose the appropriate version for

your computer.

3. Open the downloaded file and follow the instructions to install Chrome.

Now you have a supercharged JavaScript engine!

Google Chrome uses Google’s V8 JavaScript
engine to parse, compile, and run JavaScript
code. Depending on whose benchmarking test
you believe, Chrome is either the fastest way to
run JavaScript in a browser, or it's one of the
fastest. The major browser makers are con-
stantly competing to outdo each other. It doesn't
matter too much who is actually the fastest at
any one time; the competition has increased the
speed of every browser’s JavaScript engine by
leaps and bounds in recent years.

If you want to see actual comparisons of
how different browsers do in JavaScript
performance tests, you can do so at
http://arewefastyet .com (see figure).
This site, which is maintained by Mozilla, cre-
ator of the Firefox browser, automatically
checks and graphs JavaScript performance of
the most popular browsers and is updated mul-
tiple times every day.

http://www.google.com/chrome
http://arewefastyet.com

|
Figure 2-1:
Installing
Chrome

is easy on
either Mac
or Windows.
|

\\3

Chapter 2: Writing Your First JavaScript Program

+ Windows

+ Mac

+ Linux

System requirements

For optimal performance, we recommend the following system requirernents

Download and install Google Chrome

Google Chrome is a free wab browser that takes just seconds to install It's available for Windows, Mac, and Linux

computers. You can also install Google Chrome an your Android or i08 device

Download Google Chrome.

Install Google Chrome on your computer

Be sure to check out the Getting Started Guide to leam more about using Google Chrorme

Windows i Mac Linux
Operating system | Windows ¥P Sewice Pack 2+ | Mac 05 ¥ 106 or later | Ubuntu 12.04+
Windows Vista Debian 7+

Windows 7 OpenSuSE 122+
Windows 8 Fedora Linux 17
Processor Intel Pentiur 4 or later Intel Intel Pentium 4 or later
Free disk space |350 MB
RAM 512 MB

The Windows version of Google Chrome downloads for the user accaunt youte logged into. If you have administrative rights,

you can also instal the browser for all user accaurts on your computer using the alternate installer 2

Install Chrome

Dawnload and install Goagle Chrome
Install Chrome for all user sccounts

Altemate (offing) Google Chrome

installer (Windosws)
Update Google Chrome

Launch Chrome as a Windows & app

Downloading and installing a code editor

A source code editor, commonly referred to as code editor, is a text editor
with added functionality that helps you write and edit programming code.
The one we use is Sublime Text.

There are many code editors to choose from, so if you already have a favor-
ite that you like to use and that you’re comfortable with, please use it! A
programmer’s code editor is a very personal choice, and many people will
find that they just feel more comfortable with a specific one. If you find that
Sublime Text just doesn’t fit your style, Table 2-1 lists some other options.

Table 2-1

Examples of Other Code Editors

Name Location Compatible with . . .
Coda http://panic.com/coda Mac only

Aptana www.aptana.com Mac or Windows
Komodo Edit www.activestate.com/ Mac or Windows

komodo-edit/downloads

(continued)

21

http://panic.com/coda
http://www.aptana.com
http://www.activestate.com/komodo-edit/downloads
http://www.activestate.com/komodo-edit/downloads

2 2 Part I: Getting Started with JavaScript

Table 2-1 (continued)

Name Location Compatible with . ..

Dreamweaver http://adobe.com/products/ Mac or Windows
dreamweaver.html

Eclipse www.eclipse.org Mac or Windows

Notepad++ http://notepad-plus- Windows only
plus.org

TextMate http://macromates.com Mac only

BBEdit www . barebones.com/ Mac only
products/bbedit

EMacs www.gnu.org/software/emacs Mac or Windows

TextPad www . textpad.com Windows only

vim www.vim.org Mac or Windows

Netbeans https://netbeans.org Mac or Windows

We use Sublime Text (see Figure 2-2) for this book because it’s popular
among JavaScript programmers, and it provides a simple user interface along
with a large number of plugins for handling more advanced programming
tasks as you gain more programming experience.

To install Sublime Text, follow these steps:
1. Goto http://sublimetext.com and choose the appropriate version

for your operating system.

2. Open the downloaded file and follow the instructions for installing
Sublime Text.

Getting started with Sublime Text

When you first open Sublime Text, you see a simple blank page with a cursor
on it (see Figure 2-3).

If you've used Sublime Text, you may see a sidebar on the left, as shown in
Figure 2-4. This sidebar shows your open files and the files in your project, if
you've created one. The sidebar is useful, and we recommend that you have
it open.

To open the sidebar, click View=> Sidebar=> Show Sidebar.

http://sublimetext.com
http://adobe.com/products/dreamweaver.html
http://adobe.com/products/dreamweaver.html
http://www.eclipse.org
http://notepad-plus-plus.org
http://notepad-plus-plus.org
http://macromates.com
http://www.barebones.com/products/bbedit
http://www.barebones.com/products/bbedit
http://www.gnu.org/software/emacs
http://www.textpad.com
http://www.vim.org
https://netbeans.org

Chapter 2: Writing Your First JavaScript Program

|
Figure 2-2:
Sublime
Textisa
seemingly
simple-
looking

text editor
with a lot

of powerful
features.
|

|
Figure 2-3:
The initial
Sublime
Text user
interface.
How's

that for
simplicity?
|

® O ® /& sublime Text: The text o0 Chris

= C i [www.sublimetext.com

wnload Buy Blog Forum Support

Sublime Text

Sublime Text is a sophisticated text editor for code, markup and prose.
You'll love the slick user interface, extraordinary features and amazing performance

Home

806 Demonstration e}

untitled

sublime, subline_plugin
os.path

MOTION_MODE_NORMAL

MOTION_MODE_LINE - 2

g_registers - {}

s InputState:
prefix_repeat_digits
action_command
action_command_args
action_description
notion_repeat_digit:
notion_command = N
notion_command_args - N
notion_mode ~ HOTION_MODE_NORMAL

notion_mode_overridden

Uine 1, Column 1
The Command Palette gives fast access to functionality. <4 3/6 p
Here *20P is used to show the Command Palette, "sspy" (short for Set Syntax: Python) is used set

the syntax of the current file to Python.

Dognload for OS X

Version 2.0.2

8 untitled « - Sublime Text 2 (UNREGISTERED) EEEE]
File Edit Selection Find ‘View Goto Tools Project Preferences Help

23

24

Part I: Getting Started with JavaScript

|
Figure 2-4:
Sublime
Text with
the sidebar
open.
|

B untitled = - Sublime Text 2 (UNREGISTERED)

File Edit Selection Find ‘View Goto Tools Project Preferences Help

OPEN FILES
untitled

o]
g
t

To get started with your first Sublime Text project file, follow these steps:

1.

Choose File Save As.

The Save dialog box appears, and your default save location is shown.

If you're happy with storing your code in this folder (most likely the
Documents folder [on OSX] or the My Documents folder [Windows]),
then move on to Step 2. Otherwise, navigate to another location on your
computer where you want to store your code files.

2. Create a new folder and name the folder

. In the Save As text area, give this first file a name and then click Save.

The new filename appears in the sidebar and the name on the open tab
change to your selected name.

. Choose Project=>Save Project As and save the Sublime Text project

file inside the folder you created.

Sublime Text project files are where Sublime Text stores information
about what files and folders are associated with a project. Creating a
project folder allows you to keep all the different types of files in your
program better organized.

. Choose Project~> Add Folder to Project, select the folder you created

in Step 1, and then click Open.

A new collapsible list appears in the sidebar called Folders, and your
folder, along with the contents of it (including the project file and
MyFirstProgram.html), will be listed underneath it, as shown in Figure 2-5.

|
Figure 2-5:
Your first
Sublime
Text project
is ready

to go!

NG/
&

Chapter 2: Writing Your First JavaScript Program 2 5

=)

File Edit Selection Find View Goto Taols

OPEN FILES

*

FOLDERS

¥ MyFirstlavaScriptProject
WyFirstPragram.html

0
g
c

Project Preferences Help

myFirstProject.sublime-project
myFirstProject.sublime-workspace

Line 1, Colurmn 1

In order for you to keep all your files and folders organized, we pro-

vide some recommendations as to what you should name your files

and folders. For example, you can name your new folder from Step 2
MyFirstJavaScriptProject. the file in Step 3 MyFirstProgram, and the
project from Step 4 myFirstProject.

Choosing a syntax color scheme

Sublime Text syntax colors are based on the type of code that you're writing
and the file extension. Input the following HTML and JavaScript code shown
in Listing 2-1 into the file you’ve just created to see the default color scheme.

As you’re about to find out, JavaScript is finicky. Make sure that you capital-
ize and spell everything exactly as it is in the listing, or your script may not
work correctly or at all.

Listing 2-1: A Sample HTML File Containing JavaScript

<!DOCTYPE html>
<html>
<head>
<title>Hello, HTML!</title>
<script>
function countToTen () {
var count = 0;
while (count < 10) {
count++;
document .getElementById ("theCount") .innerHTML +=
count + "
";

(continued)

2 6 Part I: Getting Started with JavaScript

A\

L
Figure 2-6:
Sublime
Text applies
colors to all
of the differ-
ent parts of
your code.
L

Listing 2-1 (continued)

Code-Line Before Listing Code </script>
</head>
<body onload="countToTen () ;">
<hls>Let's Count to 10 with JavaScript!</hl>
<p id="theCount"></p>
</body>
</html>

Figure 2-6 shows what the file looks like in Sublime Text for us.

If you don'’t like the color scheme that’s currently selected, you can change
it by choosing Preferences = Color Scheme and then selecting another color
scheme.

Try out a few of the other color schemes and find one you like. The one we
use for this book is called Monokai Bright.

If you’d like to try out the program you’ve just typed, follow these steps:

1. Save the file by choosing File > Save.
2. Open your Chrome browser and press Ctrl + O.
An Open File window appears.
3. Navigate to the file on your computer and select it.
4. Click the Open button.

The file will open in your browser.

B C\UserstDummy\Di ptProjectiMyFirstProgram html = - Sublime . (==
File Edit Selection Find Wiew Goto Tools
OPEN FILES
L)

Project Preferences Help

(count
countt;

Line 19, Cof

vww.allitebooks.cond

http://www.allitebooks.org

Chapter 2: Writing Your First JavaScript Program 2 7

Your browser should look just like Figure 2-7. If it doesn’t, very carefully
check your code — you probably have a small typo somewhere. Don't forget
to save your file after making any changes!

B/l |E] &

/[Hello, HTMLL x \
g

<« C A [wwweodingjsfordummies.com/code/cho2/listng 2-1html =
Let's Count to 10 with JavaScript!

|
Figure 2-7:
Running

a simple
counting
programin
Chrome.

=0 0o s o L B W

=)

You can also save your file by pressing command + S (on the Mac) or
Control + S (On Windows). Once you become proficient with them, keyboard
shortcuts will save you a lot of time.

Some helpful Sublime Text shortcuts

Sublime Text looks like an ordinary text editor, but don’t be fooled! A true
mark of a master programmer is his or her ability to use keyboard shortcuts
to crank out code and make edits as quickly as possible. Table 2-2 lists a few
of the many keyboard shortcuts that Sublime Text provides. Practice these,
and you’ll quickly be able to impress your friends and colleagues with your
super-elite skills.

Table 2-2 Commonly Used Sublime Text Editing
Keyboard Shortcodes

Mac Windows Description

Command+X Ctrl+X Delete line

Command+Return Ctrl+Enter Insert line after

Command+Shift+Return Ctrl+Shift+Enter Insert line before

Command+Control+Up Ctrl+Shift+Up Arrow Move line/Selection Up

Arrow

Command+Control+Down Ctrl+Shift+Down Move line/Selection

Arrow Arrow down

(continued)

Part I: Getting Started with JavaScript

Table 2-2 (continued)

Mac Windows Description

Command+L Ctrl+L Select line; repeat to
select next lines

Command+D Ctrl+D Select word; repeat to
select other occurrences

Control+M Ctrl+M Jump to closing
parentheses; repeat to
jump to opening paren-
theses

Control+Shift+M Ctrl+Shift+M Select all contents of
current parentheses

Command+K+Command+K Ctrl+k+k Delete from cursor to end

of line

Command+K+Delete

Ctrl+K+Delete

Delete from cursor to
beginning of line

Command+] Ctrl+] Indent current line(s)
Command+[Ctri+[Un-indent current line(s)
Command+Shift+D Ctrl+Shift+D Duplicate line(s)
Command+J Ctrl+J Join line below to the
end of the current line
Command+/ Ctrl+/ Comment/un-comment
current line
Command+0ption+/ Ctrl+Shift+/ Block comment current
selection
Command+Y Ctri+Y Redo or repeat last key-
board shortcut command
Command+Shift+V Ctrl+Shift+V Paste and indent
correctly
Control+Space Ctrl+Space Select next auto-
complete selection
Control+U Ctrl+U Soft Undo; jumps to
your last change before
undoing change when
repeated
Control+Shift+Up Ctrl+Alt+Up Column selection up
Control+Shift+Down Ctrl+Alt+Down Column selection down
Control+Shift+W Alt+Shift+W Wrap selection in html

tag

Chapter 2: Writing Your First JavaScript Program 2 9

Reading JavaScript Code

Before you get started with writing JavaScript programs, you need to be
aware of a few rules of JavaScript:

v~ JavaScript is case-sensitive. We repeat this several times throughout
the book, because it’s an error that those who are new to JavaScript
make quite frequently. To JavaScript, the words pants and Pants are
completely different.

v~ JavaScript doesn’t care much about white space. White space includes
spaces, tabs, and line breaks — any character that doesn’t have a visual
representation. When you’re writing JavaScript code, it doesn’t matter
if you use one space, two spaces, a tab, or even a line break (in most
cases) within the code. JavaScript will ignore white space. The one
exception is when you’re writing out text that you want JavaScript to
print to the screen. In this case, the white space you use will show up
in the end result. The best practice, with regards to white space in your
code, is to use enough space that your code is easy to read and to also
be consistent with how you use this space.

1+ Watch out for reserved words. JavaScript has a list of words that have
special meaning to the language. We list these words in Chapter 3. For
now, just be aware that some words, such as function, while, break, and
with have special meanings.

v JavaScript likes semicolons: JavaScript code is made up of statements.
You can think of statements as similar to sentences. They are fundamen-
tal building blocks for JavaScript programs in the same way that sen-
tences are the building blocks of paragraphs. In JavaScript, statements
end with a semicolon.
QMING/ , . o

Y If you don’t use a semicolon at the end of a statement, JavaScript will put

it there for you. This can lead to unexpected results, however, so it’s con-

sidered a best practice to always end statements with a semicolon.

Running JavaScript in the
Browser Window

Although it’s seen in many different environments, the most common place
to see JavaScript in the wild is running in web browsers. Controlling inputs
and outputs, manipulating web pages, handling common browser events
such as clicks and scrolls, and controlling the different features of web
browsers is what JavaScript was born to do!

30

Part I: Getting Started with JavaScript

To run JavaScript in a web browser, you have three options, all of which will
be shown in the following pages:

v Put it directly in an HTML event attribute

v Put it between an opening and closing script tag

» Put it in a separate document and include it in your HTML document
Many times, you'll use a combination of all three techniques within any one

web page. However, knowing when to use each is important and is a skill that
you’ll learn with more practice.

Using JavaScript in an HTML
event attribute

HTML has several special attributes that are designed for triggering
JavaScript when something happens in the web browser or when the user
does something. Here’s an example of an HTML button with an event attri-
bute that responds to mouse click events:

<button id="bigButton" onclick="alert ('Hello
World!') ;">Click Here</buttons>

In this case, when a user clicks on the button created by this HTML element,
a popup will appear with the words “Hello World!”.

HTML has over 70 different event attributes. Table 2-3 shows the most com-
monly used ones.

Table 2-3 Commonly Used HTML Event Attributes

Attribute Description

onload Runs the script after the pages finishes loading

onfocus Runs the script when the element gets focus (such as when a
text box is active)

onblur Runs the script when the element loses focus (such as when
the user clicks a new text box in a form)

onchange Runs the script when the value of an element is changed

Chapter 2: Writing Your First JavaScript Program

WING/
&

Attribute Description

onselect Runs the script when text has been submitted

onsubmit Runs the script when a form has been submitted

onkeydown Runs the script when a user is pressing a key

onkeypress Runs the script when a user presses a key

onkeyup Runs the script when a user releases a key

onclick Runs the script when a user mouse clicks an element

ondrag Runs the script when an element is dragged

ondrop Runs the script when a dragged element is being dropped

onmouseover Runs the script when a user moves a mouse pointer over an
element

Although they’re easy to use, using event attributes is actually considered

a less-than-ideal practice by many JavaScript programmers. We demon-
strate them in this book because they are so widely used and easy to learn.
However, for now, just be aware that there is a better way to write JavaScript
code that responds to events than to use event attributes. We cover this
better method in Chapter 11.

Using JavaScript in a script element

The HTML script element allows you to embed JavaScript into an HTML doc-
ument. Often script elements are placed within the head element, and, in fact,
this placement was often stated as a requirement. Today, however, script ele-
ments are used within the head element as well as in the body of web pages.

The format of the script element is very simple:

<scripts>
(insert your JavaScript here)
</scripts>

You saw an example of this type of script embedding in Listing 2-1. Listing 2-2
shows another example of an HTML document with a script tag containing
JavaScript. In this case, however, we place the script element at the bottom
of the body element.

31

32 Part I: Getting Started with JavaScript

Listing 2-2: Embedding JavaScript within a Script Element

< !DOCTYPE html>
<html>
<head>
<title>Hello, HTML!</title>
</head>
<body>
<hlsLet's Count to 10 with JavaScript!</hl>
<p id="theCount"></p>
<script>
var count = 0;
while (count < 10) {
count++;
document .getElementById ("theCount") .innerHTML +=
count + "
";
!

</scripts>
</body>
</html>

If you create a new file in Sublime Text, input Listing 2-2 into it, and then
open it in a web browser, you’ll notice that it does exactly the same thing as
Listing 2-1.

Script placement and JavaScript execution

Web browsers normally load and execute scripts as they are loaded. A web
page always gets read by the browser from the top down, just as you would
read a page of text. Sometimes you’ll want to wait until the browser is done
loading the contents of the web page before the script runs. In Listing 2-1, we
accomplished this by using the onload event attribute in the body element.
Another common way to delay execution is to simply place the code to be
executed at the end of the code as in Listing 2-2.

Limitations of JavaScript in <script> elements

While much more commonly used and more widely accepted than inline
scripting (putting JavaScript into event attributes), embedding JavaScript
into a script element has some serious limitations.

The biggest limitation is that scripts embedded in this way can be used

only within the web page where they live. In other words, if you put your
JavaScript into a script element, you need to copy and paste that script ele-
ment exactly into every page where it exists. With some websites containing
many hundreds of web pages, you can see how this can become a mainte-
nance nightmare.

Chapter 2: Writing Your First JavaScript Program 33

When to use JavaScript in <script> elements

This method of embedding JavaScript does have its uses. For bits of
JavaScript that simply call other bits of JavaScript and that rarely (or prefer-
ably, never) change, it is acceptable and can even speed up the loading and
display of your web pages by causing the web server to have to make fewer
requests to the server.

Single page apps, which (as the name implies) contain only a single HTML
page, are also great candidates for the use of this type of embedding because
there will only ever be one place to update the script.

As a rule, however, you should seek to minimize the amount of JavaScript
that you embed directly into an HTML document. The results will be easier
maintenance and better organization of your code.

Including external JavaScript files

The third and most popular way to include JavaScript in HTML documents is
by using the src attribute of the script element.

A script element with a src attribute works exactly like a script element with
JavaScript between the tags, except that if you use the src attribute, the
JavaScript is loaded into the HTML document from a separate file. Here’s an
example of a script element with a src attribute:

<script src="myScript.js"></scripts>

In this case, you would have a separate file, named myScript . js, that would
reside in the same folder as your HTML document. The benefits of using
external JavaScript files are that using them

v Keeps your HTML files neater and less cluttered

1 Makes your life easier because you need to modify JavaScript in only
one place when something changes or when you make a bug fix

Creating a .js file
Creating an external JavaScript file is similar to creating an HTML file or

another other type of file. To replace the embedded JavaScript in Listing 2-1
with an external JavaScript file, follow these steps:

1. In Sublime Text, choose File=> New File.

2. Copy everything between <script> and </script> from
MyFirstProgram.html and paste it into your new . js file.

34 Part I: Getting Started with JavaScript

Notice that external JavaScript files don’t contain <script> elements,
just the JavaScript.

3. Save your new file as countToTen. js in the same folder as
MyFirstProgram.html.

4. In MyFirstProgram.html, modify your script element to add a src
attribute, like this:

<script src="countToTen.js"></script
Your copy of MyFirstProgram.html should now look like this:

< !DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

<script src="countToTen.js"></script>
</head>

<body onload="countToTen() ;">
<hlsLet's Count to 10 with JavaScript!</hl>
<p id="theCount"></p>

</body>

</html>

Your new file, countToTen. js, should look like this:

function countToTen () {
var count = 0;
while (count < 10) {
count++;
document .getElementById ("theCount") .innerHTML +=
count + "<brs>";

}
}

After you've saved both files, you should see them inside your project in the
Sublime Text sidebar, as shown in Figure 2-8.

Keeping your .js files organized

External JavaScript files can sometimes get to be very large. In many cases,
it’s a good idea to break them up into smaller files, organized by the type of
functions they contain. For example, one JavaScript file may contain scripts
related to the user login capabilities of your program, while another may con-
tain scripts related to the blogging capabilities.

For small programs, however, it’s usually sufficient to have just one file, and
many people will name their single JavaScript file something generic, such as
app.js,main.js, or scripts.js.

Chapter 2: Writing Your First JavaScript Program

|
Figure 2-8:
Viewing
multiple

files in your
project
folder in
Sublime
Text.
|

File

I C\Users\Dummy\DocumentstiMyFirstJavaScriptProjecticount TaTen js (MyFirstJavaScript.. (=) =][52]
Edit Selection Find View Goto Toals
OPEN FILES

20-2.hitma|
FOLDERS
W MyFirstiavascriptProject

MAyFirstPragram fitml etEleme “theCount™). ir
myFirstProject.sublime-project
myFirstProject.sublime-workspace

Line 4, Calumn 1

Project Preferences Help

JavaScript files don’t need to be in the same folder as the HTML file that
includes them. In fact, we recommend that you create a new folder specifi-
cally for storing your external JavaScript files. Most people we know call this
something like js.

Follow these steps to create a js folder inside of your Sublime Text project
and move your js file into it:

1.

Right-click on the name of your project in the Sublime Text sidebar.

A submenu appears.

. Choose New Folder from the submenu.

A Folder Name text area appears at the bottom of the Sublime Text
window.

. Enter js into the folder name text field and press Enter.

A new folder called js appears in the sidebar.

. Open countToTen. js and choose File=> Save As and save it in your

new js folder.

. Right-click on the version of countToTen. js that’s outside of your

folder and choose Delete File from the submenu.

. Open up MyFirstProgram. js and change your script element to

reflect the new location of your ;s file, like this:

<script src="js/countToTen.js"></script>

35

36 Part I: Getting Started with JavaScript

When you open MyFirstProgram.html in your browser (or simply click
refresh), it should look exactly like it did before you moved the JavaScript file
into its own folder.

Using the JavaScript Developer Console

|
Figure 2-9:
JavaScript
Console in
the Chrome
browser.
|

Sometimes, it’s helpful to be able to run JavaScript commands without
creating an HTML page and including separate scripts or creating <script>
blocks. For these times, you can use the Chrome browser’s JavaScript
Console (see Figure 2-9).

To access the JavaScript Console, find the Chrome menu in the upper-right
corner of your browser. It looks like three horizontal lines. Click the Chrome
menu and then find More Tools in the drop-down menu. Under More Tools,
choose JavaScript Console from the drop-down menu.

And, yes, there is a faster way to open the JavaScript Console. Simply press
Alt+Command+J (on Mac) or Control+Shift+] (on Windows).

= I

|/ H soogle x
& > C f B htpsy/wwwgooglecom gws_rd=sd

s vl mages 3 MO i

Google

=

Google Search I'm Feeling Lucky

vww . allitebooks.cond

http://www.allitebooks.org

Chapter 2: Writing Your First JavaScript Program

TEC/, ",

MBER
\‘&
&

The JavaScript Console is perhaps the best friend of the JavaScript devel-
oper. Besides allowing you to test and run JavaScript code quickly and easily,
it also is where errors in your code are reported, and it has features that will
help you track down and solve problems with your code.

Once you've opened the JavaScript console, you can start inputting com-
mands into it, which will run as soon as you press Enter. To try it out, open
the JavaScript console and then type the following commands, pressing Enter
after each one:

1080/33
40 + 2
40 * 34
100%3
34 ++
34--

Commenting your code

As you learn more JavaScript commands and start to write larger programs,
it’s often helpful to be able to leave yourself little reminders of what you
were thinking or what certain things do. In programmer-speak, we call these
tiny notes to ourselves (or to anyone else who may work with your code)
comments. We call the process of writing these notes commenting.

The JavaScript engine completely ignores comments. They are there just
for people. This is your time to explain things, clarify things, describe your
thinking, or even leave reminders to yourself about things you want to do in
the future.

It is always a good idea to comment your code. Even if you think that your
code is pretty self-explanatory at the time that you write it, we guarantee that
you won't think that eight months down the road when you need to modify it.

JavaScript gives you two ways to denote something as a comment:
v The single-line comment

v The multi-line comment

Single-line comments

Single-line comments start with //. Everything after these two slashes and up
until the end of the line will be ignored by the JavaScript parser.

37

38 Part I: Getting Started with JavaScript

Single-line comments don’t need to start at the beginning of a line. It’s quite
common to see a single-line comment used on the same line as a piece of
code that is not commented, in order to explain what that line means. For
example:

pizzas = pizza + 1; // add one more pizza

Multi-line comments

Multi-line comments start with /* and tell the JavaScript parser to ignore
everything up to * /. Multi-line comments are useful for more extensive docu-
mentation of code. For example:

/* The countToTen function does the following things:

* Tnitializes a variable called count

* Starts a loop by checking the value of count to make
sure it's less than 10

* Adds 1 to the value of count

* Appends the the current value of count, followed by a
line break, to the paragraph with id='theCount'

* Starts the loop over

*/

Using comments to prevent code execution

Besides being useful for documenting code, comments are often useful for
isolating pieces of code in order to find problems. For example, if we wanted
to see what the countToTen function would do if we removed the line from
the loop that increments the value of count, we could comment out that line
using a single-line comment, like this:

function countToTen () {
var count = 0;
while (count < 10) {
// count++;
document .getElementById ("theCount") .innerHTML +=
count + "
";
}

}

When you run this program, the line count++; will no longer run, and the
program will print out Os forever (or until you close the browser window).

Vg‘“‘NG! We call what we just created an infinite loop. If you do run a modified version
S of this program, it won’t do any harm to your computer, but it will likely take
your CPU for a wild ride of spinning in circles as fast as it can until you shut
down the browser window in which you opened it in.

Chapter 3
Working with Variables

In This Chapter
Creating and using variables
Understanding variable scope
Knowing JavaScript’s data types
Naming variables

Using built-in functions to work with variables

“Beauty is variable, ugliness is constant.”
— Douglas Horton (1891 - 1968)

’ n this chapter, you discover how to create variables, fill them with values,
use functions to find out what type of data is in your variables, convert
between different data types, and manipulate the data in your variables.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Understanding Variables

Variables are representative names in a program. Just as x may stand for
some as-yet-unknown value in algebra, or x may mark the spot where the
treasure is buried on a pirate’s map, variables are used in programming to
represent something else.

You can think about variables as containers that contain data. You can give
these containers names, and later you can recall and change the datain a
variable by using its name.

4 0 Part I: Getting Started with JavaScript

Without variables, every computer program would have only one purpose.
For example, the following one-line program doesn’t use variables:

alert (3 + 7);

Its purpose is to add together the numbers 3 and 7 and to print out the result
in a browser popup window.

The program isn’t of much use, however (unless you happen to need to recall
the sum of 3 and 7 on a regular basis). With variables, you can make a general
purpose program that can add together any two numbers and print out the
result, like the following example:

var firstNumber = 3;

var secondNumber = 7;

var total = Number (firstNumber) + Number (secondNumber) ;
alert (total) ;

Taken a step further, you can expand this program to ask the user for two
numbers and then add them together, like the following example:

var firstNumber = prompt ("Enter the first number") ;
var secondNumber = prompt ("Enter the second number") ;
var total = Number (firstNumber) + Number (secondNumber) ;
alert (total) ;

Try out this program for yourself! (Chapter 2 shows how to use your code
editor.) Follow these steps:

1. Open your code editor and create a basic HTML template.

2. Between <body> and </body>, insert an opening <script> tag and a
closing </script> tag.

3. Between the opening and closing script tags, enter the preceding
example code.

Your document should now look like this:

<html>
<head></head>
<body>
<scripts>
var firstNumber = prompt ("Enter the first number") ;
var secondNumber = prompt ("Enter the second number") ;
var total = Number (firstNumber) +
Number (secondNumber) ;
alert (total) ;
</scripts>
</body>
</html>

Chapter 3: Working with Variables

4. Save your new HTML document as addtwo.html.
5. Open your HTML document in your web browser.
You should be prompted for a first number, as shown in Figure 3-1.
6. Enter the first number.
After you enter that number, you’ll be prompted for a second number.
7. Enter the second number.

After you give the program the second number, the result of adding the
two numbers together will be displayed on the screen.

www.codingjsfordummies = x Chris

&« X A [www.codingjsfordummies.com/code/ch03... 17 =

I The page at www.codingjsfordummies.com
¢ ' says:

Figure 3-1:

A general-
purpose
program Cancel | oK]

for adding
two user
submitted
numbers.
I Waiting for www.codingjsfordu

Flease enter the first number

Declaring Variables

Declaring a variable is the technical term that’s used to describe the process
of first creating a variable in a program. You may also hear it called initializa-
tion. Creating a variable, declaring a variable, and initializing a variable all
refer to the same thing.

Variables in JavaScript can be created in one of two ways:

v Using a var keyword:

var myName;

v A variable created using a var keyword will have an initial value of unde-
fined unless you give it a value when you create it, such as

var myName = "Chris";

41

4 2 Part I: Getting Started with JavaScript

When is equal not equal?

In English, it's common and correct to programming, the equal sign is actually called
read statements containing "=" as the assignment operator.

"var myName equals Chris".
However, this interpretation is not correct in
programming.

The difference between an assignment opera-
tor and an “equal to” is vital to understand:

v The assignment operator sets the thing to
the left of it equal to the thing to the right
var myName = "Chris"; of it, like this:

Take, for example,

The character that looks like an equal sign var myName = "Chris";
between the variable name (myName) and the
value ("Chris") in the preceding example
may look exactly like an equal sign, and it's
even produced using the key that is commonly
called equal sign on the keyboard. However, in

v “Equals” compares the value on the left
to the value on the right and determines
whether or not they are the same. Equals in
JavaScript is written as ===.

v Without a var keyword

myName = "Chris";

When you create a variable without a var keyword, it becomes a global variable.
(In order to understand what a global variable means, see the next section.)

Notice the quotes around the value on the right in the preceding examples.

These quotes indicate that the value should be treated as text, rather than as a
number, a JavaScript keyword, or another variable. See the section on data types
later in this chapter for more information about how and when to use quotes.

Understanding Global and Local Scope

How and where you declare a variable determines how and where your
program can make use of that variable. This concept is called variable scope.
JavaScript has two types of scope:

v Global variables can be used anywhere inside of a program.

v Local (function) variables are variables that you create inside of a
protected program within a program, called a function.

Chapter 3: Working with Variables

The tragic tale of the missing var

There is really never a reason to create a vari-
able without using the var keyword, and doing
so will cause you problems. If you leave out the
var keyword, it just looks like you forgot it, so
don't do it!

The following example shows the kind of prob-
lem and confusion that can happen from not
using the var keyword. It also demonstrates
the use of a more advanced programming tool,
called a function, which we cover in much more
detail in Chapter 7. In short, functions let you put
smaller programs within your programs.

In this first example, the programmer wants to
have a variable called movie that is global,
and a separate variable with the same name
that is only valid within the function called
showBadMovie. This is a perfectly normal
thing to do, and under normal circumstances,
the movie variable inside the function
wouldn't affect the global variable. However,
if you forget to use the var keyword when
declaring the movie variable inside the function,
bad things happen.

var movie = "The Godfather";

function showGoodMovie () {

alert (movie + " is a good
movie!") ;
}
function showBadMovie ()
movie = "Speed 2: Cruise
Control";
alert (movie + " is a bad
movie!") ;
}

Notice that the var keyword is miss-
ing from before the movie variable in

showBadMovie () . JavaScript assumes
that you want to override the global movie vari-
able, rather than create a local function vari-
able. The results are positively disastrous!

showGoodMovie () ; // pops up
"The Godfather is a good
movie!"

showBadMovie () ; // pops up
"Speed 2: Cruise Control is
a bad movie!"

/* Oh no! The global variable
is now Speed 2: Cruise
Control, not the good movie
name anymore! */

showGoodMovie () ; // pops up
"Speed 2: Cruise Control is
a good movie!"

IESEEES

www.codingjsfordurmm %\

€« X fi

| wmv.codingjsfordummies‘T:_-.’ =
The page atwww.codingjsfordummies.com says: *

Speed 2: Cruise Control is a good movie!

Prevent this page from creating additional dialogs.

oK

Waiting for ww.co...

43

b4

Part I: Getting Started with JavaScript

A\\S

In general, using local variables is preferable to using globals because
limiting the scope of variables reduces the chance that you’ll accidentally
overwrite the value of a variable with another variable of the same name.

The use of globals can create problems in your program that can be difficult
to track down and fix. We recommend that you never create variables with-
out using the var keyword. If you do have a need for a global variable, it is
possible to create them with the use of a var keyword, and we recommend
that you do it that way.

Naming Variables

WNG/

A\\S

Variable names can start with the following characters:

v Upper- or lowercase letter
v An underscore ()

v A dollar sign ($)

Although you can use an underscore or dollar sign to start a variable, it’s
best to begin with a letter. Unexpected characters can often cause your code
to look confusing and difficult to read, especially if you are new to JavaScript
coding.

After the first character, you can use any letter or number in your variable
name, and it can be any length. JavaScript variables cannot contain spaces,
mathematical operators, or punctuation (other than the underscore).

Always remember that JavaScript is case-sensitive. A variable named myname
is not the same variable as Myname or myName.

Variable names are actually identifiers; the best thing you can do is to name a
variable something precise and relevant. This naming convention may some-
times result in very long names, but as a rule, a longer name that accurately
represents the variable is more useful than a shorter name that is vague.

Of course, there are limits to how long variable names can be without
making your life more difficult. If you need to use 20 characters to accurately
describe your variable, go for it. But, if you're creating variable names like
nameOfPersonWhoJustFilledOutTheFormOnMyWebsite, you may want
to see whether you can simplify your life (as well as that of anyone else who
may need to work with your code) by shortening to something more like
personName.

Chapter 3: Working with Variables

Guidelines for creating good variable names

Although JavaScript gives you a lot of freedom in how you name your variables, it's best to decide
on some basic rules for yourself before you start programming. For example, do you start your
variable names with a lowercase or uppercase letter? Do you use underscores hetween multiple
words within a variable name, or do you use camelCase? As your code becomes more complex,
the importance of correct naming becomes apparent.

Fortunately, you’re not on your own when you’re deciding on your style. There are some best prac-
tices that many professional JavaScript programmers agree upon and use when naming variables:

v+~ Do not use names that are too short! Simple one letter names or nonsensical names are not
a good option when naming variables.

v Use multiword names to be as precise as possible.
v In multiword names, always put adjectives to the left, as in var greenPython;.

Pick a style for multiple word names and be consistent. There are two ways to join words to create
a name: camelCase and under_score. JavaScript is a flexible language, and you can use either
method, although camelCase is generally the more commonly employed.

Some words cannot be used as variable names. Following is a list of reserved words that cannot
be used as JavaScript variables, functions, methods, loop labels, or object names.

abstract else instanceof switch
boolean enum int synchronized
break export interface this

byte extends long throw
case false native throws
catch final new transient
char finally null true
class float package try
const for private typeof
continue function protected var
debugger goto public void
default if return volatile
delete implements short while
do import static with
double in super

b5

456

Part I: Getting Started with JavaScript

Creating Constants Using
the const Keyword

Occasionally, your program may have a need for variables that can’t be
changed. In these cases, you can declare your variable using the const key-
word. For example:

const heightOfTheEmpireStateBuilding = 1454;
const speedOfLight = 299792458;

const numberOfProblems = 99;

const meanNumberofBooksReadIn2014 = 12;

Constants abide by the same rules as other variables, but once you create a
constant, its value cannot be changed during its lifetime (which lasts as long
as the script is running).

Working with Data Types

A variable’s data type is the kind of data the variable can hold and what
operations can be done with the value of the variable. The number 10, used
in a sentence, is different than the number 10 used in an equation, for exam-
ple. Data types are the way JavaScript distinguishes between values that are
meant to be words and values that are meant to be treated as mathematical
expressions.

If you think about all the types of data that you work with on a daily basis —
pie charts, recipes, short stories, newspaper articles, and so on — you’ll see
just how much potential there is for things to get very complicated when it
comes to data. The generous creators of JavaScript decided to make things
very simple for you. It has just five basic data types.

Furthermore, JavaScript is what’s called a loosely typed language. What
loosely typed means is that you don’t even need to tell JavaScript, or even
know, whether a variable you're creating will hold a word, a paragraph, a
number, or a different type of data.

Loosely typed doesn’t mean that JavaScript doesn’t distinguish between
words and numbers. JavaScript just is friendly about it and handles the work
of figuring out what type of data you store in your variables largely behind
the scenes.

vww . allitebooks.cond

http://www.allitebooks.org

Chapter 3: Working with Variables 4 7

JavaScript recognizes five basic, or primitive, types of data.

The C++ programming language has at least 12 different data types!

Number data type

Numbers in JavaScript are stored as 64-bit, floating point values. What this
means, in English, is that numbers can range from 5e-324 (that’s -5 followed
by 324 zeros) to 1.7976931348623157e+308 (move the decimal 308 spots to
the right to see this giant number). Any number may have decimal points or
not. Unlike most programming languages, JavaScript doesn’t have separate
data types for integers (positive or negative numbers without a fractional
part) and floating points (decimals).

Just how big is the biggest number JavaScript can use? Here it is, written out
without scientific notation:

17976931348623157000
00
00
00
0000000000000000000000000000000000000

When you declare a number variable, you compile it from all of the following
elements:

v The var keyword

v The name you want to give your variable

v The assignment operator

»* A number (or even an equation that resolves to a number

»* A semicolon

Here are some examples of valid number variables declarations:
var numberOfDucks = 4;
var populationOfSpain = 47200000;

var howManyTacos = 8;

58

Part I: Getting Started with JavaScript

Number functions

JavaScript includes a built-in Number function for converting values to num-
bers. To use the Number function, simply put the value (or a variable holding
the value) that you want to convert to a number between the parentheses
after the Number function.

The Number function produces four kinds of output:
v Numbers that are formatted as text strings are converted to numbers
that can be used for calculations, like this:
Number ("42") // returns the number 42

v Text strings that can’t be converted to numbers return the value NaN,
like this:

Number ("eggs") // returns NaN

v The Boolean value true returns the number 1, like this:
Number (true) // returns 1

v The Boolean value false returns the number 0, like this:

Number (false) // returns 0

parselnt () function

To JavaScript, all numbers are actually floating point numbers. However, you
can use the parseInt () function to tell JavaScript to consider only the non-
fractional part of the number (the integer), discarding everything after the
decimal point.

parselnt (100.33); // returns 100

parseFloat (); function

You can use parseFloat () to specifically tell JavaScript to treat a number as
a float. Or, you can even use it to convert a string to a number. For example:

parseFloat ("10"); // returns 10
parseFloat (100.00); //returns 100.00
parseFloat ("10"); //returns 10

Examples

Now you can play around with some numbers and number functions. Try
entering the following expressions into the JavaScript console in your
Chrome browser to see what results they produce.

Chapter 3: Working with Variables

A\\S

WING/
Qv?‘

You can open the JavaScript console in Chrome by pressing
Command+Option+]J (Mac) or Ctrl+Shift+J (Windows).

1 + 1

3 * 3

parseFloat ("839") ;
parselnt ("33.333333");

12 + "12"
ni2m 4+ 12
"12“ * 2

Number variables must be declared without quotation marks. "10" is not
the same as 10. The former is a string (which is covered in the next section),
and if you accidentally declare a number variable inside of quotes, you’ll get
unexpected results.

If you're following along, you may have noticed some odd behaviors with
the previous examples. For example, when you add "12" (a string) to 12
(anumber), the result is "1212" (a string). But, when you multiply "12"
(a string) by 2 (a number) the result is 24 (a number). This is a case where
JavaScript is really using its head!

In the first example, when you add, JavaScript guesses that, because one of
the values in the addition equation is a string, you meant for both of them to
be. So, it converts the number to a string and treats the plus symbol as a con-
catenation operator.

In the second example, when you multiply, one of the values in the operation
is a number, and there’s no way to multiply strings together. JavaScript con-
verts the string to a number and then proceeds with the multiplication. But,
what happens when you try to multiple two strings together?

"sassafras" * "orange"

The result is NaN (not a number). There’s just no way to convert sassafras or
orange into a number, so JavaScript throws up its hands.

String data type

Strings can be made up of any characters:

v Letter
+* Number
+* Punctuation (such as commas and periods)

v Special characters that can be written using a backslash followed by
character

49

50

Part I: Getting Started with JavaScript

QUING!

Some characters, such as quotes, have special meaning in JavaScript or
require a special combination of characters, such as a tab or new line, to
represent inside of a string. We call these special characters. Table 3-1 lists
the special characters that you can use inside JavaScript strings.

Table 3-1 JavaScript Special Characters
Code Outputs

\' single quote

\' double quote

\\ backslash

\n new line

\r carriage return

\t tab

\b backspace

\f form feed

You create a string variable by enclosing it in single or double quotes,
like this:

var myString = "Hi, I'm a string.";

It doesn’t actually matter whether you use single or double quotes, as long as
the beginning and ending quotes surrounding the string match up.

If you surround your string with single quotes, you can actually use double
quotes within that string without a problem. The same goes for if you
surround your strings with double quotes; you can use single quotes within
the string without a problem.

However, if you create a string and surround it with one type of quote, you
can’t use that type of quote inside the string, or the JavaScript parser will
think you mean to end the string and will generate an error.

Escaping quotes

The solution to the problem of not being able to include quotes inside of a
string surrounded with that type of quotes is to preface the quotes with a \.
Adding a backslash before a quote is called escaping the quotes.

Chapter 3: Working with Variables 5 ’

String functions

JavaScript includes many helpful functions for working with and converting
strings.

Here’s a list of the most frequently used built-in string functions:

v charAt () produces the character at a specified position. Note that the
counting of characters starts with 0:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.charAt(3)) ;
// returns a

V¥ concat () combines one or more strings and returns the incorporated

string:
var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.concat (' We love

JavaScript!')) ;
// returns JavaScript is Fun! We love JavaScript!

v indexOf () searches and returns the position of the first occurrence of
the searched character or substring within the string:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.indexOf ('Fun') ;
// returns 14

v split () splits strings into an array of substrings:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.split ('F'));
// returns ["JavaScript is ", "un!"]

»* substr () extracts a portion of a string beginning at "start" through a
specified length:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substr(2,5));
// returns vaScr

V¥ substring () extracts the characters within a string between two
specified positions:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.substring(2,5)) ;
// returns Vas

5 2 Part I: Getting Started with JavaScript

» toLowerCase () produces the string with all of its characters converted
to lowercase:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toLowerCase()) ;
// returns javascript is fun!

V¥ toUpperCase () produces the string with all of its characters converted
to uppercase:

var watzThisString = 'JavaScript is Fun!';
console.log (watzThisString.toUpperCase()) ;
// returns JAVASCRIPT IS FUN!

Boolean data type
Boolean variables store one of two possible values: either true or false.
The term Boolean is named after George Boole (1815-1864), who created an

algebraic system of logic. Because it’s named after a person, you generally
write it with an initial capital letter.

Boolean variables are often used for storing the results of comparisons.
You can find out the Boolean value of a comparison or convert any value in
JavaScript into a Boolean value by using the Boolean () function. For example:

var isItGreater = Boolean (3 > 20);
alert (isItGreater); // returns false

var areTheySame = Boolean ("tiger" === "Tiger");
alert (areTheySame); // returns false

The result of converting a value in JavaScript into a Boolean value using the
Boolean () function depends on the value:

v In JavaScript, the following values always evaluate to a Boolean false
value:
® NaN
¢ undefined
® 0 (numeric value zero)

°-0

"1 (empty string)

e false

Chapter 3: Working with Variables 53

v Anything that is not one of the preceding values evaluates to a Boolean
true. For example:

® 74
e "Eyva"
e njQn
e "NaN"
The number character "0" is not the same as the numeric value 0 (zero).

While 0 will always result in a Boolean value of false, the string "0" will
always result in a Boolean true.

MBER
s&
&

Boolean values are primarily used with conditional expressions. The
following program creates a Boolean variable and then test its value using
an if/then statement (which you can find out about in Chapter 5).

var b = true;
if (b == true) {
alert ("It is true!");
} else {
alert ("It is false.");
N\ }

Boolean values are written without quotes around them, like this:
var myVar = true

On the other hand, var myVar = “true” creates a string variable.

NaN data type

NaN stands for Not a Number. It’s the result that you get when you try to do

math with a string, or when a calculation fails or can’t be done. For example,

it’s impossible to calculate the square root of a negative number. Trying to
<MBER do so will result in NaN.

A more common occurrence that will produce NaN is an attempt to perform
mathematical operations using strings that can’t be converted to numbers.

undefined data type

Even if you create a variable in JavaScript and don’t specifically give it a
value, it still has a default value. This value is "undefined".

54 Part I: Getting Started with JavaScript

Chapter 4
Understanding Arrays

In This Chapter
Identifying and defining arrays
Building arrays
Moving beyond 2D with multidimensional arrays
Working within array elements

Using array functions and properties

“I am large. I contain multitudes.”

— Walt Whitman

A rrays are a fundamental part of any programming language. In this
chapter, you discover what they are, how to use them, and what makes

JavaScript arrays distinct from arrays in other programming languages. You
work with arrays to create lists, order lists, and add and remove items from
lists.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Making a List

The earlier chapters in this book involve working with variables that
are standalone pieces of data, such as: var myName = “Chris”,
var firstNumber = “3”,and var how ManyTacos = 8. There are

56 Part I: Getting Started with JavaScript

often times in programming (and in life) where you want to store related data
under a single name. For example, consider the following types of lists:
v A list of your favorite artists

v A program that selects and displays a different quote from a list of
quotes each time its run

v A holiday card mailing list
v A list of your top music albums of the year
v Alist of all your family and friends’ birthdays
v A shopping list
v A to-do list
v Alist of New Year’s resolutions
Using single-value variables (see Chapter 3), you would need to create and

keep track of multiple variables in order to accomplish any of these tasks.
Here is an example of a list created using single-value variables:

var artistl = "Alphonse Mucha";
var artist2 = "Chiara Bautista";
var artist3 = "Claude Monet";

var artist4 = "Sandro Botticelli";
var artist5 = "Andy Warhol";

var artist6 = "Wassily Kadinski";
var artist7 = "Vincent Van Gough";
var artist8 = "Paul Klee";

var artist9 = "William Blake";

var artistl0 = "Egon Schiele";

var artistll = "Salvador Dali";
var artistl2 = "Paul Cezanne";

var artistl3 = "Diego Rivera";

var artistl4 = "Pablo Picasso";

This approach could work in the short term, but you’d quickly run into difficul-
ties. For example, what if you wanted to sort the list alphabetically and move
artists into the correct variable names based on their position in the alphabeti-
cal sort? You'd need to first move Mucha out of the artist1 variable (maybe
into a temporary holding variable) and then move Bautista into the artist1
variable. The artist2 spot would then be free for Blake, but don’t forget

that Mucha is still in that temporary slot! Blake’s removal from artist9 frees
that up for you to move someone else into the temporary variable, and so on.
Creating a list in this way quickly becomes complicated and confusing.

Fortunately, JavaScript (and every other programming language we know of)
supports the creation of variables containing multiple values, called arrays.

vww . allitebooks.cond

http://www.allitebooks.org

Chapter 4: Understanding Arrays

Arrays are a way to store groups of related data inside of a single vari-
able. With arrays, you can create lists containing any mix of string values,
numbers, Boolean values, objects, functions, any other type of data, and
even other arrays!

Array Fundamentals

An array consists of array elements. Array elements are made up of the
array name and then an index number that is contained in square brackets.
The individual value within an array is called an array element. Arrays use
numbers (called the index numbers) to access those elements. The following
example illustrates how arrays use index numbers to access elements:

myArray [0]
myArray [1]
myArray [2]
myArray [3]

"vellow balloon";
"red balloon";
"blue balloon";
"pink balloon";

In this example, the element with the index number of 0 has a value of
"yellow balloon". The element with an index number 3 has a value of
"pink balloon". Just as with any variable, you can give an array any name
that complies with the rules of naming JavaScript variables. By assigning
index numbers in arrays, JavaScript gives you the ability to make a single
variable name hold a nearly unlimited list of values.

Just so you don’t get too carried away, there actually is a limit to the number
of elements that you can have in an array, although you’re very unlikely to
ever reach it. The limit is 4,294,967,295 elements.

In addition to naming requirements (which are the same for any type of vari-
able, as described in chapter 3), arrays have a couple of other rules and spe-
cial properties that you need to be familiar with:

v Arrays are zero-indexed

v Arrays can store any type of data

Arrays are zero indexed

JavaScript doesn’t have fingers or toes. As such, it doesn’t need to abide by
our crazy human rules about starting counting at 1. The first element in a
JavaScript array always has an index number of 0 (see Figure 4-1).

57

5 8 Part I: Getting Started with JavaScript

<
S
s
y 2
2
@

volume[2]
I

Figure 4-1:
JavaScript |volume[1]
is similar to
a volume
knob. It
starts volume[0]
counting

at zero!
—— volume.length; //result is 11!

volume[9?]

volume[10]

What this means for you is that myArray [3] is actually the fourth element in
the array.

Zero-based numbering is a frequent cause of bugs and confusion for those
new to programming, but once you get used to it, it will become quite natu-
ral. You may even discover that there are benefits to it, such as the ability to
turn your guitar amp up to the 11th level.

Arrays can store any type of data

Each element in an array can store any of the data types (see Chapter 3),
as well as other arrays. Array elements can also contain functions and
JavaScript objects (see Chapters 7 and 8).

While you can store any type of data in an array, you can also store elements

that contain different types of data, together, within one array, as shown in
Listing 4-1.

Listing 4-1: Storing Different Types of Data in an Array

item[0] = "apple";

item[1] = 4+8;

item[2] = 3;

item[3] = item[2] * item[1];

Chapter 4: Understanding Arrays

Creating Arrays

WING/

JavaScript provides in two different ways for you to create new arrays:

v new keyword

v Array literal notation

Using the new keyword method

The new keyword method uses new Array () to create an array and add
values to it.

var catNames = new Array("Larry", "Fuzzball",
"Mr. Furly");

You may see this method used in your career as a programmer, and it’s a
perfectly acceptable way to create an array.

Many JavaScript experts recommend against using this method, however.
The biggest problem with using the new keyword is what happens when
you forget to include it. Forgetting to use the new keyword can dramatically
change the way your program operates.

Array literal

A much simpler and safer way to create arrays is to use what is called the
array literal method of notation. This is what it looks like:

var dogNames =["Shaggy", "Tennesee", "Dr. Spock"];

That’s all there is to it. The use of square brackets and no special keywords
means that you're less likely to accidentally leave something out. The array
literal method also uses less characters than the new keyword method — and
when you're trying to keep your JavaScript as tidy as possible, every little bit
helps!

59

60

Part I: Getting Started with JavaScript

Populating Arrays

You can add values to an array when it is first created, or you can simply
create an array and then add elements to it at a later time. Adding elements
to an array works exactly the same as creating or modifying a variable,
except that you specify the index number of the element that you want to
create or modify. Listing 4-2, shows an example of creating an empty array
and then adding elements to it.

Listing 4-2: Populating an Empty Array

var peoplelList =[];

peopleList [0] "Chris Minnick";
peoplelist [1] "Eva Holland";
peoplelist [2] "Abraham Lincoln";

You don’t always need to add elements sequentially. It is perfectly legal in
JavaScript to create a new element out of sequence. For example, in the
preceding array, from Listing 4-2, you could add the following:

peoplelist [99] = "Tina Turner";

Creating an array out of sequence like this effectively creates blank elements
for all of the indexes in between peopleList [2] and peopleList [99] .

So, if you check the length property of the peopleList array after adding an
element with an index of 99, something interesting happens:

peoplelList.length // returns 100
Even though you've only created four elements, JavaScript will say that the

length of an array is 100 because the length is based on the highest num-
bered index, rather than on how many elements you’ve actually created.

Understanding Multidimensional Arrays

Not only can you store arrays inside of arrays, you can even put arrays inside
of arrays inside of arrays. This can go on and on.

An array that contains an array is called a multidimensional array. To write
a multidimensional array, you simply add more sets of square brackets to a

variable name. For example:

var listOfLists[0] [0];

Chapter 4: Understanding Arrays 6 ’

Multidimensional arrays can be difficult to visualize when you first start
working with them. Figure 4-2 shows a pictorial representation of a multidi-

mensional array.

Best Albums by Genre

Country

1. Johnny Cash:Live ...
2. Patsy Cline:Senti ...
3. Hank Williams:I'm ...

1. T-Rex:Slider
2. Nirvana: Nevermind
3. Lou Reed: Transformer,

|
Figure 4-2:

A pictorial 1. Flipper: Generic
representa- 2. The Dead Milkmen: ...
3. Patti Smith: Easter

tionofa
multidimen-
sional array.
|

You can also visualize multidimensional arrays as hierarchal lists or outlines.
For example:

Top Albums by Genre

1. Country
1.1 Johnny Cash:Live at Folsom Prison

1.2 Patsy Cline:Sentimentally Yours

1.3 Hank Williams:I'm Blue Inside
2. Rock

2.1 T-Rex:Slider

2.2 Nirvana:Nevermind

2.3 Lou Reed:Transformer

62 Part I: Getting Started with JavaScript

3. Punk
3.1 Flipper:Generic
3.2 The Dead Milkmen:Big Lizard in my Backyard

3.3 Patti Smith:Easter

Here is a code that would create an array based on Figure 4-2:

var bestAlbumsByGenre = []

bestAlbumsByGenre [0] = "Country";

bestAlbumsByGenre [0] [0] = "Johnny Cash:Live at Folsom
Prison"

bestAlbumsByGenre [0] [1] = "Patsy Cline:Sentimentally
Yours";

bestAlbumsByGenre [0] [2] = "Hank Williams:I'm Blue Inside";

bestAlbumsByGenre [1] = "Rock";

bestAlbumsByGenre [1] [0] = "T-Rex:Slider";

bestAlbumsByGenre [1] [1] = "Nirvana:Nevermind";

bestAlbumsByGenre [1] [2] = "Lou Reed:Tranformer";

bestAlbumsByGenre [2] = "Punk";

bestAlbumsByGenre [2] [0] = "Flipper:Generic";

bestAlbumsByGenre [2] [1] = "The Dead Milkmen:Big Lizard in

my Backyard";

bestAlbumsByGenre [2] [2] "Patti Smith:Easter";

Accessing Array Elements

3

You can access the elements of arrays in the same way that you set them,
using square brackets and the index number. For example, to access the
third element in any array called myArray, you would use the following:

myArray [2] ;

To access elements in a multidimensional array, just add more square brack-
ets to get to the element you want:

bestAlbumsByGenre [0] [1]; // returns "Patsy
Cline:Sentimentally Yours";

To test out setting and accessing the elements of an array, follow these steps:

1. Open your Chrome browser and the open the JavaScript console.

You can open your JavaScript Console using the Chrome menu or by
pressing Command + Option + J on Mac or Ctrl + Shift + J in Windows.

Chapter 4: Understanding Arrays 63

2. In the console, type the following statement, followed by the Return
or Enter key, to create an array called lengthsOfString:

var lengthsOfString = [2,4,1.5,80];

3. Type the array name followed by the index number in square brack-
ets to retrieve the value of each array element.

For example:

lengthsOfString[0] ;
lengthsOfString[3] ;
lengthsOfString[2] ;

4. Enter an index number that doesn’t exist in the array.
For example:
lengthsOfString[4] ;
Notice that the value of this array element is undefined.

5. Type the following command to create a new variable to hold the total
length of string that you have:

var totalLength = lengthsOfString[0] +
lengthsOfString[1] + lengthsOfString[2] +
lengthsOfString[3] ;

6. Finally, get the value of totalLength with this command:
totalLength;

Looping through arrays

As you can imagine, working with multiple values of arrays by typing the
array name and the index number can get tiring for your fingers after a while.
Fortunately, there are easier ways to work with all of the elements in an
array. The most common method is to use a programming construct called a
loop. (We cover loops in much more detail in Chapter 6.)

It’s also possible to work with multiple elements in an array by using
JavaScript’s built-in array functions.

Array properties

You can access certain data about an array by accessing array properties.
The way to access array properties in JavaScript is by using dot notation.
To use dot notation, you type the name of the array, followed by a period,

64 Part I: Getting Started with JavaScript

followed by the property you want to access. (You can find out much
more about properties in Chapter 8.) Table 4-1 lists all of the properties of
JavaScript arrays.

Table 4-1 JavaScript's Array Properties

Property Return Value

prototype Allows the addition of properties and methods to an Array
object

constructor A reference to the function that created the Array object’s
prototype

length Either returns or sets the number of elements in an array

The most commonly used array property is 1length. You have already seen
the length property in action. Its purpose is to provide the number of ele-
ments in an array, whether defined or undefined. For example:

var myArray = [];
myArray [2000] ;
myArray.length; // returns 2001

You can also use the length property to truncate an array:

myArray.length;// returns 2001
myArray.length = 10;
myArray.length; // returns 10

Array methods

JavaScript array methods (also known as array functions) provide handy
ways to manipulate and work with arrays. Table 4-2 shows a list of all the
array methods along with descriptions of what they do or the values they
produce.

Using array methods

The syntax for using array methods differs depending on the particular
method you are trying to use. You do, however, access the functionality of
every array method the same way that you access array properties: by using
dot notation.

Chapter 4: Understanding Arrays 65

Table 4-2 JavaScript Array Methods

Method Return Value

concat () A new array made up of the current array, joined with other
array(s) and/or value(s)

every () true if every element in the given array satisfies the pro-
vided testing function

filter() A new array with all of the elements of a current array that
test true by the given function

forEach () Completes the function once for each element in the array

indexOf () The first occurrence of the specified value within the array.
Returns -1 if the value is not found

join() Joins all the elements of an array into a string

lastIndexOf ()

The last occurrence of the specified value within the array.
Returns -1 if value is not found

map () A new array with the result of a provided function on every
element in the array

pop () Removes the last elementin an array

push () Adds new items to the end of an array

reduce () Reduces two values of an array to a single value by apply-

ing a function to them (from left to right)

reduceRight ()

Reduces two values of an array to a single value by apply-
ing a function to them simultaneously (from right to left)

reverse ()

Reverses the order of elements in an array

shift () Removes the first element from an array and returns that
element, resulting in a change in length of an array

slice() Selects a portion of an array and returns it as a new array

some () Returns true if one or more elements satisfy the provided
testing function

sort () Returns an array after the elements in an array are sorted
(default sort order is alphabetical and ascending)

splice() Returns a new array comprised of elements that were
added or removed from a given array

toString() Converts an array to a string

unShift () Returns a new array with a new length by the addition of

one or more elements

66 Part I: Getting Started with JavaScript

For a complete reference to JavaScript array methods, with examples, visit
https://docs.webplatform.org/wiki/javascript/Array#Methods

Listing 4-3 shows some examples of the most commonly used JavaScript
methods.

Listing 4-3: Commonly Used JavaScript Array Methods in Action

<html>
<head>
<title>common array methods</title>
</head>
<body>
<script>
var animals = ["tiger" , "bear"];
var fruit = ["cantaloupe" , "orange"];
var dishes = ["plate" , "bowl" , "cup"l;
var fruitsAndAnimals = fruit.concat (animals) ;

document .write (fruitsAndAnimals + "
") ;

var whereIsTheTiger = animals.indexof ("tiger";
document .write ("The tiger has and index number of: "
+ whereIsTheTiger + "
");
</scripts>
</body>
</html>

Figure 4-3 shows the result of Listing 4-3 when run in a browser.

L] ® common array methods X Chris

&« C A [) wwwoodingjsfordummies.... 77 =

cantaloupe orange tiger bear

|
Figure 4-3:
Commonly
used
JavaScript
array
methods in
action
|

https://docs.webplatform.org/wiki/javascript/Array%23Methods
https://docs.webplatform.org/wiki/javascript/Array#Methods

Chapter 5

Working with Operators,
Expressions, and Statements

In This Chapter
Reading and coding JavaScript expressions
Changing values with assignment operators
Thinking logically with comparison operators
Doing the math with arithmetic operators
Getting wise to bitwise operators
Putting it together with string operators

“Hello Operator. Can you give me number 9?”

— The White Stripes

avaScript operators, expressions, and statements are the basic build-
ing blocks of programs. They help you manipulate and change values,
perform math, compare two or more values, and much, much more.

In this chapter, you discover how operators, expressions, and statements do
their work and how you can best use them to your advantage.

Don'’t forget to visit the website to check out the online exercises relevant to
this chapter!

68

Part I: Getting Started with JavaScript

Express Yourself

An expression is a piece of code that resolves to a value. Expressions can
either assign a value to a variable, or they can simply have a value. For
example, both of the following are examples of valid expressions:

Expressions can be short and simple, as illustrated in these examples, or
they can be quite complicated.

The pieces of data (1 or a in these examples) in an expression are called
operands.

Hello, Operator

The engines that make expressions do their work are called operators. They
operate on data to produce different results. The = and + in the preceding
expressions are examples of operators.

Operator precedence

A single expression often will contain several operators. Consider the follow-
ing example:

a+ 1+ 2 *3/ 4;

Depending on the order in which you perform the different calculations, the
final value of a could be any one of the following:

a = 1.75
a = 2.5
a = 2.25

In fact, the actual result of this expression will be 2.5. But how do you know
this? Depending on the person doing the math, the division could be done
first (3 / 4), the addition could be done first (1 + 2), or the multiplication
could be done first (2 * 3).

Chapter 5: Working with Operators, Expressions, and Statements

69

Clearly, there must be a better way to figure out the answer, and there is!
This is where operator precedence comes in. Operator precedence is the
order in which operators in an expression are evaluated.

Operators are divided into groups of different levels of precedence, num-
bered from 0 to 19, as shown in Table 5-1.

Table 5-1 Operator Precedence
Operator Use Operator Precedence Sample Use
Associativity
(..) grouping n/a 0— highest (1+3)
precedence
operator property left to right 1 myCar.color
access
[..] array access left to right 1 thingsToDo[4]
new...() creates an object (with n/a 1 new Car
arguments list) ("red")
function . . .() function call left to right 2 function add
Numbers (1,2)
new... create an object (with- right to left 2 new Car
out a list)
St postfix increment n/a 3 number++
S postfix decrement n/a 3 number--
I logical not right to left 4 ImyVal
~ bitwise not right to left 4 ~myVal
- negation right to left 4 -aNumber
++.. prefix increment right to left 4 ++aNumber
- prefix decrement right to left 4 --aNumber
typeof .. typeof right to left 4 typeof myVar
void ... void right to left 4 void(0)
delete.. . delete right to left 4 delete object.
property
J*. multiplication left to right 5 result=3%*7
o division left to right 5 result=3/7
. %.. remainder left to right 5 result=7% 3
St addition left to right 6 result=3+7

(continued)

70

Part I: Getting Started with JavaScript

Table 5-1 (continued)

Operator Use Operator Precedence Sample Use
Assaciativity
et subtraction left to right 6 result=3-7
<< bitwise left shift left to right 7 result=3<<7
D> bitwise right shift left to right 7 result=3>>7
>>> . bitwise unsigned right left to right 7 result=3
shift >>>7
<. less than left to right 8 a<b
.<= less than or equal to left to right 8 a<=b
> greater than left to right 8 a>h
.>= greater than or equal to left to right 8 a>=h
.in. in left to right 8 value in
values
...instan- instanceof left to right 8 myCar instan-
ceof ... ceof car
== equality left to right 9 3=="3"//
true
N inequality left to right 9 31="3"//
false
=== strict equality left to right 9 3==="3"//
false
== strict inequality left to right 9 31=="3"//
true
L& bitwise and left to right 10 result=a &b
N bitwise xor left to right 1" result=a?b
e bitwise or left to right 12 result=a|b
. &&. logical and left to right 13 a&&hb
| logical or left to right 14 allb
Y S conditional right to left 15 a?3:7
= assignment right to left 16 a=3
S assignment right to left 16 a+=3
-= assignment right to left 16 a-=
¥= assignment right to left 16 a*=3
= assignment right to left 16 a/=3

Chapter 5: Working with Operators, Expressions, and Statements 7 ’

Operator Use Operator Precedence Sample Use
Associativity

%= .. assignment right to left 16 a%=3
L<<L= assignment right to left 16 a<<=3
L>>=L . assignment right to left 16 a>>=3
LO>>= . assignment right to left 16 a>>>=3
&= assignment right to left 16 a&=3
A= assignment right to left 16 ar=3

R assignment right to left 16 al=3

yield ... yield right to left 17 yield [expres-

sion]
comma/ sequence left to right 18 at+b,c+d

The operator with the lowest number is said to have the highest precedence.
This may seem confusing at first, but if you think of it in terms of the first
person in a line (whoever is in spot 0, in this case) being the first person to
get a delicious sandwich or cup of coffee, you’ll have no problem keeping it
straight.

When an expression contains two or more operators that have the same
precedence, they are evaluated according to their associativity. Associativity
determines whether the operators are evaluated from left to right or right

to left.

Using parentheses

The operator with the highest precedence in an expression is parentheses.
In most cases, you can ignore the rules of operator precedence simply by
grouping operations into subexpressions using parentheses. For example,
the previous multi-operator expression can be fully clarified in the following

ways

a=(1+2) * (3 / 4); // result: 2.25
a= (1+ (2 *3)) / 4; // result: 1.75
a= ((L + 2) *3) / 4; // result: 2.25
a=14+ ((2 *3) / 4); // result: 2.5

Parentheses in expressions force the JavaScript interpreter to evaluate the
contents of the parentheses first, from the inner most parentheses to the
outermost, before performing the operations outside of the parentheses.

72 Part I: Getting Started with JavaScript

Upon consulting Table 5-1, you'll see that the actual order of the precedence
for the preceding expression is

a =1+ ((2%3)/4);

This statement makes the actual operator precedence explicit. Multiplication
is done first, followed by division, followed by the addition.

Types of Operators

A\

JavaScript has a number of types of operators. This section discusses the
most commonly used types of operators.

Assignment operators

The assignment operator assigns the value of the operand on the right to the
operand on the left:

a =5;
After this expression runs, the variable a will have a value of 5. You can also
chain assignment operators together in order to assign the same value to
multiple variables, as in the following example:

A =l = = 5¢
Because the operator’s associativity is right to left (see Table 5-1), 5 will first
be assigned to c, then the value of ¢ will be assigned to b, and then the value
if b will be assigned to a. The result of this expression is that a, b, and ¢ all

have a value of 5.

What do you think the end value of a will be after these expressions are
evaluated?

var b = 1;

var a = b += ¢ = 5;
To find out, open up the JavaScript console in Chrome and type each line,
followed by return or enter. The result of this statement is that a will be

equal to 6.

You can find a complete list of the different assignment operators in in the
“Combining operators” section, later in this chapter.

Chapter 5: Working with Operators, Expressions, and Statements

Comparison operators

Comparison operators test for equality or difference between operands and
return a true or false value.

Table 5-2 shows a complete list of the JavaScript comparison operators.

Table 5-2 JavaScript Comparison Operators

Operator Description Example

== Equality 3=="3"//true
1= Inequality 31=3//false
=== Strict equality 3==="3"//false
I== Strict inequality 31=="3"//true
> Greater than 7>1//true

>= Greater than or equal to 7>=17//true

< Less than 7<10//true

<= Less than or equal to 2<=2//true

Arithmetic operators

Arithmetic operators perform mathematical operations on operands and
return the result. Table 5-3 shows a complete list of arithmetic operators.

Table 5-3 Arithmetic Operators

Operator Description Example

+ Addition a=1+1

- Subtraction a=10-1

* Multiplication a=2%2

/ Division a=8/2

% Modulus a=5%2

++ Increment a=++h
a=h++t
a++

-- Decrement a=--b
a=bh--

a--

/3

74 Part I: Getting Started with JavaScript

Listing 5-1 shows arithmetic operators at work.

Listing 5-1: Using Arithmetic Operators

<html>
<head>
<titles>arithmetic operators</title>
</head>
<body>
<h1>Wild Birthday Game</hl>
<p>

Enter the number 7</1li>
Multiply by the month of your birth
Subtract 1</1li>
Multiply by 13</1i>
Add the day of your birth</1li>
Add 3</1li>
Multiply by 11</1i>
Subtract the month of your birth
Subtract the day of your birth
Divide by 10</1li>
Add 11</1i>
Divide by 100</1li>

</p>
<script>
var numberSeven = Number (prompt ('Enter the number
7)) ¢
var birthMonth = Number (prompt ('Enter your birth
month')) ;

var calculation = numberSeven * birthMonth;

calculation = calculation - 1;

calculation = calculation * 13;

var birthDay = Number (prompt ('Enter the day of your
birth'));

calculation calculation + birthDay;

calculation = calculation + 3;

calculation = calculation * 11

calculation = calculation - birthMonth;

calculation = calculation - birthDay;

calculation = calculation / 10;

calculation = calculation + 11;

calculation = calculation / 100;

document .write ("Your birthday is " + calculation) ;
</scripts>

</body>

</html>

|
Figure 5-1:
The wild
arithmetic
game.
|

Chapter 5: Working with Operators, Expressions, and Statements

The result of running Listing 5-1 in a browser is shown in Figure 5-1.

arithmetic operators x Chris

<« cCfn [www.codingjsfordummies.com/code/ch % =

Wild Birthday Game

+ Enter the number 7
« Multiply by the month of your birth
« Subtract |
« Multiply by 13
« Add the day of your birth
Add 3
« Multiply by 11
« Subtract the month of your birth
« Subtract the day of your birth
« Divide by 10
« Add 11
« Divide by 100
Your birthday is 11.03

String operator

The string operator performs operations using two strings. When used with
strings, the + operator becomes the concatenation operator. Its purpose is to
join together strings. Note that when you’re joining strings with the concat-
enation operator, no spaces are added. Thus, it’s very common to see state-
ments like the following, where strings containing nothing but a blank space
are concatenated between other strings or spaces are added to the end or
beginning of strings (before the quotation mark) in order to form a coherent
sentence:

var greeting = "Hello, " + firstName + ". I'm" + " " +
mood + " to see you.";

Bitwise operators

Bitwise operators treat operands as signed 32-bit binary representations of
numbers in twos complement format. Here’s what that means, starting with
the term binary.

Binary numbers are strings of 1s or Os, with the position of the digit deter-
mining the value of a 1 in that position. For example, here’s how to write the
number 1 as a 32-bit binary number:

00000000000000000000000000000001

75

76

Part I: Getting Started with JavaScript

The right most position has a value of 1. Each position to the left of this posi-
tion has a value of twice the value of the number to its right. So, the following
binary number is equal to 5:

00000000000000000000000000000101

Signed integers means that both negative and positive whole numbers can be
represented in this form.

The term twos complement means that the opposite of any positive binary
number is its negative (and vice versa, of course). So, to change the binary 5
to a binary -5, simply flip all the bits:

11111111111111111111111111111101

Bitwise operators convert numbers to these 32-bit binary numbers and then
convert them back to what we would consider normal numbers after the

operation has been done.

Bitwise operators are difficult to understand at first. They’re not very com-
monly used in JavaScript, but we would be remiss if we didn’t cover them.

Table 5-4 lists the JavaScript bitwise operators.

Table 5-4 JavaScript Bitwise Operators

Operator Usage Description

Bitwise AND a&hb Returns a 1in each bit position for which the corre-
sponding bits of both operands are 1s

Bitwise OR alb Returns a 1in each bit position for which the corre-
sponding bits of either or both operands are 1s

Bitwise XOR a’b Returns a 1in each bit position for which the cor-
responding bits of either but not both operands are 1s

Bitwise NOT ~a Inverts the bits of its operand

Left shift a<<b Shifts a in binary representation b (<32) bits to the left
shifting in zeros from the right

Sign- a>>b Shifts a in binary representation b (<32) bits to the

propagating right, discarding bits shifted off

right shift

Zero-fill a>>b Shifts a in binary representation b (<32) bits to the

right shift right, discarding bits shifted off, and shifting in zeros

from the left

|
Figure 5-2:
The
JavaScript
bitwise
operators.
|

Chapter 5: Working with Operators, Expressions, and Statements 77

Figure 5-2 shows a demonstration of each of the bitwise operators in the
Chrome JavaScript console.

® © @ Developer Tools - ch tension ‘dashboard.htm|
Q [] Elements Network Sources Timeline Profiles Resources Audits | Console| - =R
® ¥ <topframe> v Preserve log

1& 2 // bitwise AND
8

1| 2 // bitwise OR
1~ 2 // bitwise XOR
3

~ 2 // bitwise NOT

1 << 2 // Left Shift

4

1 s> 2 // Sign-propagating Right Shift
8

1 >»» 2 // Zero-fill Right Shift

8

Console | Search Emulation Rendering

Logical operators

Logical operators evaluate a logical expression for truthiness or falseness.
There are three logical operators, shown in Table 5-5.

Table 5-5 Logical Operators

Operator Meaning Description

&& And Returns the first operand if it is t rue. Otherwise, it
returns the second operand.

[| Or Returns the first operand if it is t rue. Otherwise, it
returns the second operand.

! Not Takes only one operand. Returns false if its oper-
and can be converted to t rue. Otherwise, it returns
false.

You can also use the OR operator to set a default value for variables. For
example, in the following expression, the value of myvar will be set to the
value of x unless x evaluates to a false value (for example, if x hasn’t been
defined). Otherwise, it will be set to the default value of 0.

var myVar = x| |0;

/8

Part I: Getting Started with JavaScript

NG/
Q\“‘ !

Special operators

JavaScript’s special operators are a hodge-podge of miscellaneous other
symbols and words that perform other and important functions.

Conditional operator

The conditional operator (also known as the ternary operator) uses three
operands. It evaluates a logical expression and then returns a value based on
whether that expression is true or false. The conditional operator is the only
operator that requires three operands. For example:

var isItBiggerThanTen = (value > 10) ? "greater than 10"
"not greater than 10";

Comma operator

The comma operator evaluates two operands and returns the value of the
second one. It’s most often used to perform multiple assignments or other
operations within loops. It can also serve as a shorthand for initializing vari-
ables. For example:

var a = 10 , b = 0;

Because the comma has the lowest precedence of the operators, its operands
are always evaluated separately.

delete operator

The delete operator removes a property from an object or an element from
an array.

When you use the delete operator to remove an element from an array, the
length of the array stays the same. The removed element will have a value of
undefined

var animals = ["dog", "cat", "bird", "octopus"];
console.log (animals[3]); // returns "octopus"
delete animals[3];

console.log (animals([3]); // returns "undefined"

in operator
The in operator returns true if the specified value exists in an array or object.
var animals = ["dog", "cat","bird", "octopus"];

if (3 in animals) {
console.log ("it's in there");

Chapter 5: Working with Operators, Expressions, and Statements 79

In this example, if the animals array has an element with the index of 3, the
string "it's in there" will print out to the JavaScript console.

instanceof operator

The instanceof operator returns true if the object you specify is the type of
object that has been specified.

var myString = new String() ;
if (myString instanceof String) ({
console.log("yup, it's a string!");

}

new operator

The new operator creates an instance of an object. As you can see in
Chapter 8, JavaScript has several built-in object types, and you can also
define your own. In the following example, Date () is a built-in JavaScript
object, while Pet () and Flower () are examples of objects that a program-
mer could create to serve custom purposes within a program.

var today = new Date() ;
var bird = new Pet () ;
var daisy = new Flower () ;

this operator

The this operator refers to the current object. It’s frequently used for
retrieving properties within an object.

Chapter 8 covers the this operator in much more detail.

typeof operator
The typeof operator returns a string containing the type of the operand:

var businessName = "Harry's Watch Repair";
console.log typeof businessName; // returns "string"

void operator

The void operator causes an expression in the operand to be evaluated
without returning a value. The place where you most often see void used is in
HTML documents when a link is needed, but the creator of the link wants to
override the default behavior of the link using JavaScript:

This is a link, but it won't
do anything

80

Part I: Getting Started with JavaScript

Combining operators

You can combine assignment operators with the other operators as a short-
hand method of assigning the result of an expression to a variable. For exam-
ple, the following two examples have the same result:

a =a + 10;

a += 10;

Table 5-6 lists all the possible combinations of the assignment operators with
other operators.

Table 5-6 Combining the Assignment Operators
and Other Operators

Name Shorthand Standard Operator

Assignment X=y X=y

Addition assignment X+=y X=X+Y

Subtraction assignment X-=y X=X-y

Multiplication assign- X*=y x=x*y

ment

Division assignment X/=y X=x/y

Remainder assignment x %=y x=x%y

Left shift assignment X<<=Yy X=X<<Yy

Right shift assignment X>>=y X=X>>y

Unassigned right shift X>>>=y X=X<<Y

assignment

Bitwise AND assignment x&=y x=x&y

Bitwise XOR assignment XM=y x=x"Ny

Bitwise OR assignment X|=y X=x|y

Chapter 6

Getting into the Flow with Loops
and Branches

In This Chapter
Finding out about if/else branching
Understanding the different types of loops
Using loops to repeat statements
Looping through the values of an array

“It’s not hard to make decisions when you know what your values are.”

— Roy Disney

’ n earlier chapters of this book, we generally talk about and demonstrate

linear JavaScript code. However, more often than not, there comes a time
(many times, actually) in a program where you need a choice to be made or

where you need to alter the straight-ahead logic of a program to repeat state-
ments multiple times with different values. In this chapter, we discuss loop-

ing and branching statements.

Don'’t forget to visit the website to check out the online exercises relevant to
this chapter!

Branching Out

Looping and branching statements are called control statements because
they control the order in which JavaScript programs are run. You can use
branching statements to create different paths for the execution of JavaScript
code, depending on conditional logic. Loops are the simplest way to group
JavaScript statements together in a program.

82

Part I: Getting Started with JavaScript

Figure 6-1:
Branching
chooses the

path. §

The logic of a JavaScript program often comes to a point where a choice
must be made which will make all the difference. Figure 6-1 demonstrates,
using JavaScript, a real-world decision that can be solved using branching.

if (lessTraveledBy) {
// take it
} else |

// take the other one
}

Daniel Oines, https: //www.£flickr.com/photos/dnol967b/8347363864 (Creative Commons License)

if ... else

The if and else statements work together to evaluate a logical expression
and run different statements based on the result. i f statements can be, and
often are, used by themselves. el se statements must always be used in con-
junction with an if statement.

The basic syntax for an if statement is
if (condition) {
}

The condition here is any expression that evaluates to a Boolean (true or
false) value. If the result of the expression is true, the statements between
the brackets will be executed. If it’s false, they will just be skipped over.

The else statement comes in when you want to do something if the condi-
tion evaluates to false. For example:

https://www.flickr.com/photos/dno1967b/8347363864%20
https://www.flickr.com/photos/dno1967b/8347363864

var age = 19;
if (age < 21){

document .write ("You are under the legal drinking age in

the U.S.");
} else {

Chapter 6: Getting into the Flow with Loops and Branches

document .write ("What'll it be?") ;

}

Many other programming languages have a combination keyword called the
elseif, which can be used multiple times in an if . .. else statement until

a true value occurs. JavaScript doesn’t have an elseif keyword.

However, you can get the same functionality as an elseif keyword by using

if and else together with a space between them. For example:

if (time < 12){

document .write ("Good Morning!") ;

else if (time < 17){

document .write ("Good Afternoon!") ;

else if (time < 20) {

document .write ("Good Evening!") ;

document .write ("Good Night!") ;

}
}
} else {
}

Understanding if . . . else shorthand

You should be aware of a couple of shortcuts
for using i f . . . else statements. The first
is to use a ternary operator in place of the
if ... else. Thisis somewhat more difficult
to read than a standard i f . . . else:

var whatToSay = (time < 12 ?
"Good Morning"
"Hello") ;

In this case, the value of whatToSay is set to
“Good Morning” if time is less than 12 and
it's setto “Hello” if time is not less than 12.

Another shorthand methods for writing
if ... else statements uses the logical
AND (&&) operator. Remember that the logical
AND will only evaluate the second operand if
the first evaluates to true. Programmers call this
short-circuiting because it's not necessary for

the second operand to be evaluated in a logical
AND operation if the first operand results in a
false value.

time < 12 && document.write
("Good Morning!") ;

In the preceding example, the && statement
first looks at whether times is less than 12. If it
is, the string "Good Morning" will be writ-
ten to the HTML document. If it isnt, nothing will
be done because of the short-circuiting side
effect of the && operator.

This method is not commonly used, primarily
because it's difficult to understand and confus-
ing. However, you may come across something
like this at times, and you'll need to understand
how it works.

83

84

Part I: Getting Started with JavaScript

WING/
&

Notice the use of line breaks and spaces in the preceding examples. Many
people have different styles for how to write if . . . else statements. You
may also see them written with fewer line breaks or without space between
the keywords and brackets. These will work, too. However, whenever pos-
sible, it is preferable to choose ease of reading over brevity.

Switch

The switch statement chooses between multiple statements to execute
based on possible values of a single expression. Each of these values in a
switch statement is called a case. In English, you may say, for example:

“In the case that we are expecting six guests, order three pizzas. In the
case that we are expecting 12 guests, order six pizzas. In the case that
we're expecting more than 20 guests, freak out.”

The syntax for the switch statement is

switch (expression) {
case valuel:
// Statements
break;

case value2:
// Statements
break;

case value3:
// Statements
break;
default:

// Statements
break;

Notice the break statement after the statements associated with each

case. The break statement tells the switch statement to stop and exit the
switch statement. Without the break, the switch statement would continue
and run the statements in the next clause, regardless of whether the expres-
sion meets the conditions of that case.

Forgetting a break statement within a switch can cause big problems, so be
sure to always use it. Because a switch statement will run any statements
within any case clause after a clause that evaluates to true, unpredictable
results can occur when you forget a break statement. Problems caused by
missing break statements are not easy to identify because they generally
won’t produce errors, but will frequently produce incorrect results.

Chapter 6: Getting into the Flow with Loops and Branches 85

If no match is found in any of the case clauses, the switch statement will
look for a default clause and execute the statement it contains.

The exception to the rule that you should always use a break statement
between case clauses is the default clause. As long as the default clause
is the last statement in your switch (which, it should be), you can safely omit
the break after it because the program will break out of the switch after the
last statement anyway.

Listing 6-1 shows an example of how you might use a switch statement.

Listing 6-1: Using a switch Statement to Personalize a Greeting

var languagePreference = "Spanish";
switch (languagePreference) {
case "English":
console.log("Hello!") ;
break;
case "Spanish":
console.log("Holal!") ;
break;
case "German':
console.log("Guten Tag!") ;
break;
case "French":
console.log("Bon Jour!") ;
break;
default:
console.log("I'm Sorry, I don't Speak" +
languagePreferance + "!");

Here We Go: Loop De Loop

Loops execute the same statement multiple times. JavaScript has several dif-
ferent types of loops:

V¥ for

V¥ for...in

V¥ do...while

¥ while

86 Part I: Getting Started with JavaScript

for
The for statement creates a loop using three expressions:

v~ Initialization: The initial value of a variable, typically a counter.

v+ Condition: A Boolean expression to be evaluated with each iteration of
the loop.

v~ Final expression: An expression to be evaluated after each loop iteration.
Although it’s not required to use all three expressions in a for loop, all three

of them are nearly always included. The for loop is usually used to run code
a predetermined number of times.

The following is an example of a simple for loop:

for (var x = 1; x < 10; x++){
console.log(x) ;

}

Broken down, this is how the preceding for loop example works:

1. A new variable, in this case x, is initiated with the value of 1.
2. A test is performed to determine whether x is less than 10.

If it is, the statements inside the loop are executed (in this case, a con-
sole.log statement).

3. If not, the value of x is incremented using the increment operator (++).
4. The test is done again to determine whether x is less than 10.

If so, the statements inside the loop are executed.
5. The test repeats, until the condition expression no longer evaluates

to true.

Figure 6-2 shows the result of running this for statement in the Chrome
developer tools.

Looping through an array

You can use for loops to list the contents of an array by testing the value of
the counter against the value of the length property of the array. Be sure to
remember that JavaScript arrays are zero-indexed and that the value of any
array.length will be one more than the highest index numbered element
in the array. That is why we add -1 in Listing 6-2.

Chapter 6: Getting into the Flow with Loops and Branches 8 7

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | = -ﬂ- El‘x
® ¥ <topframe> A Preserve log
for (var x = 1; x < 18; x++]{
console. log(x);
}
1
2
I 3
4
- . 5
Figure 6-2: 6
7
Aloop that c pisoes
9 VM159:3
counts from | . .. 5
1t09. |7
I

Listing 6-2: Listing the Contents of an Array with for Loop

<html>
<head>
<title>Different Area Codes</title>
</head>
<body>
<scripts>
var areaCodes = ["770", "404", "718", "202", "901",
"3Q5", "312", w313", "215", "803”],‘
for (x=0; x < areaCodes.length - 1; x++){
document .write ("Different Area Code:" + areaCodes [x]
+ "
") ;
}

</scripts>
</body>
</html>

Figure 6-3 shows the output of running the program detailed in Listing 6-2.

L LJ || Different Area Codes *x

&« C M | [) www.codingjsfordummies.... 97 =

Different Area Code:770
I | Different Arca Code:404
- . | Ditferent Area Code:718
Flgure 6-3: Ditferent Area Code:202
Different Area Code:901

,Ou_tpUt of Different Area Code:305
listing the | Different Area Code:312
Different Area Code:313
contents Different Area Code:215

of an array
with a for
loop.
|

88

Part I: Getting Started with JavaScript

WING/

for...in

The for ... in statements loop through the properties in an object. You can
alsouse a for . .. in statement to loop through the values of an array.

The for ... inloop has an interesting quirk. It doesn’t care about the order
of properties or elements that it’s looping through. For this reason, and
because using for . . . in loop is slower, you're much better off using a stan-
dard for loop to loop through array elements.

Objects are data containers that have properties (what they are) and methods
(what they do). Web browsers have a set of built-in objects that programmers
can use to control the function of the browser. The most basic of these is the
Document object. The write method of the Document object, for example,
tells your browser to insert a specified value into the HTML document.

The Document object also has properties that it uses to track and give program-
mers information about the current document. The Document . images collec-
tion, for example, contains all of the img tags in the current HTML document.

In Listing 6-3, the for... in loop is used to list all the properties of the
Document object.

Listing 6-3: Looping through the Document object with for ... in

<html>
<head>
<title>document properties</titles>
<style>
.columns {
-webkit-column-count: 6; // Chrome, Safari, Opera
-moz-column-count: 6; // Firefox
column-count: 6;

</style>

</head>

<body>

<div class="columns">

<script>

for (var prop in document) {
document .write (prop + "
");

</scripts>

</div>

</body>
</html>

|
Figure 6-4:

A list of all
the proper-
tiesof a
Document
object using
the for. ..
in loop.
|

Chapter 6: Getting into the Flow with Loops and Branches

The results of running Listing 6-3 are shown in Figure 6-4.

all [object HTMLANC lechon]
onaurpcompleteerror null
onmeseomplete: nul

1 docsment properties v+ x ||

encancel null
onblug: mll
onabeort null

ontimeupdate: null
eonsuspend: null
onsubmit null
onstalled. mull
anshow. aull
onselect null
onseeking null
onseeked: null
onscroll null
onresize: null
onresct nul
onratechange: null
onprogress: mull
onplaying: mull
onplay: mull
onpause: null
onmousewheel null
onmousevp: uull
ommouseover: aull
enmouseous: mull

« C i [wwwicodingjsfordummies.com/code/ch6/listing6 -4,
whnkColor oncontextmenu: null head: [object
InkColor: onclose: null HETMLHeadElement]
alinkColor onclick: nul body [object
faColor onchange null HETMLBodyElement]
bgColor oncanplaythrough null coskic
compatlfods: BackCompat oncanplay” mull URL

hitpilfrse. codinggsfordummics.c

domzin
o co dingisfordummies.com
teforver

hitplfrse. codingisfor dummies.c
tisle: document properties with
walues

designlode: o

dr

contentType: text/html

roctElement: mull onwebkitfullsereenerror null
childElementCount: 1 onwebkitfullsereenchange: mall
il [object kit ll

HIMLHE:miElement] kit d: true
El Child: [object webkirCurreatEullScr

HTMLHrwElemest] ol

children: [object webkitFullSereenKeyboardlnput

HTMLColection] false

omvatting: mul k

omolurae change: null fonte: [object FourT,

ortoggle: null currentSeript [object

HTML SeripiFlement]
webldtFhdden: false
webltVisbilityState: wsible
lidden false

visibilityStare: weible

tyleSheets: [object
StyleShestLict]

defanltViews: [objeet Window]
documentURT

hutp . codingiefor dummies.c
4 bienl

sulStandalone. Flse

srulVersion nul

enwheel aull xenlEnco ding rull
onselectstart: rull inputBac oding, windorws- 1252
il [object
onsearch mull HTMLHimElement]
[obyect
DOMImglementation]
onpomtcrlockchange: null doctype: null

onpaste: null

oneut: null

oncopy: mill
onbeforepaste: mull
onbeforecut: null
onbeferecepy: mull
poinrerLockElement null
activeElement: [object

parentElement: mil

textContent: nall

baselURI

hitpfwe. oodingisfor dummies.c
4 bhenl

locallTame: mall
namespaceTTEL gl
ownerDocument: null

createD Fi aueryC a0 {
fanetion [native code]

createT 00 aquenyC dValue: fnction
[native code]) queryCommandValue() {
createTexiNode: finction [native code]

croateTexNode() { [native
code]
crearsComment finction
createComment]) ([native
code] }
createCDATASection: fanction
createCDATASection() {
[native code])
crearzProcessinglnstiction:
fanction

01

getElomentsByldame: function
getElementsByllame) { [natve
code])
elementFromP oint: fanction
elemeniFromPoint() ([native
code])

fanction

= finction
=0 { [natwe code] }
normalize: function nermakzet) {
[natrve code] }

isSamellode: fanction
isSamellode() { [native code])
isEquallNo de: function
isEquallTode() | [native code])
IookupPrefii: fnction

earetRangeFremPomi() {
[native code] }

getSelection function

0 ([sative code])

[native cade])
creaz Attribute: Fanction
crearzhttributen) ([native codz]
)]

getFlementsByTaghame
functon
getFlementsByTagllame) {
[ative code])

Tade() { [native code])
create AttributelS: Rimction

ZEtCSS Canvas Coment: fanction
E=tCSS Canvas Coment) {
[native code] }
getElement:ByClassName
function
etElementsByClassName()
[native code] }

hasFocus: nction hasFocus() {
[native code]

exitPeinterLock: fnction
exitPomterLock() { [natwe

create AributeNS() ([native code])}
code] registerBlement: fincbon
Element<BsTaghamelS 0 { [natve
function cods] |
Mame NS0 { function

[rative cade])
getBlementByld fmction

ercateElement() { [nave code]

) ([native fanction
code] sreatoElementlS() ([natve
adoptliode: function code])
adoptlTode() ([nafive code]) webkirCancelFulScreen:
crearzEveat function function

createEveat() ([native code])

webkitCancelFullSereen) {

pPrefin() { [native code] }
isDefauti¥ amespace: fnction
isDefauldfanespace) { lnstive
code])

IookupHamespaceURL fimotion
IookupHamespaceURI(
[mative code] }
compareDotumenosition:
faiction
compareDocumentPositien) {
[native code] }

conlains: Banction contamst)y {
[mative code] }
ELEMENT_NODE: 1
ATTRIBUTE_NODE 2
TEXT NOLDE %
CDATA_SECTIGH_NODE

4
ENTITY_REFERENCE_NOD
5

ENTITY_NODE: &
PROCESSING_IMSTRUCTIC
7

COMMENT_NODE: 8
DOCUMENT_NODE
DOCUMENT_TYFPE_NCDE:

DOCTMENT_FEAGMELTT 1
11

onmotsemave: mil HTMLE odyElement] netSibling: ail creat=Range: fanction [native code] } WOTATION MODE: 12
onmouseleave: null ull ol creat=Range() ([native code])} weblitEmtFullscreen: function DOCUMENT_POSITION_DI
onmonseenter: mill preferredStylesheetS et mll lastChild: [object creatsModeltrator: function. webkitEmtFullscreen() { [native 1
ommousedowi null characterSet. windows-1232 ETMLHimlEl telodelt) { [native codel} DOCTMENT_POSTIION PF
caloadstart: aull seadyState: loading frseChild; [ohject code] gueryBelector: function 2

eloadedmeradata aull defalrCharser windows-1252 HTMLHrmlElement] crear=Tree Walker: fanction querySelector() { [natve code] DOCUMENT POSITION FC
arloadeddata: nul charset: windows-1252 childilodes: [object odeList] creamTreeWalker() ([native) 4

aload gull Jocation sl codel L function DOCTUMENT POSTITON CC ~

You can also use a for . . . in loop to output the values that are in the
properties of the object, rather than just the property name. Listing 6-4 is a
program that outputs the current values of each of the Document object’s

properties.

Listing 6-4: Outputting the Property Names and Values of the Document
Object with for. . .in

<html>
<head>

<title>document properties with values</title>

<styles>

.columns {

-webkit-column-count:
-moz-column-count :
column-count:

}

6;

6;

6; /* Chrome, Safari, Opera */
/* Firefox */

(continued)

Part I: Getting Started with JavaScript

|
Figure 6-5:
Results of
outputting
the property
names and
values of the
Document
object with
for...
in.
|

Listing 6-4 (continued)

</style>

</head>
<body>

<div class="columns">
<scripts>
for (var prop in document) {

document .write

n
 n) ;

</scripts>

</div>
</body>
</html>

(prop + ":

" + document [prop] +

Figure 6-5 shows the output of Listing 6-4. Notice that many of the values of
properties are in square brackets ([]). The square brackets indicate that the
value of the property has multiple elements, such as in the case of an array

or object.

rootElement: null
childElementCount: 1
lastElementChild: [object
HTMLHmIElement]
-Icmcmcmld [object

null
webkitFullscreenEnabled:

true
webkitCurrentFullScreenElem
1

children: [object
HTMLCollection]

webki
false
webkitlsFullScreen: false

onsuspend: null
onsubmit: null
onstalled: null
onshow: null

onscroll: null
onresize: null
onresct: mull
onratechange: null
onprogress: null

onpause: null

title: document properties

with values

designMaode: off

dir:

mnmm’T)pc texvhiml
leShe bject

StyleSheelList
defaultView: [object

webkitVisibilityState:
visible

hidden: false

isibili visible

onwaiting: null fonts: [object Font Window]
s¢: null | Scri] documentURI:
HTML! hup:/
nm\mrupd/l null webkitHiddes 4 html

xmiStandalone: false
xmlVersion: null
amiEncoding: null

onwheel: uuu

ding: windows-
12

eoce document propartios with % Chris

e C f [www.codingjsfordummies.com/code/ch06/isting6-4.himl W=

vlinkColor: oncanplaythrough: null body: [object createTextNode: function function code] }

linkColor: oncanplay: null HTMLBodyElement] createTextNode() { [native queryCommandValue() { hasChildNodes: function

alinkColor oncancel: null u)ol.lc code] } [native code] } hasChildNodes() { [native

faColor: onblur: null URI createComment: function getElementsByName: code] }

bgColor: onabort: null mlp riwwv\ ~codingjstordummi createComment() { [native function cloneNode: function

compatMode: BackCompat onwebkitfullscreencrror: 4htr ode] gelElementsByName() { cloneNode() { [native code]

all: [object null domain: creatcCDATASection: [native code!

HTMLAICollection] Vi hange: WWW.CO cor function clementFromPoint: function normali l'uncunn

onautocompleteerror: null — null referrer: createCDATASection() { 1) { [native code] }
null webki lement hutp:H/www i [native code] } [native code] } isSameNode: function

tion:) { [mative
function function code] -
createPr 1 romPoint() { Node: function
Inan\ccodcl } [native code] } |<Lqu;\lr~odcl) { [native
ibute: function g 1 : function code] }
createAtribute() { [native getSeleetion() { [native TookupPrefix: function
code] } lookupPrefix() { [native

de])
geiElementsBy TagName:
function
getElementsByTagName() {

i [native code] }

importNode: function
importNode() { [native
code] }

createAll eNS: function
createAttributeNS() {
mamc codc\ }

getCSSCanvasContext:
function
gﬂLhaLanmiLonrc\[{
e code] }
getElementsByClassName:
function
gelElementsByClassName()

msrocusn { [native code]

unic\cclmnclmngc null
rch: 1

anready lkl]\d[]l\ null
anpainterlackerror: null
onpointerlockchange: null
onpaste: null

oncut: null

oncopy: null
anbeforepaste: null

null
onmouseup: null
onmouseover: null
onmouscout: null
onmousemove: null
2 null

null
anbeforecopy: null
pointerLockElement: null
activeElement: [object
H'l'MLHodyI;Icmcntl

= null

NS:

ock: function

doct : [object
HTMLHtmIElement]
implementation: [object
DOMImplementation]
doctype: null
parentElement: null
textContent: null

rww codingjsfordummi
4 html
localName: null
namespaceURT: null
ownerDocument: null
nextSibling: null
previousSibling: null
IastChild: [object

M1

getElementsByTagNameNS() c
{ [native cade] }
getElementByld: function
getElementByld() { [native
code

adoptNode: function
adoptNode() { [native code]

createEvent: function
createEvent() { [native code]
}

createRange: function
createRange() { [native
code] }

null
onmousedown: null

preferre null
characterSet: windows- I’S"
readyState: loading
defaultCharset: windows-
1252

HT!

firstChild: [object

HTMLHimIElement]

childNodes: [object
Sodel jst]

nction
createNodelterator() {
[native code] }
createTreeWalker: function
reatc Ty L£ Inati

cxnl’mmcru-ck(l { [native
ade] }

registerElement: function

registerElement() { [native

ode] }

createElement; function

createElement() { [native

code] }

createElementNS: function

createElementNS() { [native

ade] }

webkilCancelFullScreen

function

webkitCancelFullScreen() {

[native code] }

wchb\u itFullscreen:

itFullscreen() §
[native code] }
S function

code]
isDefauliNamespace:

on
faultNamespace() {
[native code]
IookupNamespace URI:
function
loakupNamespaceURI() {
[native code]
compareDocumentPosition:
function
comparcDocumentPosition()
{ [native code] }
contains: function contains()
{ [native code]
ELEMENT_NODE: 1
ATTRIBUTE_NODE: 2
TEXT_NC
LDATA SL(.,TIUN _NODE:

ENTITY_REFERE NCE_NO
5

ENTITY_NODE: 6
PROCESSING_INSTRUCT|
7

COMMENT_NODE: §

DOC UMENT NODE: 9
TYPE_NODE

DOCUM ENT_FRAGMENT
1

while loops

The while statement creates a loop that runs as long as a condition evaluates
to true. Listing 6-5 shows a webpage containing an example of the while loop.

Chapter 6: Getting into the Flow with Loops and Branches 9 ’

Listing 6-5: Using a while Loop

<html>
<head>
<title>Guess the Word</title>

</head>

<body>

<script>
var guessedWord = prompt ("What word am I thinking

of?2m) ;

while (guessedWord != "sandwich") { // as long as the

guessed word is not sandwich
prompt ("No. That's not it. Try again.");

!
alert ("Congratulations! That's exactly right!"); //
do this after exiting the loop
</script>
</body>
</html>

do. .. while

The do... while loop works in much the same way as the while loop, except
that it puts the statements before the expression to test against. The effect
is that the statements within a do . . . while loop will always execute as
least once.

Listing 6-6 demonstrates the use of a do . . . while loop.

Listing 6-6: Using a do. . .while Loop

<html>
<head>
<titlesLet's Count</title>
</head>
<body>
<script>
var 1 = 0;
do {
1++;
document .write (I + "
") ;
} while (i<10);
</scripts>
</body>
</html>

92

Part I: Getting Started with JavaScript

break and continue

You can use break and continue to interrupt the execution of a loop. The
break statement was shown previously in this chapter in the context of a
switch statement, where it serves to break out of the switch after a success-
ful match.

In a loop, break does much the same thing. It causes the program to imme-
diately exit the loop, no matter whether the conditions for the completion of
the loop have been met.

For example, in Listing 6-7, the word-guessing game will progress just as

it does in Listing 6-5, but the loop will immediately terminate if no value is
entered.

Listing 6-7: Using a break in a while Loop

<html>
<head>
<title>Guess the Word</title>
</head>
<body>
<script>

var guessedWord = prompt ("What word am I thinking

of?") ;
while (guessedWord != "sandwich") {
if (guessedWord =="") {break;} // exit the loop

right away if user doesn't enter a value
prompt ("No. That's not it. Try again.");

alert ("Congratulations! That's exactly right!");
</scripts>
</body>
</html>

The continue statement causes the current iteration of the loop to stop
and tells the program to start up again with the next iteration of the loop,
skipping the statements that come after the continue statement.

Listing 6-8 shows a program that counts from 1 to 20, but only prints out even
numbers. Notice that the program determines whether a number is even by
using the modulus operator to test whether the current value of the counter
is divisible by two:

Chapter 6: Getting into the Flow with Loops and Branches

Figure 6-6:
Counting
and using
continue to
display even
numbers.

Listing 6-8: Counting and Using continue to Display Even Numbers

<html>
<head>
<title>Count and show me even numbers</title>
</head>
<body>
<script>
for (var i = 0;
if (i%2 1= 0){
continue;

i <= 20; i++){

document .write (i + " is an even number.
") ;

</scripts>
</body>
</html>

When used in this way, continue can replace the functionality of an else
statement.

Figure 6-6 shows the result of running Listing 6-8 in a browser.

LN

Count and show me even = * Chris

€« G A [7 www.codingjsfordummies.... 7 =

() is an even number.
2 is an even number.
4 is an even number.
6 is an cven number.
8 1s an even number.
10 1s an even number.
12 is an even number.
14 is an even number.
16 is an even number.
18 is an even number.
20 is an even number.

The break and continue statements can be useful, but they can also be

dangerous. Their small size and great power make them easy to overlook

when reading through code. For this reason, some programmers consider
using them inside of a loop to be a bad practice. For more information on

why and the complexities of the issue, read this discussion:

http://programmers.stackexchange.com/questions/58237/are-
break-and-continue-bad-programming-practices

93

http://programmers.stackexchange.com/questions/58237/are-break-and-continue-bad-programming-practices
http://programmers.stackexchange.com/questions/58237/are-break-and-continue-bad-programming-practices

94 Part I: Getting Started with JavaScript

Part
Organizing Your JavaScri

® @® Developer Tools - chrome-extension://lacokkfknpbbblfpciffpaejjkokdgca/dashboard.html

Q, [] Elements Network Sources Timeline Profiles Resources Audits | Console | 3 =,
® W <topframe> v Preserve log
function addZ(aString) {

astrin
return aString;

addZ|(ve JavaScript skill")
"I have JavaScript skillz"

Console | Search Emulation Rendering

web~ See the article “Underscore — A Utility Belt for JavaScript” at www . dummies . com/
extras extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

AN WA

In this part . . .

Discover how to work with functions.
Find out how to create and use objects.

See the article “Underscore — A Utility Belt for JavaScript”
atwww.dummies.com/extras/codingwith
javascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Chapter 7
Getting Functional

In This Chapter
Writing functions
Documenting functions
Passing parameters
Returning values

Organizing programs with functions

“I write as a function. Without it I would fall ill and die. It’'s much a part of
one as the liver or intestine, and just about as glamorous.”

— Charles Bukowski

F unctions help you reduce code repetition by turning frequently used
bits of code into reusable parts. In this chapter, you write some
functions and use them to make otherwise tedious tasks easy and fun!

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Understanding the Function of Functions

Functions are mini programs within your programs. Functions serve to handle
particular tasks within the main program that may be required multiple times
by different parts of the program.

If you've read any of the preceding chapters, you've seen a few functions in
action. The following example is a simple function that, when run, simply
adds a z to the end of a string.

98 Part II: Organizing Your JavaScript

function addZ(astring)
aString += "z";
return aString;

}

To try out this function, follow these steps:

1. Open the JavaScript Console in Chrome.
2. Type in the function.

You can type it all on one line, or you can press Shift+Enter or
Shift+Return after each line to create a line break without executing
the code.

3. Press Return or Enter after the final curly brace.
The console should write out undefined.

4. Type the following command, followed by Return or Enter, to run the
function:

addZ ("I have JavaScript skill") ;
The result of running this function is shown in Figure 7-1.

Functions are a fundamental part of JavaScript programming, and they have
a lot of rules and special powers that you need to be aware of as a JavaScript
coder. Don’t worry if you aren’t able to memorize each detail about functions.
It will take some practice to understand some of the more abstract concepts,
and you may even need to read this chapter again. Eventually, everything will
become clear to you, so just stick with it!

® ® @ Developer Tools - chrom) kiknpbbblfpciffpaeij dashboard.htm
Q [Elements Network Sources Timeline Profiles Resources Audits | Console | - =N

© 7 <topframe> v) Preserve log

of ine
addzZ(“I have JavaScript skill*);

e sserit sl
:

Figure 7-1:
Running

your first
function

in the
JavaScript
console.

I Console Search Emulation Rendering

Chapter 7: Getting Functional 99

Using Function Terminology

Programmers have a number of words that are important to understand
when they talk about functions. We use these words extensively in this chap-
ter and throughout this book. The following list is a quick summary of some
of the lingo you’ll run into when you’re working with functions.

Define a function
When a function appears in JavaScript code, it doesn’t run. It’s simply cre-
ated and made available for use at a later time. The creation of the function
so that it can be used later on is called defining a function.
‘}gN\BEIf You only need to define a function once in a program or on a web page. If you
& accidentally define the same function more than once, however, JavaScript
won’t complain. It will simply use the most recently defined version of the
function.

For example:

var myFunction = new Function() {

b5
or

function myFunction () {

7

Function head

The function head is the part of the function definition that includes the
function keyword, the function name, and the parentheses.

For example:

function myFunction ()

Function body

The function body is made up of the statements between the curly braces of
the function.

’ 00 Part II: Organizing Your JavaScript

For example:

// function body

Call a function

When you use a function, it’s called calling the function. Calling a function
causes the statements in the function body to be executed.

For example:

myFunction () ;

Defining parameters and
passing arguments

Parameters are names that you give to pieces of data that are provided to a
function when it’s called. Arguments are the values you provide to functions.
When a function is called with arguments (according to the specified param-
eters of the function), programmers refer to that as passing the arguments
into the function.
The syntax for defining a parameter is as follows:

function myFunction (parameter) {

The syntax for calling a function with an argument is as follows:

myFunction (myArgument) ;

Return a value

In addition to being able to accept input from the outside world, functions
can also send back values after they're finished running. When a function
sends back something, it’s called returning a value.

To return a value, use the return keyword. For example:

return myValue;

Chapter 7: Getting Functional 70 ’

The Benefits of Using Functions

Listing 7-1 shows a program that adds numbers together. It works great
and does exactly what it’s supposed to do, usinga for in loop (see
Chapter 6).

Listing 7-1: A Program for Adding Numbers Using the for . . .in Loop

<html>
<head>
<title>Get the total</title>
</head>
<body>
<scripts>
var myNumbers = [2,4,2,7];
var total = 0;
for (oneNumber in myNumbers) {
total = total + myNumbers [oneNumber] ;
}
document .write (total) ;
</script>
</body>
</html>

If we had multiple sets of numbers to add together, however, we’d need to
write a new loop statement specifically for each new array of numbers.

Listing 7-2 turns the program from Listing 7-1 into a function and then uses
that function to find the sums of the elements in several different arrays.

Listing 7-2: A Function for Adding Numbers from an Array

<html>
<head>
<title>Get the sum</title>
</head>
<body>
<script>
/**
*Adds elements in an array
*@param {Array.<number>} numbersToAdd
*@return {Number} sum
*
/
function addNumbers (numbersToAdd) {
var sum = 0;
for (oneNumber in numbersToAdd) {
sum = sum + numbersToAdd [oneNumber] ;

(continued)

’ 02 Part II: Organizing Your JavaScript

Listing 7-2 (continued)
}

return sum;

}

var myNumbers = [2,4,2,7];

var myNumbers2 = [3333,222,111];
var myNumbers3 = [777,555,777,555];
var suml addNumbers (myNumbers) ;
var sum2 addNumbers (myNumbers?2) ;
var sum3 addNumbers (myNumbers3) ;

document .write (suml + "
") ;
document .write (sum2 + "
") ;
document .write (sum3 + "
") ;

</scripts>
</body>
</html>

Documenting JavaScript with JSDoc

It's a good practice to always document your JavaScript code using a standard system. The most
widely used JavaScript documentation system, and thus the de-facto standard, is JSDoc.

The JSDoc language is a simple markup language that can be inserted inside of JavaScript files.
Currently in its third version, JSDoc is based on the JavaDoc system that’s used for documenting
code written in the Java programming language.

After you've annotated your JavaScript files with JSDoc, you can use a documentation generator,
such as jsdoc-toolkit, to create HTML files documenting the code.

JSDoc markup goes inside of special block comment tags. The only difference between JSDoc
markup and regular JavaScript block comments is that JSDoc markup starts with /** and ends with
*/, whereas normal block comments in JavaScript only require one asterisk after the beginning
slash. The extra asterisk in JSDoc markup tags allows you to create normal block quotes without
having them be a part of the generated documentation.

The figure shows some code from the open source Angular JS JavaScript framework that has
been annotated using JSDoc.

uid[index]

uid. join

(digit
uidlindex]

shift('0')

uidejoin(*)

angularjs UNREGISTEAED

n) {
key) { iteratorFnikey, value); };

Different parts and aspects of a program can be documented with JSDoc using JDDoc tags. Here
are the most popular tags:

JSDoc Tag
@author
@constructor
@deprecated
@exception
@exports
@param
@private
@return
@returns
@see

@this

@throws
@version

Explanation

Programmer’s name

Indicates that a function is a constructor

Indicates the method is deprecated

Describes an exception thrown by a method; Synonymous with @t hrows
Specifies a member that is exported by the module
Describes a method parameter

Indicates a member is private

Describes a return value. Synonymous with @returns
Describes a return value. Synonymous with @return
Records an association to another object

Specifies the types of the object to which the keyword thi s refers within
a function

Describes an exception thrown by a method
Indicates the version number of a library

Chapter 7: Getting Functional

103

’ 04 Part II: Organizing Your JavaScript

The block comment that precedes the function in Listing 7-2 follows the
format specified by the JavaScript documenting system, JSDoc. By comment-
ing your functions using this format, you not only make your programs much
easier to read, you also can use these comments to automatically generate
documentation for your programs. We cover function documentation in the
sidebar “Documenting JavaScript with JSDoc.” You can read more about
JSDoc at http://usejsdoc.org.

Functions are a great time, work, and space saver. Writing a useful function
may initially take longer than writing JavaScript code outside of functions,
but in the long term, your programs will be better organized, and you’ll save
yourself a lot of headaches if you get into the habit of writing functions.

Writing Functions

A function declaration must be written in a specific order. A function declara-
tion consists of the following items, in this order:

v Function keyword

v Name of the function

v Parentheses, which may contain one or more parameters

v Pair of curly brackets containing statements
Sometimes, a function’s whole purpose will be to write a message to the
screen in a web page. An example of a time when it’s useful to have a function

like this is for displaying the current date. The following example function
writes out the current date to the browser window:

function getTheDate () {
var rightNow = newDate() ;
document .write (rightNow.toDateString()) ;

}

Follow these steps to try out this function:

1. Open the JavaScript Console in Chrome.
2. Type the function into the console.

Use Shift + Return (or Shift + Enter) after typing each line, in order to
create a line break in the console without executing the code.

http://usejsdoc.org

Chapter 7: Getting Functional 7 05

3. After you enter the final }, press Return (or Enter) to run the code.

Notice that nothing happens, except that the word undefined appears in
the console, letting you know that the function has been accepted, but
that it didn’t return a value.

4. Call the function by typing the name of the function (getTheDate)
followed by parentheses, followed by a semicolon:

getTheDate () ;

The function prints out the current date and time to the browser window,
and then the console displays undefined because the function doesn’t
have a return value; its purpose is simply to print out the date to the
browser window.

The default return value of functions is undefined, so technically,
undefined is a return value.

Returning Values

In the example in the preceding section, we create a function that just prints
a string to the browser window. After the single document . write statement
executes, there are no more statements to run and so the program exits the
function and continues with the next statement after the function call.

Most functions return a value (other than undefined) after their work is
done. You can then use this value in the rest of the program. Listing 7-3
shows a function that returns a value. The return value of the function is then
assigned to a variable and printed to the console.

Listing 7-3: Returning a Value from a Function

function getHello () {
return "Hello!";

var helloText = getHello() ;
console.log (helloText) ;

The return statement is generally the last statement in a function. When
it executes, the function exits. You can use the return statement to send
any type of literal value (such as "Hello!" or 3) outside of the function or
to return the value of a variable, an expression, an array or object, or even
another function! (See Listing 7-4)

’ 06 Part II: Organizing Your JavaScript

Listing 7-4: Returning the Result of an Expression

function getCircumference () {
var radius = 12;
return 2 * Math.PI * radius;

}

console.log (getCircumference()) ;

Passing and Using Arguments

In order for functions to be able to do the same thing with different input,

they need a way for programmers to give them input. In Listing 7-2, earlier in

this chapter, the parentheses after the name of a function in its declaration
NMBER are used to specify parameters for the function.

The difference between parameters and arguments can be confusing at first.
Here’s how it works:

v Parameters are the names you specify in the function definition.
v Arguments are the values you pass to the function. They take on the

names of the parameters when they are passed.

When you call a function, you include data (arguments) in the places where
the function definition has parameters. Note that the arguments passed

to the function must be listed in the same order as the parameters in the
function definition.

In the following function, we define two parameters for the myTacos function:
function myTacos (meat,produce) {

When you call this function, you include data (arguments) in the places
where the function definition has parameters. Note that the arguments
passed to the function must be listed in the same order as the parameters in
the function definition:

myTacos ("beef", "onions") ;
The values passed to the function will become the values of the local

variables inside of the function and will be given the names of the function’s
parameters.

Chapter 7: Getting Functional 7 0 7

Listing 7-5 expands the myTacos function to print out the values of the two
arguments to the console. Passing an argument is like using a var statement
inside of the function, except that the values can come from outside of the
function.

Listing 7-5: Referring to Arguments Inside a Function Using the
Parameter Names

function myTacos (meat,produce) {
console.log(meat); // writes "beef"
console.log (produce); // writes "onions"

myTacos ("beef", "onions") ;

You can specify up to 255 parameters in a function definition. However, it’s
highly unusual to need to write a function that takes anywhere near that
many parameters! Just for the sake of keeping your code clean and under-
standable, if you find you need a lot of parameters, you should think about
whether there’s a better way to do it.

Passing arguments by value

If you use a variable with one of the primitive data types to pass your
argument, the argument passes by value. What this means is the new vari-
able created inside the function is totally separate from the variable used to
pass the argument, and no matter what happens after the value gets into the
function, the variable outside of the function won’t change.

SMBER
&

Primitive data types in JavaScript are string, number, Boolean,
undefined, and null.

In Listing 7-6, you see that several variables are created, given values, and
then passed into a function. In this case, the parameters of the function have
the same names as the variables used to pass the arguments. Even though
the values of the variables inside the function get changed, the values of the
original variables remain the same.

’ 08 Part II: Organizing Your JavaScript

Listing 7-6: Demonstration of Arguments Passed by Value

<html>
<head>
<title>Arguments Passed By Value</title>
</head>
<body>
<script>
/**
* Increments two numbers
* @param {number} numberl
* @param {number} number2
*
/
function addToMyNumbers (numberl,number2) {
numberl++;
number2++;
console.log("number 1: " + numberl) ;
console.log("number 2: " + number2) ;

}

var numberl
var number?2

By
12;

addToMyNumbers (numberl, number2) ; // pass the arguments

console.log("original numberl: " + numberl) ;
console.log("original number2: " + number2) ;
</scripts>
</body>
</html>

Figure 7-2 shows the output of this program in the JavaScript console.

[] @ Developer Tools - file://localhost/Users/chrisminnick/WatzThis%20Google% 20Drive/WatzThis% 3F
|
Q [Elements Network Sources Timeline Profiles Resources Audits |Console| - =N
- . ©® ¥ <topframe> v Preserve log
Figure 7-2:
g number 1 inside function: 4 VM29 pass-by-value.htmlils
1 number 2 inside function: 13 M29 pass-by-value, htnl:16
Variables | oot o0 conhvinlin MO0
outside of original number 2: 12 ¥M29 pass-by-value.htnli2s
a function
.
aren't
affected by
what
happens
inside the
function
_ Console Search Emulation Rendering

Chapter 7: Getting Functional 7 09

Passing arguments by reference

Whereas JavaScript primitive variables (strings, numbers, Boolean, undefined,
and null) are passed to functions by value, JavaScript objects are passed by
reference. What this means is that if you pass an object as an argument to a
function, any changes to that object within the function will also change the
value outside of the function. The implications and uses of passing by refer-
ence are beyond the scope of this chapter but are covered in Chapter 8.

Calling a function without all
the arguments

You don’t need to always call a function with the same number of parameters
as are listed in the function definition. If a function definition contains three
parameters, but you call it with only two, the third parameter will create a
variable with a value of undefined in the function.

Setting default parameter values

If you want arguments to default to something other than undefined, you
can set default values. The most widely supported and generally accepted
way to do this is to test the arguments inside of the function value and set
default values if the data type of the argument is undef ined.

For example, in Listing 7-7, the function takes one parameter. Inside the func-

tion, a test is done to check whether the argument is undefined. If so, it will
be set to a default value.

Listing 7-7: Setting Default Argument Values

function welcome (yourName) {
if (typeof yourName === 'undefined') {
yourName = "friend";

}

In the next version of JavaScript, called ECMAScript 6, you will be able to set
default values for parameters inside the function head, as shown in Listing 7-8.

Listing 7-8: Setting Default Arguments in the Function Head

function welcome (yourName = "friend") ({
document .write ("Hello," + yourName) ;

}

’ ’0 Part II: Organizing Your JavaScript

é\g,p.L ST‘/& EMCAScript 6 isn’t yet supported in every browser as of the publication date

of this book, so this method of setting default argument values may not work
for all the users of your program. For this reason, it’s still best to use the
more compatible method of setting defaults, as shown in Listing 7-7.

Calling a function with more argument
than parameters

If you call a function with more arguments than the number of parameters,
local variables won’t be created for the additional arguments because the
function has no way of knowing what to call them.

There is a neat trick that you can use to retrieve the values of arguments
that are passed to a function but don’t have a matching parameter: the
Argument - object.

Getting into arguments with
the arguments object

When you don’t know how many arguments will be passed into a function,
you can use the argument object, which is built-in to functions by JavaScript,
to retrieve all the arguments and make use of them.

The Arguments object contains an array of all the arguments passed to a
function. By looping through the array (using the for loop or the for ... in
loop — see Chapter 6), you can make use of every argument, even if the
number of arguments may change each time the function is called.

Listing 7-9 demonstrates the use of the Arguments object to present a wel-
come message to someone with two middle names as well as someone with
one middle name.

Listing 7-9: Using the Arguments Object to Define a Function
That Can Add an Arbitrary Number of Numbers

<html>
<head>
<title>Welcome Message</titles>
</head>
<body>
<scripts>

Chapter 7: Getting Functional

/**
*Flexible Welcome Message
=
function flexibleWelcome () {
var welcome = "Welcome, ";
for (i = 0; I < arguments.length; i++) ({
welcome = welcome + arguments[i] + "";

}

return welcome;
document .write (flexibleWelcome ("Christopher"
"James" , "Phoenix" , "Minnick") + "
");
document . write(flexibleWelcome ("Eva" , "Ann" ,
"Holland") + "
");

</scripts>
</body>
</html>

Function Scope

SNe

Variables created inside a function by passing arguments or using the var
keyword are only available within that function. Programmers call this fea-
ture of JavaScript function scope. Variables created inside of a function are
destroyed when the function exits.

However, if you create a variable inside a function without using the var
keyword, that variable becomes a global variable and can be changed and
accessed anywhere in your program.

Accidentally creating a global variable is the source of a large number of
JavaScript bugs and errors, and it’'s recommended that you always properly
scope variables and never create a global variable unless it’s absolutely
necessary.

Anonymous Function

The function name part of the function head isn’t required, and you can
create functions without names. This may seem like an odd thing to do
because a function with no name is like a dog with no name; you have no way
to call it However, anonymous functions can be assigned to variables when

111

’ ’2 Part II: Organizing Your JavaScript

they are created, which gives you the same capabilities as using a name
within the function head:

var doTheThing = function (thingToDo) {
document .write ("I will do this thing: " + thingToDo) ;

Knowing the differences between
anonymous and named functions

There are a couple important, and sometimes useful, differences between
creating a named function and assigning an anonymous function to a vari-
able. The first is that an anonymous function assigned to a variable only
exists and can only be called after the program executes the assignment.
Named functions can be accessed anywhere in a program.

The second difference between named functions and anonymous functions
assigned to variables is that you can change the value of a variable and
assign a different function to it at any point. That makes anonymous func-
tions assigned to variables more flexible than named functions.

Self-executing anonymous functions

Another use for anonymous functions is as selfexecuting functions. A self-
executing anonymous function is a function that executes as soon as it’s created.

To turn a normal anonymous function into a self-executing function, you
simply wrap the anonymous function in parentheses and add a set of paren-
theses and a semicolon after it.

The benefit of using self-executing anonymous functions is that the variables
you create inside of them are destroyed when the function exits. In this way,
you can avoid conflicts between variable names, and you avoid holding vari-
ables in memory after they’re no longer needed. Listing 7-10 demonstrates
how to write and use self-executing anonymous functions.

Listing 7-10: Using a Self-Executing anonymous function

var myVariable = "I live outside the function.";
(function () {
var myVariable = "I live in this anonymous function";

document .write (myVariable) ;
0O
document .write (myVariable) ;

Chapter 7: Getting Functional 7 ’3

Web application programmers use anonymous functions regularly to accom-
plish a wide variety of modern effects in web pages. You read more about
how to use them in Chapters 15 and 16.

Do it Again with Recursion

NG/

You can call functions from outside of the function or from within other
functions. You can even call a function from within itself. When a function
calls itself, it’s using a programming technique called recursion.

You can use recursion in many of the same cases where you would use a
loop, except that it repeats the statements within a function.

Listing 7-11 shows a simple recursive function. This recursive function has
one big problem, however. Can you spot it?

Listing 7-11: A Fatally Flawed Recursive Function

function squarelItUp (startingNumber) {
var square = startingNumber * startingNumber;
console.log(square) ;
squareItUp (square) ;

}

Do you see the issue with this function? It never ends. It will just keep on
multiplying numbers together until you stop it.

Running this function will probably crash your browser, if not your computer.
No permanent damage will be done, of course, but it’s enough for you to just
read the code and notice the problem here.

Listing 7-12 improves upon the squareItUp () function by providing what’s
called a base case. A base case is the condition under which a recursive func-
tion’s job is done and it should halt. Every recursive function must have a
base case.

Listing 7-12: A Recursive Function to Square Numbers Until the
Number Is Greater Than 1,000,000

function squareltUp (startingNumber) {
square = startingNumber * startingNumber;

(continued)

’ ’4 Part II: Organizing Your JavaScript

Listing 7-12 (continued)

if (square > 1000000) {
console.log(square) ;
} else {
squareltUp (square) ;

}

There. That’s better! But, this function still has a big problem. What if some-
one passes a negative number, zero or 1 into it? The result of any of these
cases would still be an infinite loop. To protect against such a situation, we
need a termination condition. In Listing 7-13, a check to make sure that the
argument isn’t less than or equal to 1 and that it isn’t something other than a
number has been added. In both cases, the function will stop immediately.

Listing 7-13: A Recursive Function with Termination and Base Conditions

function squareltUp (startingNumber) {

// Termination conditions, invalid input
if ((typeof startingNumber != 'number') ||
(startingNumber <= 1))

return - 1; // exit the function

}

square = staringNumber * startingNumber;

//Base condition
if (square > 1000000) {
console.log (square); // Print the final value
} else { // If the base condition isn't met, do it
again.
squareItUp (square) ;

Functions within Functions

Functions can be declared within functions. Listing 7-14 demonstrates how
this technique works and how it affects the scope of variables created within
the functions.

Chapter 7: Getting Functional 7 ’5

Listing 7-14: Declaring Functions within Functions

function turnIntoAMartian (myName) {

function recallName (myName) {
var martianName = myName + " Martian";

recallName (myName) ;
console.log (martianName); // returns undefined

}

The preceding example demonstrates how nesting a function within a func-
tion creates another layer of scope. Variables created in the inner function
aren’t directly accessible to the containing function. In order to get their
values, a return statement is needed, as shown in Listing 7-15.

Listing 7-15: Returning Values from an Inner Function

function turnIntoAMartian (myName) {

function recallName (myName) {
var martianName = myName + " Martian";
return martianName;

var martianName = recallName (myName) ;
console.log(martianName) ;

’ ’6 Part II: Organizing Your JavaScript

Chapter 8
Making and Using Objects

In This Chapter
Understanding objects
Using properties and methods
Creating objects
Using dot notation
Working with objects

“We cannot do anything with an object that has no name.”

— Maurice Blanchot “Literature and the Right to Death”

’ n this chapter, we show you why you should use objects, how to use
them, and what special powers they have to make your programs and
your programming better.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Object of My Desire

In addition to the five primitive data types (see Chapter 3,) JavaScript
also has a data type called object. JavaScript objects encapsulate data and
functionality in reusable components.

To understand what objects are and how they work, it’s helpful to compare
JavaScript objects with physical, real-life things. Take a guitar, for example.

’ ’8 Part II: Organizing Your JavaScript

A guitar has things that make up what it is and has things that it does. Here
are a few facts about the guitar we're using for this example:

v It has six strings.

v It’s black and white.

¥ It’s electric.

v~ Its body is solid.

Some of the things this guitar can do (or that can be done to the guitar) are

v Strum strings
v Increase the volume
v Decrease the volume
v~ Tighten the strings
v Adjust the tone
v Loosen the strings
If this guitar were a JavaScript object instead of a real-life object, the things

that it does would be called its methods, and the things that make up the
guitar, such as its strings and body type, would be its properties.

Methods and properties in objects are both written the same way; as name-
value pairs, with a colon separating the name and the value. When a property
has a function as its value, it’s known as a method.

In reality, everything within an object is a property. We just call a property
with a function value by a different name: a method.

Listing 8-1 shows what our guitar’s properties might look like as a JavaScript
object.

Listing 8-1: A JavaScript Guitar Object

var guitar = {

bodyColor: "black",
scratchPlateColor: "white",
numberOfStrings: 6,

brand: "Yamaha'",

bodyType: "solid",

strum: function() {...},
tune: function() {...}

b5

Chapter 8: Making and Using Objects 7 ’ 9

Creating Objects

JavaScript has two ways to create objects:

v By writing an object literal
” By using the object constructor method
Which one you choose depends on the circumstances. In the next sections,

you discover the pros and cons of each and when one is preferred over
the other.

Defining objects with object literals

The object literal method of creating objects starts with a standard variable
definition, using the var keyword, followed by the assignment operator:

var person =

In the right side of the statement, however, you’ll use curly braces with
comma-separated name/value pairs:

var person = {eyes: 2, feet: 2, hands: 2, eyeColor:
"blue" } ;

If you don’t know the properties that your object will have when you create it
or if your program requires that additional properties be added a later time,
you can create the object with few, or even no properties, and then add prop-
erties to it later:

var person = {};
person.eyes = 2;
person.hair = "brown";

The methods in the examples earlier in this book have mostly been used
to output text. document .write and console.log both use this method
of separating properties with a period, so it may look familiar to you. The
dot between the object name and the property indicates that the prop-
erty belongs to that object. Dot notation is covered in more detail in the
“Retrieving and Setting Object Properties” section, later of this chapter.

Another thing to notice about objects is that, like arrays, objects can contain
multiple different data types as the values of properties.

’ 20 Part II: Organizing Your JavaScript

The not-so-well-kept secret to really understanding JavaScript is in knowing
that arrays and functions are types of objects and that the number, string,
and Boolean primitive data types can also be used as objects. What this
means is that they have all the properties of objects and can be assigned
properties in the same way as objects.

Defining objects with an
Object constructor

The second way to define an object is by using an Object constructor. This
method declares the object using new Object and then populates it with
properties. An example of using an Object constructor is shown in Listing 8-2.

Listing 8-2: Using an Object Constructor

var person = new Object () ;

person.feet = 2;
person.name = "Sandy";
person.hair = "black";

The Object constructor method of creating objects can be used, but it’s gen-
erally regarded as the inferior way to create objects. The main reasons are

v It requires more typing than the object literal method.

v It doesn’t perform as well in web browsers

v~ It’s more difficult to read than the object literal method.

Retrieving and Setting Object Properties

After you create an object and define its properties, you’ll want to be able to
retrieve and change those properties. The two ways to access object proper-
ties are by using dot notation or square brackets notation.

Dot notation

In dot notation, the name of an object is followed by a period (or dot),
followed by the name of the property that you want to get or set.

To create a new property called firstName in the person object or to
modify the value of an existing £irstName property, you would use a
statement like the following:

Chapter 8: Making and Using Objects

A\\S

person.firstName = "Glenn";

If the £irstName property doesn’t already exist, this statement will create it.
If it does exist, it will update it with a new value.

To retrieve the value of a property using dot notation, you would use the
exact same syntax, but you would move the object and property names
(called the property accessor) into a different position in the statement. For
example, if you want to concatenate the values of person. firstName and
person.lastName and assign them to a new variable called ful 1Name, you
would do the following:

var fullname = person.firstName + person.lastName;

Or, to write out the value of a person. firstName to your html document,
just use the property accessor as you would any variable; such as

document .write (person.firstName) ;

Dot notation is generally the faster to type and easier to read way to set and
retrieve object property values.

Square bracket notation

Square bracket notation uses, you guessed it, square brackets after the
object name in order to get and set property values. To set a property value
with square bracket notation, put the name of the property in quotes inside
square brackets, like this:

person["firstName"] = "Iggy";

Square bracket notation has a couple of capabilities that dot notation
doesn’t. The main one is that you can use variables inside of square bracket
notation for cases where you don’t know the name of the property that you
want to retrieve when you’re writing your program.

The following example does the exact same thing as the preceding example,
but with a variable inside of the square brackets rather than a literal string.
Using this technique, you can make a single statement that can function in
many different circumstances, such as in a loop or a function:

var personProperty = "firstName";
person [personProperty] = "Iggy";

121

’ 22 Part II: Organizing Your JavaScript

Listing 8-3 shows a simple program that creates an object called chair, then
loops through each of the object’s properties, and asks the user to input
values for each. Once the user has entered a value for each of the properties,
the writeChairReceipt function is called, which prints out each proper-
ties along with the value the user entered.

Listing 8-3: Chair Configuration Script

<html>
<head>
<title>The WatzThis? Chair Configurator</title>
</head>
<body>
<script>
var myChair =

"cushionMaterial" : "",

"numberOfLegs" : "",

n legHeight n . mn

7

function configureChair () ({
var userValue;
for (var property in myChair) {
if (myChair.hasOwnProperty (property)) {
userValue = prompt ("Enter a value for " +

property) ;
myChair [property] = userValue;
}
}
function writeChairReceipt ()

document .write ("<h2>Your chair will have the following
configuration:</h2>") ;
for (var property in myChair) {
if (myChair.hasOwnProperty (property)) {
document .write (property + ": " + myChair [property]
+ "
");
}

}
}

configureChair () ;
writeChairReceipt () ;
</script>
</body>
</html>

Chapter 8: Making and Using Objects 7 23

Deleting Properties

You can delete properties from objects by using the delete operator. Listing 84
demonstrates how this operator works.

Listing 8-4: Using the delete Operator

var myObject = {

varl : "the value",
var2 : "another wvalue",

var3 : "yet another"

bi

// delete var2 from myObject
delete myObject.var2;

// try to write the value of var2
document .write (myObject.var2); // result is an error

Working with Methods

Methods are properties with functions for their values. You define a method
the same way that you define any function. The only difference is that a
method is assigned to a property of an object. Listing 8-5 demonstrates the
creation of an object with several properties, one of which is a method.

Listing 8-5: Creating a Method

var sandwich = {

meat:"",

cheese:"",

bread:"",

condiment:"",

makeSandwich: function (meat,cheese,bread,condiment) {
sandwich.meat = meat;
sandwich.cheese = cheese;
sandwich.bread = bread;

sandwich.condiment = condiment;

var mySandwich = sandwich.bread + ", " + sandwich.meat +
", " + sandwich.cheese + ", " + sandwich.
condiment;

return mySandwich;

’ 24 Part II: Organizing Your JavaScript

To call the makeSandwich method of the sandwich object, you can then use
dot notation just as you would access a property, but with parentheses and
parameters supplied after the method name, as shown in Listing 8-6.

Listing 8-6: Calling a Method

<html>

<head>

<title>Make me a sandwich</title>
</head>

<body>

<script>

var sandwich = {
meat:"",
cheese:"",
bread:"",
condiment:"",
makeSandwich: function (meat,cheese,bread,condiment) {
sandwich.meat = meat;
sandwich.cheese = cheese;
sandwich.bread = bread;
sandwich.condiment = condiment;
var mySandwich = sandwich.bread +
", " + sandwich.meat + ", " +
sandwich.cheese + ", " +
sandwich.condiment;
return mySandwich;

}
}

var sandwichOrder =
sandwich.makeSandwich ("ham", "cheddar", "wheat", "
spicy mustard") ;

document .write (sandwichOrder) ;

</scripts>
</body>
</html>

Using this

The this keyword is a shorthand for referencing the containing object of

a method. For example, in Listing 8-7, every instance of the object name,
sandwich, has been replaced with this. When the makeSandwich function
is called as a method of the sandwich object, JavaScript understands that
this refers to the sandwich object.

Chapter 8: Making and Using Objects 7 25

Listing 8-7: Using this Inside a Method

<html>

<head>

<title>Make a sandwich</title>
</head>

<body>

<script>

var sandwich = {

meat:"",

cheese:"",

bread:"",

condiment:"",

makeSandwich: function(meat,cheese,bread,condiment){
this.meat = meat;
this.cheese = cheese;
this.bread = bread;

this.condiment = condiment;
var mySandwich = this.bread + ", " + this.meat + ",
" + this.cheese + ", " + this.condiment;

return mySandwich;

}

var sandwichOrder =
sandwich.makeSandwich ("ham", "cheddar", "wheat", "
spicy mustard") ;

document .write (sandwichOrder) ;

</scripts>
</body>
</html>

The result of using the this keyword instead of the specific object name is
exactly the same in this case.

Where this becomes very useful is when you have a function that may apply
to multiple different objects. In that case, the this keyword will reference
the object that it’s called within, rather than being tied to a specific object.

In the next sections, you find out about constructor functions and inheri-
tance, both of which are enabled by the humble this statement.

An Object-Oriented Way to Become
Wealthy: Inheritance

When you create objects, you're not just limited to creating specific objects,
such as your guitar, your car, your cat, or your sandwich. The real beauty of

’ 26 Part II: Organizing Your JavaScript

objects is that you can use them to create types of objects, from which other
objects can be created.

If you read the earlier sections in the chapter, every object created has been
constructed directly from the Object type of object.

The examples of the constructor method of creating an object from the
“Creating Objects” section, earlier in this chapter, demonstrates this clearly:

var person =

new Object () ;

Here, a new person object of the type Object is created. This new person
object contains all the default properties and methods of the Object type,
but with a new name. You can then add your own properties and methods to
the person object to make it specifically describe what you mean by person.

var person =

new Object () ;

person.eyes = 2;
person.ears 25
person.arms 2;
person.hands = 2;
person.feet = 2;
person.legs = 2;
person.species = "Homo sapien";

So, now you’ve set some specific properties of the person object. Imagine
that you want to create a new object that’s a specific person, like Willie
Nelson. You could simply create a new object called willieNelson and
give it all the same properties as the person object, plus the properties that
make Willie Nelson unique.

var willieNelson =
willieNelson.
willieNelson.
willieNelson.

willieNelson
willieNelson
willieNelson

willieNelson.
willieNelson.
willieNelson.
willieNelson.
willieNelson.

new Object () ;

eyes = 2;

ears = 2;

arms = 2;

.hands = 2;

.feet = 2;

.legs = 2;

species = "Homo sapien';
occupation = "musician";
hometown = "Austin";
hair = "Long";

genre = "country";

This method of defining the willieNelson object is wasteful, however. It
requires you to do a lot of work, and there’s no indication here that Willie
Nelson is a person. He just happens to have all the same properties as

a person.

Chapter 8: Making and Using Objects 7 2 7

The solution is to create a new type of object, called Person and then make
the willieNelson object be of the type Person.

Notice that when we talk about a type of object, we always capitalize the
name of the object type. This isn't a requirement, but it is a nearly universal
convention. For example, we say

var person = new Object () ;

or

var willieNelson = new Person|() ;

Constructing Objects with
constructor functions

To create a new type of object, you define a new constructor function.
Constructor functions are formed just like any function in JavaScript, but
they use the this keyword to assign properties to a new object. The new
object then inherits the properties of the object type.

Here is a constructor function for our Person object type:

function Person () {

this.eyes = 2;
this.ears = 2;
this.arms = 2;

this.hands = 2;

this.feet = 2;
this.legs = 2;
this.species = "Homo sapien";

}

To create a new object of the type Person now, all you need to do is to
assign the function to a new variable. For example:

var willieNelson = new Person ()
The willieNelson object inherits the properties of the Person object

type. Even though you haven't specifically created any properties for the
willieNelson object, it contains all the properties of Person.

’ 28 Part II: Organizing Your JavaScript

To test this out, run the code in Listing 8-8 in a web browser.

Listing 8-8: Testing Inheritance

<html>

<head>

<title>Inheritance demo</title>
</head>

<body>

<script>

function Person () {
this.eyes = 2;
this.ears = 2;
this.arms = 2;
this.hands = 2;
this.feet = 2;
this.legs = 2;
this.species =

[
NN

"Homo sapien";

var willieNelson = new Person/() ;
alert ("Willie Nelson has " + willieNelson.feet + "
feet!") ;
</scripts>
</body>
</html>

The result of running Listing 8-8 in a browser is shown in Figure 8-1.

[Ealles[E@] %= |
9 Inheritance demo x \

€« X M [wwweodingjsfordummies.com/code/ch08/1i: g2
The page at www.codingjsfordummies.com says: *

Willie Nelson has 2 feet!

oK

|
Figure 8-1:
Willie
Nelson
isa
Person
|

Chapter 8: Making and Using Objects 7 29

Modifying an object type
Suppose that you have your Person object type, which serves as the proto-
type for several objects. At some point you realize that the person, as well as

all the objects that inherit from it, ought to have a few more properties.

To modify a prototype object, use the prototype property that every object
inherits from Object. Listing 8-9 shows how this works.

Listing 8-9: Modifying a prototype Object

function Person () {
this.eyes ;
this.ears F

this.arms ;

this.hands = 2;
this.feet 2;
this.legs 2;
this.species =

}

var willieNelson = new Person() ;
var johnnyCash = new Person() ;
var patsyCline = new Person() ;

2
2
2

"Homo sapien";

// Person needs more properties!
Person.prototype.knees = 2;
Person.prototype.toes = 10;
Person.prototype.elbows = 2;

// Check the values of existing objects for the new
properties
document .write (patsyCline.toes); // outputs 10

Creating Objects with Object.create

Yet another way to create objects from other objects is to use the
Object.create method. This method has the benefit of not requiring you
to write a constructor function. It just copies the properties of a specified
object into a new object. When an object inherits from another object, the
object it inherits from is called the prototype.

’30 Part II: Organizing Your JavaScript

Listing 8-10 shows how Object .create can be used to create the
willieNelson object from a prototype.

Listing 8-10: Using Object.create to Create an Object from a
Prototype

// create a generic Person
var Person = {

eyes: 2,
arms: 2,
feet: 2

}

// create the willieNelson object, based on Person
var willieNelson = Object.create (Person) ;

// test an inherited property
document .write (willieNelson.feet); // outputs 2

Partlll
JavaScript on the Web

) Home - WatzThis? Mew Tab +Tab Bar
& watzthis.com Location Bar [Search + ATBEE0 A4 =
Most Visited ~ | Getting Started 5 Latest Headlines = \

Bookmarks Bookmarks Bar

WatzThis?

The Beginner's Mind

% Bockmarks Toolbar
=] Bookmarks Menu
&) Unsorted Bookmarks

Sidebar

Browser Window

Blog Photo Gallery ~ Schedule WatWeDe WhoWeAre Contact Us

B L E)
. Developer Toolbar \ .?i"‘?“ 7 5 i - | 7 e
' i A _—n ¢ . AR
2 U] SR o -1 ~Ee)
] > Coffie (@ Debugger [Style Editor @ Performance T Netwark ™| E % oo x

Computed Fonts Box Model

Find out how to deal with slow web pages in the article “Deferred Loading with
extras JavaScript” at www . dummies.com/extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript

\

A W W W WA

In this part . . .

Find out how to use the Window object to control the
browser.

Master manipulating documents with the DOM.
Get the inside scoop on using events in JavaScript.
Figure out how to integrate input and output.
Discover how to work with CSS and graphics.

Find out how to deal with slow web pages in the article
“Deferred Loading with JavaScript” at www . dummies . com/
extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Chapter 9

Controlling the Browser with
the Window Object

In This Chapter
Understanding the BOM (Browser Object Model)
Opening and closing windows
Getting windows properties

Resizing windows

“In making theories, always keep a window open so that you can throw one
out if necessary.”

— Bela Lugosi

Fe Browser Object Model (BOM) allows JavaScript to interact with the
functionality of the web browser. Using the BOM, you can create and
resize windows, display alert messages, and change the current page being
displayed in the browser.

In this chapter, you discover what can be done with the browser window and
how to use it to write better JavaScript programs.

Understanding the Browser Environment

Web browsers are complicated pieces of software. When they work well,
they operate seamlessly and integrate all their functions into a smooth and
seemingly simple web browsing experience. We all know that web browsers
have an occasional hiccup and sometimes even crash. To understand why
this happens, and to be able to make better use of browsers, it’s important
to know the many different parts of the web browser and how these parts
interact with each other.

’34 Part lll: JavaScript on the Web

|
Figure 9-1:
The browser
chrome.

The user interface

The part of the web browser that you interact with when you type in a URL,
click the home button, create or use a bookmark, or change your browser
settings is called the user interface, or browser chrome (not to be confused
with Google’s Chrome browser).

The browser chrome consists of the web browser’s menus, window frames,
toolbars, and buttons that are outside of the main content window where
web pages load, as shown in Figure 9-1.

Loader

The loader is the part of a web browser that communicates with web servers
and downloads web pages, scripts, CSS, graphics, and all the other compo-
nents of a web page. Most often, loading is the part of displaying a web page
that creates the longest wait time for the user.

0O /@ ome wazthir i +Tab Bar
€ watzihis.com Location Bar e ear +ANBE0 40 =
Most Visited ~ I Getting Started [Latest Headlines ~ \
Bookmarks Bookmarks Bar
e WatzThis?
E = :z::::;::xh The Beginner's Mind
Sidebar

Browser Window

Blog PhotoGallery Schedule WatWeDo WhoWeAre ContactUs
g ?,
i ,;&;W[Jaéveloper Toolbar ,_;% 7
4 Yorsiy) | 2 |
A i al 7 lﬂ
> coffie (@ Debugger [swie Eator @ Performanca Network M| AI#FE O x

e iR

|
Figure 9-2:
Web
browser
loading.
|

Chapter 9: Controlling the Browser with the Window Object ’35

The HTML page is the first part of a web page that must be downloaded, as it
contains links and embedded scripts and styles that need to be processed in
order to display the page.

Figure 9-2 shows the Chrome Developer Tools’ Network tab. It displays a
graphical view of everything that happens during the loading of a web page,
along with a timeline showing how long the loading of each part takes.

Once the HTML document is downloaded, browsers will open several con-
nections to the server in order to download the other parts of the web page
as quickly as possible. Generally, the parts of a web page that are linked from
an HTML document (also known as the resources) are loaded in the order

in which they appear in the HTML document. For example, a script that is
linked in the head element of the page will be loaded before one that’s linked
at the bottom of the page.

eoe Developer Tools - http://www.dummies.com/
Q [Elements |Nework| Sources Timeline Profiles Resources Audits Console = # o,
® © ¥ = (Preservelog [Disable cache
tame Method SIS qype Initiator dze Time Timeline ,
] o dummis.com cer 20 - ETve e .
] sulecss o B e Mt o zom
155546.cs5 § 304 oy dummies.co 1008 223ms
& ° 23 Mo moq et/ !
| Javery.min s 304 1008 264ms
GET o, avplicat ' ‘
satelliteLib-bb684eabad7aa2dfb 104 o 2208 sims
el b e ceT Nox niog | PPliCati - o
104 4308 Ems
cer applicati...
Not Modi P "
logo.png 104 v dummies.co 018 &70ms
! B ceT Mot o, Imageiong X e
| prototype.s 304 vy dummies.co 1008 233ms
| ceT Non nnog | dpplicati..
effects js 304 oy dummies co 1008 235ms
cET Nen pog picati.. 3 !
resizable js 304 vy dummies.co 1008 229ms
| - GET Non ntog | APRlicati §
dragdrop.s 304 oy dummies.co 018 §34ms
cer applicati...
=) mediawitey.com Not Modi Pa 632m
livepipe.js 304 ooy dummies.co 018 663ms
| cET applicati... N :
2 mediawley.co ot Pa 635
7 windowjs 104 vy dummies.co 1018 66Ems
! cer Non moq | Picati ot
1 stideshow s 304 oy dummies.co 10018 665ms
| aeT Nonnog | Picati. o
y 304 o ummie 1008 665
] oseis S cer Non nog | APplicati.. R | o
quant.s 304 vy dummies.co 2068 SlEms
| GeT applicati.. i .
dge.quantserve com Not Modi Pa m
wiley-master.css 304 oy dummies.co 018 437ms
s ; cer Moo tetESS e o
ga_exp jsTutmakey ~38095674 200 4108 6lms
| & I — cET § text/java... | Sl o
] icon-facebook.png oo dummies.co. 1018 230ms
LI " GET) Image/png o 1
| Twitterican2012.png oy dummies.co 1008 232ms
[v] e e . mapeiong 2 o '
icon-gplus.pn o 1018 228ms
2. cET image/png > . . 1
(=] icen-youtube.png - 304 . vwwdummiss.co w18 23Ems
152 requests | 183 KB transferred 1 4.83 s (load: 3.56 5, DOMContentLoaded: 2.79)

’36 Part I1l: JavaScript on the Web

WMBER
é&
&

The load order of resources is critical to the efficiency and speed at which
the page can be displayed to the user. In order for a web page to be dis-
played correctly, the CSS styles that apply to that page need to be loaded and
parsed. Because of this, CSS should always be loaded in the head element at
the top of the web page.

JavaScript sometimes affects the display of a web page as well, but more
often, it affects only the functionality. When a script will affect the display of
a web page, it should be loaded in the head of the document (after the CSS).
Scripts that aren’t critical to how the web page appears should be linked
from the very end of the body element (right before the </body>), so as to
not create a blocking scenario in which the browser waits for scripts to load
before displaying anything to the user.

HTML parsing

After a web page is downloaded, the HTML parsing component of the browser
goes to work parsing the HTML to create a model (called the Document
Object Model or DOM) of the web page. The DOM, which is covered in detail
in Chapter 10, is like a map of your web page. JavaScript programmers use
this map to manipulate and access all the different parts of a web page.

Upon completion of the HTML parsing, the browser begins downloading the
other components of the web page.

CSS parsing

Once the CSS for a web page is completely downloaded, the web browser will
parse the styles and figure out which ones apply to the HTML document. CSS
parsing is a complex process involving multiple passes over a document in
order to apply each style correctly and to take into account how the styles
impact each other.

JavaScript parsing

The next step in displaying a web page is the JavaScript parsing. The
JavaScript parser compiles and runs every script in your web page in the
order in which it appears in the document. If your JavaScript code adds or
removes elements, text, or styles within the HTML DOM, the browser will
update the HTML and CSS renderings accordingly.

Chapter 9: Controlling the Browser with the Window Object 73 7

W

Layout and rendering

Finally, once all the web page’s resources have been loaded and parsed, the
browser determines how to display the page and then displays it. Unless
you've specified that a script included earlier in the document should wait
until the end to be executed, the layout and rendering of your scripts will
occur in the order they’re included in the document.

In general, it’s better to display a web page to the user as quickly as possible,
even if the page may not be fully functional when it first appears. Modern
websites frequently employ this strategy specifically (called deferred loading)
to improve the perceived performance of their pages. If you've ever opened a
web page and had to wait for a moment before you can use a form or interac-
tive element, you've seen deferred loading in action.

Igniting the BOM

JavaScript programmers can find out information about a user’s web browser
and control aspects of the user’s experience through an API called the
Browser Object Model.

There is no official standard for the Browser Object Model. Different brows-
ers implement it in different ways. However, there are some generally
accepted standards for how JavaScript interacts with web browsers.

The Navigator object

The Navigator object provides JavaScript with access to information about
the user’s web browser. The Navigator object takes its name from the first
web browser to implement it, Netscape Navigator. The Navigator object
isn’t built into JavaScript. Rather, it’s a feature of web browsers that is accessible
using JavaScript. Nearly every web browser (and every modern web browser)
has adopted the same terminology to refer to this highest-level browser object.

The Navigator object accesses helpful information such as

v The name of the web browser
v The version of the web browser

v The physical location of the computer the browser is running on (if the
user allows the browser to access geolocation data).

v+ The language of the browser

v The type of computer the browser is running on

’38 Part I1l: JavaScript on the Web

Table 9-1 shows all the properties of the browser Navigator object.

Table 9-1 The Properties of the Navigator Object
Property Use

appCodeName Gets the code name of the browser

appName Gets the name of the browser

appVersion Gets the browser version information
cookieEnabled Tells whether cookies are enabled in the browser
geolocation Can be used to locate the user’s physical location
language Gets the language of the browser

onLine Identifies whether the browser is online
platform Gets the platform the browser was compiled for
product Gets the browser engine name of the browser
userAgent Gets the user-agent the browser sends to web servers.

To get the properties of the Navigator object, you use the same syntax
used to get the properties of any object — namely, dot notation or brackets
notation. Listing 9.1, when opened in a web browser, will display all the cur-
rent properties and values of the Navigator object.

Listing 9-1:

Properties of the Navigator Object and Their Values

<html>
<head>
<style>
.columns {

-webkit-column-count: 6;
-moz-column-count: 6;
column-count:

}

</style>
</head>
<body>

/* Chrome, Safari, Opera */
/* Firefox */

6;

<div class="columns">

<script>

for (var prop in navigator) {

document .write

n
 n) ;
}
</scripts>
</div>
</body>

</html>

(prop + ": " + navigator [propl +

|
Figure 9-3:
Listing all of
the properties
of the
Navigator
object with
their values.
|

WNG/
&

Chapter 9: Controlling the Browser with the Window Object 739

Figure 9-3 shows the output of Listing 9.1 when opened in a web browser.

S] |
/[www.codingjsfordumm x|
€« C f [www.eodingjsfordummies.com/code/chn9/listings-Lhtml =
serviceWorker [object language: en-us AppleWebEit/537.36 MimeTypeArray] [native code] } sendBeacon: function
ServiceWorkerContaner] wserAgent: Mozilla/5.0 (KHTML, like Gecke) plugins: [object 2etG 1s: function ndBeacon() { [native
webkitPersistentStorage: (Windows NT 6.1, Chrome/40.0.2214.93 Plugin Array] getGamepads() { [native code] }
[object WOWEd) Safari/537.36 javaEnabled: function code] } registerProtocolHandler

DeprecatedStorageQuota] AppleWebKit/537.36
weblitTemporaryStorage: (KHTML, lice Gecleo)
[object Chrome0.0.2214.93
DeprecatedStorageQuota] Safar/537.36
geolocation: [object product: Gecko

webkitGetUserlMedia
function
weblkitGetUserMedial) {
[native code] }

wvibrate: function wibrate()

function
registerProtocoHandler()
{ [native code] }
unregisterProtocolHandle
function

appllame: MNetscape
appCodellame: Mozlla
hardwareConcurrency: 4
maxTeouchPoints: 0

JavaEnabled() { [native
code] }
getStorageUpdates
function

vendorSub getStorageUpdates()

Geolocation] platform: Win32 vendor: Google Inc. [native code] } { [native code] } unregisterProtocolHandle
dellotTrack: 1 app Version: 5.0 productSub: 20030107 webkitGetGamepads getBattery: function { [native code] }

onLine; true (Windows NT 6.1, coolieEnabled: true function getBattery() { [native

languages: en-T5,en WOWed) mimeTypes: [object webkitGetGamepads() { cede])

If you run Listing 9.1 yourself, you’ll notice something interesting about

the output: The values for the AppName properties are seemingly just plain
wrong. For example, the browser used to generate the Figure 9-3 was Google
Chrome, but AppName lists it as Netscape.

This misleading value is a relic from the days when programmers used the
properties of the Navigator object to detect whether a user was using a
particular browser and supported certain features.

When new browsers, such as Chrome and Firefox, came along, those brows-
ers adopted the Netscape browser AppName value in order to make sure they
were compatible with websites that detected features in this way.

Today, browser detection isn’t recommended, and you can use better ways
to detect browser support for particular functionality than by looking at the
AppName property. The most common way to detect features today is by
examining the DOM for objects associated with the feature you want to use.
For example, if you want to find out if a browser supports the HTML5 audio
element, you can use the following test:

var test audio= document.createElement ("audio") ;
if (test audio.play) {

console.log ("Browser supports HTML5 audio") ;

} else

console.log ("Browser doesn't support HTML5 audio") ;

’ 4 0 Part lll: JavaScript on the Web

The Window object

The main area of a web browser is called the window. This is the area into
which HTML documents (and associated resources) load. Each tab in a web
browser is represented in JavaScript by an instance of the Window object.
The Wwindow object’s properties are listed in Table 9-2.

Table 9-2 The Window Object's Properties
Property Use
closed A Boolean value indicating whether a window has

been closed or not

defaultStatus Gets or sets the default text in the status bar of a
window

document Refers to the Document object for the window

frameElement Gets the element, such as <i frame> or <object>,
that the window is embedded in

frames Lists all the subframes in the current window

history Gets the user’s browser history for the current
window.

innerHeight Gets the inner height of the window

innerWidth Gets the inner width of the window

length Gets the number of frames in the window

location Gets the Location object for the window

name Gets or sets the name of the window

navigator Gets the Navigator object for the window

opener Gets the Window object that created the current
window

outerHeight Gets the outer height of the window, including
scrollbars and toolbars

pageXOffset Gets the number of pixels that have been scrolled
horizontally in the window

pageYOffset Gets the number of pixels that have been scrolled
vertically in the window

parent Refers to the parent of the current window

screen Refers to the Screen object of the window

Chapter 9: Controlling the Browser with the Window Object 7 4 ’

Property Use

screenlLeft Gets the horizontal pixel distance from the left side of
the main screen to the left side of the current window

screenTop Gets the vertical pixel distance from the top of the
window relative to the top of the screen

screenX Gets the horizontal coordinate relative to the screen

screenY Gets the vertical coordinate relative to the screen

self Refers to the current window

top Refers to the topmost browser window

Some of the most common uses for the window properties include

v Opening a new location in the browsers window
v Finding the size of a browser window

v Returning to a previously open page (as in the back button functionality)

Opening a web page with the window.location property

Getting the value of the window. location property will return the URL of
the current page. Setting the value of the window.location property with a
new URL causes the browser to load the web page at that URL in the window.

Listing 9.2 is a web page with a script that requests a web page address from
the user and then loads that page in the current browser window.

Listing 9-2: A Script for Loading a Web Page in the Browser Window
Using the window.location Property

<html>
<head>
<script>
function loadNewPage (url) {
window.location = url;

</scripts>
</head>
<body>
<scripts>
var newURL = prompt ("Please enter a web page
address!") ;
loadNewPage (newURL) ;
</scripts>
</body>
</html>

142

Part lll: JavaScript on the Web

|
Figure 9-4:
The
window.
location
property in
action.
|

Figure 9-4 shows the output of Listing 9-2.

: ==
o ww codingjsfordummi » | T
€« X M [wwweodingjsfordummies s =

The page at www.codingjsfordummies.com says: .

Please enter a web page address!

0K Cancel

Waiting for waw.codingjsfardummies.com...

Determining the size of a browser window

When you're designing a website or a web application to work and function on
different types of devices (a technique known as responsive design), knowing
the size of the web browser, particularly the width, is critical.

The window. innerWidth and window. innerHeight properties give you
this information, in pixels, for the current web browser window.

Using CSS to determine the size of a browser window is also possible and quite
common. However, there are some differences in how CSS and JavaScript treat
scrollbars that may influence which technique you decide to use.

Try a simple responsive design example using JavaScript. Run the program in
Listing 9-3 in your web browser. If your web browser window width is below
500 pixels, one message will be displayed. If your window’s width is greater
than 500 pixels, a different message will be displayed.

Chapter 9: Controlling the Browser with the Window Object 7 43

Listing 9-3: Changing a Web Page Based on the Width of the Window

<html>
<head>
<title>Adapting to the window.innerWidth</title>
</head>
<body>
<scripts>
var currentWidth = window.innerWidth;
if (currentWidth > 500) {
document .write ("<hl>Your window is big.</hl>") ;
} else {
document .write ("<hl>Your window is small.</hil>");

</scripts>
</body>
</html>

To test out the responsive design example in Listing 9.3, follow these steps:
1. In your web browser, open an HTML document containing the code in
Listing 9-3.

If your window is more than 500px wide when you open your page, you'll
see a message that your window is big.

2. Drag the lower right corner of your browser to make the window as
narrow as you can, as shown in Figure 9-5.

[Bm || = =] 32

Adapting to the windov x _ |

&« C M [wwweodingjsfordummies s =

Your window is small.

|
Figure 9-5:
Displaying

a different
message

for narrow
browser
width.
|

144

Part lll: JavaScript on the Web

3. Click your browser’s refresh button, or press Command+R (on Mac) or
Ctrl+R (on Windows), to reload the page.

Notice that the message on the page now says your browser’s window
is small.

Creating a Back button using location and history

The history property of the window object is a read-only reference to the his-
tory object, which stores information about the pages the user has accessed
in the current browser window. By far the most common use of the history
object is to enable buttons that return the user to a previously viewed page.

Listing 9-4: Implementing a Back Button in a Web Application

<html>
<head>
<title>Creating a Back button</title>
<script>
function takeMeBack () {

window.location (window.history.go(-1)) ;

}

function getHistoryLength () ({
var 1 = window.history.length;
return 1;
</scripts>
</head>
<body>
<scripts>
var historyLength = getHistoryLength () ;
document .write ("<p>Welcome! The number of pages
you've visited in this window is: " +
historyLength + ".</p> ");
</scripts>

Go
Back
</body>
</html>

To use the back button in Listing 9-4, follow these steps:

1. Open a new browser window and visit any page you like, such as
www.watzthis.com.

2. While in that same browser window, open an HTML document con-
taining the code in Listing 9-4.

3. Click the Go Back link.

Your browser will take you back to the last page you visited before the
one containing the Back button.

http://www.watzthis.com

Chapter 9: Controlling the Browser with the Window Object 7 45

Care to guess what happens if you open Listing 9-4 in a new browser tab
before accessing any other web pages in that tab? If you guessed that nothing
will happen, you're correct! If only ONE page (the current one) has been dis-
played in a window, there's nothing to go back to.

Using the Window object’s methods

In addition to its properties, the Window object also has some useful meth-
ods that JavaScript programmers should know and use. Table 9-3 shows the
complete list of these methods.

A method is just another name for a function that's contained within an

object.
Table 9-3 The Window Object's Methods
Method Use
alert () Displays an alert box with a message and an OK button
atob () Decodes a base-64 encoded string
blur () Causes the current window to lose focus

clearInterval ()

Cancels the timer set using setlnterval()

clearTimeout ()

Cancels the timer set using setTimeout()

close ()

Closes the current window or notification

confirm()

Displays a dialogue box with an optional message and
two buttons; OK and Cancel

createPopup ()

Creates a pop-up window

focus () Sets the current window into focus

moveBy () Moves the current window by a specified amount
moveTo () Relocates a window to a specified position

open () Opens a new window

print () Prints the contents of the current window

prompt () Displays a dialogue box prompting the user for input
resizeBy () Resizes the window by a specified number of pixels
resizeTo () Resizes a window to a specified height and width.
scrollBy () Scrolls the document by a specified amount
scrollTo() Scrolls the document to a specific set of coordinates

’ 4 6 Part lll: JavaScript on the Web

Table 9-3 (continued)

Method

Use

setInterval ()

Calls a function or executes an expression repeatedly
at specified intervals (in milliseconds)

setTimeout ()

Calls a function or executes an expression after a
specified interval (in milliseconds)

stop ()

Stops the current window from loading

Chapter 10

Manipulating Documents
with the DOM

In This Chapter
Getting to know the DOM (Document Object Model)
Working with nodes
Moving around the tree

Selecting elements

“No object is mysterious. The mystery is your eye.”

— Elisabeth Bowen

u nderstanding the DOM is key to being able to manipulate the text

or HTML in a web page. Using the DOM, you can create anima-
tions, update data without refreshing web pages, move objects around in a
browser, and much more!

Understanding the DOM

The Document Object Model is the interface for JavaScript to talk to and
work with HTML documents inside of browser windows. The DOM can be
visualized as an inverted tree, with each part of the HTML document branch-
ing off of its containing part.

Listing 10-1 is the markup for a web page. The DOM representation is shown
in Figure 10-1.

’ 48 Part I1l: JavaScript on the Web

Listing 10-1: An HTML Document

<html>
<head>
<title>Bob’s Appliances</title>
</head>
<body>
<headers>
<img src="logo.gif" width="100" height="100" alt="Site
Logo" >
</header>
<div>
<hl>Welcome to Bob’s</hl>
<p>The home of quality appliances</p>
</div>
<footers>
copyright © Bob
</footers>
</body>
</html>

Document

Text: Bob's Appliances

F|g ure 10-1: Text: Welcome to Bob's Text: T';i:mi:: quality

Arepresen-
tation of the

D 0 c u m e nt Attribute: src Attribute: alt Attribute: height Aftribute: width
Object I
Model for

L|st| ng 1 0-1 . value: logo.gif wvalue: Site Logo value: 100 value: 100

Chapter 10: Manipulating Documents with the DOM 7 4 9

A DOM tree is made up of individual components, called nodes. The main
node, from which every other node springs, is called the document node. The
node under the document node is the root element node. For HTML docu-
ments, the root node is HTML. After the root node, every element, attribute,
and piece of content in the document is represented by a node in the tree
that comes from another node in the tree.

The DOM has several different types of nodes:

+* Document node: The entire HTML document is represented in this node
v+ Element nodes: The HTML elements

v Attribute nodes: The Attributes associated with elements

1 Text nodes: The text content of elements

1+ Comment nodes: The HTML comments in a document

Node Relationships

WING/
&

HTML DOM trees resemble family trees in the hierarchical relationship
between nodes. In fact, the technical terms used to describe relationships
between nodes in a tree take their names from familial relationships.

v Every node, except the root node, has one parent.

v Each node may have any number of children.

v Nodes with the same parent are siblings.
Because HTML documents often have multiple elements that are of the same
type, the DOM allows you to access distinct elements in a node list using an

index number. For example, you can refer to the first <p> element in a docu-
ment as p [0], and the second <p> element nodeas p[1].

Although a node list may look like an array, it’s not. You can loop through the
contents of a node list, but you can’t use array methods on node lists.

In Listing 10-2, the three <p> elements are all children of the <div> element.
Because they have the same parent, they are siblings.

In Listing 10-2, the HTML comments are also children of the section ele-
ment. The last comment before the closing section tag is called the last child
of the section.

By understanding the relationships between document nodes, you can use
the DOM tree to find any element within a document.

’50 Part lll: JavaScript on the Web

Listing 10-2: Demonstration of Parent, Child, and Sibling Relationships
in an HTML Document

<html>
<head>
<title>The HTML Family</title>
</head>
<body>
<section> <!-- proud parent of 3 p elements, child of
body -->
<p>First</p> <!-- 1st child of section element,
sibling of 2 p elements -->
<p>Second</p> <!-- 2nd p child of section element,
sibling of 2 p elements -->
<p>Third</p> <!-- 3rd p child of section element,
sibling of 2 p elements -->
</section>
</body>
</html>

Listing 10-3 is an HTML document containing a script that outputs all the
child nodes of the section element.

Listing 10-3: Displaying the Child Nodes of the section Element

<html>
<head>
<title>The HTML Family</title>
</head>
<body>
<section> <!-- proud parent of 3 p elements, child of
body -->
<p>First</p> <!-- 1lst child of section element,
sibling of 2 p elements -->
<p>Second</p> <!-- 2nd p child of section element,
sibling of 2 p elements -->
<p>Third</p> <!-- 3rd p child of section element,
sibling of 2 p elements -->
</section>
<hl1>Nodes in the section element</hl>
<scripts>

var myNodelist =
document .body.childNodes [1] .childNodes;

for (i = 0; i < myNodelist.length; i++) {
document .write (myNodelist [i] + "
");

</scripts>
</body>
</html>

Figure 10-2:
Viewing the
output of
Listing 10-3.
|

Figure 10-2 shows what the output of Listing 10-3 looks like in a browser.
Notice that the first child node of the section element is a text node. If
you look closely at the HTML markup in Listing 10-3, you’ll see that there is
a single space between the opening section tag and the comment. Even
something as simple as this single space creates an entire node in the DOM
tree. This fact needs to be taken into consideration when you’re navigating
the DOM using relationships between nodes.

Chapter 10: Manipulating Documents with the DOM

The HTML Family x |

[Bo (= =] &]

First
Second

Thurd

element

[object Text]

[object Comment]

[object Text]

[object HTML ParagraphElement]
[object Tesut]

[object Comment]

[object Text]

[object HTMMLParagraphElement]
[object Text]

[object Comment]

[object Tesxt]

[object HTMLParagraphElement]
[object Text]

[object Comment]

[object Text]

« C A [wwweodingjsfordummies vy =

Nodes in the section

The HTML DOM also provides a couple keywords for navigating nodes using
their positions relative to their siblings or parents. The relative properties are
v firstChild: References the first child of a node
» lastChild: References the last child of the node
» nextSibling: References the next node with the same parent node

V¥ previousSibling: References the previous node with the same

parent node

Listing 10-4 shows how you can use these relative properties to traverse

the DOM.

151

’52 Part lll: JavaScript on the Web

Listing 10-4: Using firstChild and lastChild to Highlight Navigation Links

<html>
<head>
<title>Iguanas Are No Fun</titles>
<scripts>
function boldFirstAndLastNav () {
document .body.childNodes [1] . firstChild. style.
fontWeight="bold";
document .body.childNodes [1] .lastChild.style.
fontWeight="bold";

</script>

</head>
<body>
<navs>Home | Why Are Iguanas No Fun? |
What Can Be Done? | Contact Us</nav>
<p>Iguanas are no fun to be around. Use the links above
to learn more.</p>
<script>
boldFirstAndLastNav () ;
</scripts>
</body>
</html>

Notice in Listing 10-4 that all the spacing must be removed between
the elements within the <nav> element in order for the firstChild
and lastChild properties to access the correct elements that we
want to select and style.

Figure 10-3 shows what the document in Listing 10-4 looks like when
previewed in a browser. Notice that just the first and last links in the
navigation are bold.

This is the first example in which we use the DOM to make a change
to existing elements within the document. However, this method of
selecting elements is almost never used. It’s too prone to mistakes
and too difficult to interpret and use.

In the next section, you see that the DOM provides us with a much
better means of traversing and manipulating the DOM than counting
its children.

Chapter 10: Manipulating Documents with the DOM 753

]] || lguanas Are No Fun

« C f [9 www.codingjsfordummies.com/code/ch... 77 =

» Chris

|
Figure 10-3:
Previewing
Listing 10-4
ina
browser.
|

Home | Why Are Iguanas No Fun? | What Can Be Done? | Contact Us

Iguanas are no fun to be around. Use the links above to learn more.

Using the Document Object’s
Properties and Methods

The Document object provides properties and methods for working with
HTML documents. The complete list of Document object properties is shown
in Table 10-1. The Document object’s methods are shown in Table 10-2.

Table 10-1 The Document Object’s Properties

Property Use

anchors Gets a list of all anchors (<a> elements with name
attributes) in the document

applets Gets an ordered list of all the applets in the document

baseURI Gets the base URI of the document

body Gets the <body> or <frameset > node of the
document body

cookie Gets or sets the name/value pairs of cookies in the
document

doctype Gets the Document Type Declaration associated with the
document

documentElement Gets the element that is the root of the document (for
example, the <html > element of an HTML document)

documentMode Gets the mode used by the browser to render the

document

(continued)

’54 Part lll: JavaScript on the Web

Table 10-1 (continued)

Property Use

documentURI Gets or sets the location of the document

domain Gets the domain name of the server that loaded the
document

embeds Gets a list of all <embed> elements in the document

forms Gets a collection of all <form> elements in the
document

head Gets the <head> element in the document

images Gets a list of all elements in the document

implementation Gets the DOMImplementation object that handles
the document

lastModified Gets the date and time the current document was last
modified

links Gets a collection of all <area> and <a> elements in the
document that contain the href attribute

readyState Gets the loading status of the document. Returns
loading while the document is loading,
interactive when it has finished parsing, and
complete when it has completed loading

referrer Gets the URL of the page that the current document was
linked from

scripts Gets a list of <scripts> elements in the document

title Gets or sets the title of the document

URL Gets the full URL of the document

Table 10-2 The Document Object’'s Methods

Method Use

addEventListener ()

Assigns an event handler to the document

adoptNode ()

Adopts a node from an external document

close ()

Finishes the output writing stream of the
document that was previously opened with
document .open ()

createAttribute ()

Creates an attribute node

createComment ()

Creates a comment node

Chapter 10: Manipulating Documents with the DOM ’55

Method

Use

createDocumentFragment ()

Creates an empty document fragment

createElement ()

Creates an element node

createTextNode ()

Creates a text node

getElementById ()

Gets the element that has the specified
ID attribute

getElementByClassName ()

Gets all elements with specified class name

getElementByName ()

Gets all elements with the specified name

getElementsByTagName ()

Gets all elements with the specified tag
name

importNode ()

Copies and imports a node from an external
document

normalize ()

Clears the empty text nodes and joins
adjacent nodes

open ()

Opens a document for writing

querySelector ()

Gets the first element that matches the
specified group of selector(s) in the
document

querySelectorAll ()

Gets a list of all the elements that match the
specified selector(s) in the document

removeEventListener ()

Clears an event handler that had been added
using the . addEventListener ()
method from the document

renameNode ()

Renames an existing node

write ()

Writes JavaScript code or HTML
expressions to a document

writelIn ()

Writes JavaScript code or HTML
expressions to a document and adds a new
line character after each statement

Using the Element Object’s
Properties and Methods

The Element object provides properties and methods for working with
HTML elements within a document. Table 10-3 shows all the properties of the
Element object. Table 10-4 lists all the methods of the Element object.

’56 Part lll: JavaScript on the Web

Table 10-3 The Element Object's properties

Method Use

accessKey Gets or sets the accesskey attribute of the
element

attributes Gets a collection of all the element’s attribute
registered to the specified node (returns a
NameNodeMap)

childElementCount Gets the number of child elements in the specified
node

childNodes Gets a list of the element’s child nodes

children Gets a list of the element’s child elements

classList Gets the class name(s) of the element

className Gets or sets the value of the class attribute of the
element

clientHeight Gets the inner height of an element, including
padding

clientLeft Gets the left border width of the element

clientTop Gets the top border width of the element

clientWidth Gets the width of the element, including padding

contentEditable Gets or sets whether the element is editable

dir Gets or sets the value of the dir attribute of the
element

firstChild Gets the first child node of the element

firstElementChild Gets the first child element of the element

id Gets or sets the value of the 14 attribute of the
element

innerHTML Gets or sets the content of the element

isContentEditable Returns true if the content of an element is
editable; returns false ifitis not editable

lang Gets or sets the base language of the elements
attribute

lastChild Gets the last child node of the element

lastElementChild Gets the last child element of the element

namespaceURI Gets the namespace URI for the first node in the

element

nextSibling

Gets the next node at the same node level

Chapter 10: Manipulating Documents with the DOM ’5 7

Method Use

nextElement Gets the next element at the same node level

Sibling

nodeName Gets the current node’s name

nodeType Gets the current node’s type

nodeValue Gets or sets the value of the node

offsetHeight Gets the height of the element, including vertical
padding, borders, and scrollbar

offsetWidth Gets the width of the element, including horizontal
padding, borders, and scrollbar

offsetLeft Gets the horizontal offset position of the element.

offsetParent Gets the offset container of the element

offsetTop Gets the vertical offset position of the element

ownerDocument Gets the root element (document node) for an element

parentNode Gets the parent node of the element

parentElement Gets the parent element node of the element

previousSibling Gets the previous node at the same node tree level

previousElement Gets the previous element node at the same node tree

Sibling level

scrollHeight Gets the entire height of the element, including
padding

scrolllLeft Gets or sets the number of pixels the element’s
content is scrolled horizontally

scrollTop Gets or sets the number of pixels the element’s
content is scrolled vertically

scrollwidth Gets the entire width of the element, including padding

style Gets or sets the value of the style attribute of the
element

tabIndex Gets or sets the value of the tabindex attribute of
the element

tagName Gets the tag name of the element

textContent Gets or sets the textual content of the node and its
descendants

title Gets or sets the value of the t it 1e attribute of the

element

length

Gets the number of nodes in the NodeList

’58 Part lll: JavaScript on the Web

Table 10-4 The Element Object's Methods

Method Use

addEventLIstener () Registers an event handler to the
element

appendChild () Inserts a new child node to the element
(as alast child node)

blur () Eliminates focus from the element

click() Replicates a mouse-click on the
element

cloneNode () Clones the element

compareDocumentPosition () Compares the document position of two
elements

contains () Yields true if the node is a descendant
of a node; otherwise, yields false

focus () Gives focus to the element

getAttribute () Gets the specified attribute value of the
element node

getAttributeNode () Gets the specified attribute node

getElementsByClassName () Gets a collection of all child elements
with the stated class name.

getElementByTagName () Gets a collection of all the child
elements with the stated tag name

getFeature () Gets an object that implements the
API’s of the stated feature

hasAttribute () Yields t rue if the element has the
stated attribute; otherwise, yields
false

hasAttributes () Yields true if the element has any

attributes; otherwise, yields false

hasChildNodes () Yields t rue if the element has any
child nodes; otherwise, yields false

insertBefore () Enters a new child node before the
stated existing node

isDefaultNamespace () Yields t rue if the stated
namespaceURI is the default;
otherwise, yields false

isEqualNode () Evaluates to see whether two elements
are equal

Chapter 10: Manipulating Documents with the DOM ’59

Method

Use

isSameNode ()

Evaluates to see whether two elements
are the same node

isSupported ()

Yields true if the stated feature is
supported on the element

normalize ()

Joins the specified nodes with their
adjacent nodes and removes any empty
text nodes

querySelector ()

Gets the first child element that
matches the stated CSS selector(s) of
the element

querySelectorAll ()

Gets all the child elements that match
the stated CSS selector(s) of the
element

removeAttribute ()

Takes the stated attribute out of the
element

removeAttributeNode ()

Takes the stated attribute node out of
the element and retrieves the removed
node

removeChild ()

Removes the stated child node

replaceChild ()

Replaces specified child node with
another

removeEventListener ()

Removes the specified event handler

setAttribute ()

Changes or sets the stated attribute to
the specified value

setAttributeNode ()

Changes or sets the stated attribute

node
toString () Changes an element to a string
item() Get the node at the stated index in the

NodeList

Working with the Contents

of Elements

You can display node types and node values by using the HTML
DOM. You also can set property values of elements within the DOM
using the Element object. When you use JavaScript to set the prop-
erties of DOM elements, the new values are reflected in real-time

within the HTML document.

’ 60 Part lll: JavaScript on the Web

Changing the properties of elements in a web document in order to reflect
them instantly in the browser, without needing to refresh or reload the web
page, is a cornerstone of what used to be called Web 2.0.

innerHTML

The most important property of an element that you can modify through the
DOM is the innerHTML property.

The innerHTML property of an element contains everything between the
beginning and ending tag of the element. For example, in the following code,
the innerHTML property of the div element contains a p element and its text
node child:

<body><div><p>This is some text.</p></div></body>
It’s very common in web programming to create empty div elements in your

HTML document and then use the innerHTML property to dynamically insert
HTML into the elements.

To retrieve and display the value of the innerHTML property, you can use
the following code:

var getTheInner = document.body.firstChild.innerHTML;
document .write (getThelInner) ;

In the preceding code, the value that will be output by the
document .write () method is

<p>This is some text.</p>

Setting the innerHTML property is done in the same way that you set the
property of any object:

document .body.firstChild.innerHTML = "Hi therel!";

The result of running the preceding JavaScript will be that the p element and
the sentence of text in the original markup will be replaced with the words
"Hi There!" The original HTML document remains unchanged, but the DOM
representation and the rendering of the web page will be updated to reflect
the new value. Because the DOM representation of the HTML document is
what the browser displays, the display of your web page will also be updated.

Chapter 10: Manipulating Documents with the DOM 76 ’

Setting attributes

To set the value of an HTML attribute, you can use the setAttribute ()
method:

document .body.firstChild.innerHTML. setAttribute ("class",
"myclass") ;

The result of running this statement is that the first child element of the
body element will be given a new attribute named "class" with a value of
"myclass".

Getting Elements by 10, Tag Nawme,
or Class

The getElementBy methods provide easy access to any element or groups
of elements in a document without relying on parent/child relationships of
nodes. The three most commonly used ways to access elements are

V¥ getElementById
V¥ getElementsByTagName

V¥ getElementsByClassName

getElementByld

By far the most widely used method for selecting elements, getElementById
is essential to modern web development. With this handy little tool, you can
find and work with any element simply by referencing a unique id attribute.
No matter what else happens in the HTML document, getElementById

will always be there for you and will reliably select the exact element that

you want.

Listing 10-5 demonstrates the awesome power of getElementById to enable
you to keep all your JavaScript together in your document or to modularize
your code. By using getElementById, you can work with any element, any-
where in your document just as long as you know its id.

’ 62 Part lll: JavaScript on the Web

Listing 10-5: Using getElementByld to Select Elements

<html>
<head>
<title>Using getElementById</title>
<scripts>
function calculateMPG (miles,gallons) {
document .getElementById ("displayMiles") . innerHTML =
parselnt (miles) ;
document .getElementById ("displayGallons") . innerHTML
= parselnt (gallons) ;
document .getElementById ("displayMPG") .innerHTML =
miles/gallons;
}

</scripts>
</head>
<body>
<p>You drove
miles.</p>
<p>You used
gallons of gas.</p>
<p>Your MPG 1is </spans>.
<script>
var milesDriven = prompt ("Enter miles driven") ;
var gallonsGas = prompt ("Enter the gallons of gas
used") ;
calculateMPG (milesDriven,gallonsGas) ;
</scripts>
</body>
</html>

getElementsByTagName

The getElement sByTagName method returns a node list of all the elements
with the specified tag name. For example, in Listing 10-6, getElementsByTag
Name is used to select all hl elements and change their innerHTML proper-
ties to sequential numbers.

Listing 10-6: Using getElementsByTagName to Select and
Change Elements

<html>
<head>
<title>Using getElementsByTagName</titlex>
<scripts>
function numberElements (tagName) {
var getTags =
document .getElement sByTagName (tagName) ;

Chapter 10: Manipulating Documents with the DOM 763

for(i=0; i < getTags.length; i++){
getTags [i] . innerHTML = i+1;

</scripts>

</head>

<body>
<hl>this text will go away</hl>
<hl>this will get overwritten</hl>
<hl>JavaScript will erase this</hl>
<scripts>

numberElements ("h1") ;

</scripts>

</body>

</html>

getElementsByClassName

The getElementsByClassName method works in much the same way as
the getElementsByTagName, but it uses the values of the class attribute to
select elements. The function in Listing 10-7 selects elements with a class of
"error" and will change the value of their innerHTML property.

Listing 10-7: Using getElementsByClassName to Select and
Change Elements

<html>
<head>
<title>Using getElementsByClassName</title>
<scripts>
function checkMath (result) {
var userMath =
document .getElementById ("answerl") .value;
var errors =
document .getElementsByClassName ("error") ;

if (parselnt (userMath) != parselnt (result)) ({
errors [0] .innerHTML = "That’s wrong. You entered "
+ userMath + ". The answer is " + result;
} else {
errors[0] .innerHTML = "Correct!";
</scripts>
</head>
<body>

(continued)

’ 64 Part lll: JavaScript on the Web

Figure 10-4:
Using the
get
Elements
ByClass
Name 10
selectan
element for
displaying
an error
message.
|

Listing 10-7 (continued)

<label for = "numberl">4+1 = </label><input type="text"
id="answerl" value="">
<button id="submit" onclick="checkMath(4+1) ;">Check
your math!</button>
<hl class="error"></hl>
</body>
</html>

The result of running Listing 10-7 in a web browser and entering a wrong
answer is shown in Figure 10-4.

Notice that Listing 10-7 uses an onclick attribute inside the button element.
This is an example of a DOM event handler attribute. You can find out more
about event handlers in Chapter 11.

: IES =S
y wran.codingjsfordum i = §
<« C A [wwwcodingjsfordummies s =

4+1 =12 Check your math!

That's wrong. You entered
12. The answer is 5

Chapter 10: Manipulating Documents with the DOM 7 65

Using the Attribute Object’s Properties

The Attribute object provides properties for working with attributes within
the HTML elements. Table 10-5 lists all the Attribute object’s properties.

Table 10-5 The Attribute Object’s Properties

Property Use

isId Yields t rue if the attribute is an Id; otherwise, yields false

name Gets the name of the attribute

value Gets or sets the value of the attribute

specified Yields t rue if the attribute has been specified; otherwise,
yields false

Creating and appending elements

To create a new element in an HTML document, use the document . create
Element () method. When you use createElement (), a new beginning and
end tag of the type you specify will be created.

Listing 10-8 shows an example of how you can use this method to dynami-

cally create a list in an HTML document from an array.

Listing 10-8: Using document.createElement() to Generate a
Table from an Array

<html>
<head>
<title>Generating a list</title>
</head>
<body>
<hl>Here are some types of balls</hl>
<ul id="ballList">

<scripts>
var typeOfBall = ["basket", "base", "soccer", "foot",
"hand"] ;
for (i=0; i<typeOfBall.length; i++) {
var listElement = document.createElement ("1i") ;
listElement.innerHTML = typeOfBall[i];

(continued)

’ 66 Part lll: JavaScript on the Web

Listing 10-8 (continued)

document .getElementById ("ballList") .appendChild
(listElement) ;
}

</scripts>

</body>
</html>

Removing elements

For all the great things that it lets you do with HTML documents, the HTML
DOM is not highly regarded by professional JavaScript programmers. It has
a number of oddities and tends to make some things more difficult than they
should be.

One of the big faults with the DOM is that it doesn’t provide any way to
directly remove an element from a document. Instead, you have to tell the
DOM to find the parent of the element you want to remove and then tell the
parent to remove its child. It sounds a little confusing, but Listing 10-9 should
clear it all up.

Listing 10-9: Removing an Element from a Document

<html>
<head>
<title>Remove an element</titles>
<script>
function removeFirstParagraph () {
var firstPara =
document .getElementById ("firstparagraph") ;
} firstPara.parentNode.removeChild (firstPara) ;
</script>
</head>
<body>
<div id="gibberish">
<p id="firstparagraph"sLorem ipsum dolor sit amet,
consectetur adipiscing elit. Vestibulum
molestie pulvinar ante, a volutpat est
sodales et. Ut gravida justo ac leo euismod,
et tempus magna posuere. Cum sociis natoque
penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Integer non mi iaculis,
facilisis risus et, vestibulum lorem. Sed quam
ex, placerat nec tristique id, mattis fringilla
ligula. Maecenas a pretium justo. Suspendisse

Chapter 10: Manipulating Documents with the DOM 7 6 7

sit amet nibh consectetur, tristique tellus
quis, congue arcu. Etiam pellentesque dictum
elit eget semper. Phasellus orci neque, semper
ac tortor ac, laoreet ultricies enim.</p>

</div>
<button onclick="removeFirstParagraph() ;">That’s
Gibberish!</button>
</body>
</html>

When you run Listing 10-9 in a browser and press the button, the onclick
event calls the removeFirstParagraph () function.

The first thing removeFirstParagraph () does is to select the

element that we actually want to remove, the element with the

id = "firstparagraph". Then, the script selects the parent node of the
first paragraph. It then uses the removeChild () method to remove the first
paragraph.

’ 68 Part lll: JavaScript on the Web

Chapter 11
Using Events in JavaScript

In This Chapter
Finding out what’s happenin’
Using event handlers to respond to events

Knowing the types of event handlers

“And now, the sequence of events in no particular order:”

— Dan Rather

W eb pages are much more than just static displays of text and
graphics. JavaScript gives web pages interactivity and the ability
to perform useful work. An important part of JavaScript’s ability to perform
useful functions in the browser is its ability to respond to events.

Knowing Your Events

Fuvents are the things that happen within the browser (such as a page
loading) and things the user does (such as clicking, pressing keys on the
keyboard, moving the mouse, and so on). Events happen all the time in the
browser.

The HTML DOM gives JavaScript the ability to identify and respond to events
in a web browser. Events can be divided into groups according to what HTML
elements or browser objects they apply to. Table 11-1 lists events that are
supported by every HTML element.

Other types of events are supported by every element other than the body
and frameset elements. These are listed in Table 11-2.

’ 70 Part lll: JavaScript on the Web

Table 11-1 Events Supported by All HTML elements

Event Occurs When. ..

abort The loading of a file is aborted.

change An elements value has changed since losing and regaining
focus.

click A mouse has been clicked on an element.

dbclick A mouse has been clicked twice on an element.

input The value of an <input> or <textareas elementis
changed.

keydown A key is pressed down.

keyup Akey is released after being pressed.

mousedown A mouse button has been pressed down on an element.

mouseenter A mouse pointer is moved onto the element that has the
listener attached.

mouseleave A mouse pointer is moved off of the element that has the
listener attached.

mousemove A mouse pointer is moved over an element.

mouseout A mouse pointer is moved off of the element or one of its
children that has the listener attached.

mouseover A mouse pointer is moved onto the element or one of its
children that the listener is attached to.

mouseup A mouse button is released over an element.

mousewheel A wheel button of a mouse is rotated.

onreset Aform is reset.

select Text has been selected.

submit A form is submitted.

Table 11-2 Events Supported by Every Element Except

<body> and <frameset>

Event Occurs When . ..

blur An element has gone out of focus.

error Afile failed to load.

focus An element has come into focus.

load Afile and its attached files have finished loading.

resize The document has been resized.

scroll The document or an element has been scrolled.

Table 11-3 shows the events that are supported by the Window object.

Chapter 11: Using Events in JavaScript

Table 11-3 Events supported by the Window Object

Event Occurs When . ..

afterprint The document print preview has been closed or the
document has started printing.

beforeprint The document print preview is open or the document is
about to the printed.

beforeunload The window, the document, and its included files are about
to be unloaded.

hashchange The part of the URL after the number sign (#) changes.

pagehide The browser leaves a page in the browser history.

pageshow The browser goes to a page in the session history.

popstate The active session history item changes.

unload The document or included file is being unloaded.

In addition to these events, many other specifications define events that
can happen. For example, the File API has a series of events related to file

loading, and the HTML5 Media specification contains events related to audio

and video playback. As you can see, a lot of things are going on (or can go

on) in your browser!

For a complete list of events, you can visit https://developer.mozilla.

org/en-US/docs/Web/Events.

Handling Events

When JavaScript does something in response to these events, it’s called event

handling.

Over the years, browser makers have implemented several ways for
JavaScript programs to handle events. As a result, the landscape of
JavaScript events has been one of incompatibilities between browsers.

Today, JavaScript is getting to the point where the old, inefficient techniques

for handling events can soon be discarded. However, because these older
techniques are still widely used, it’s important that they are covered here.

171

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

’ 72 Part lll: JavaScript on the Web

Using inline event handlers

The first system for handling events was introduced along with the first
versions of JavaScript. It relies on special event handler attributes, including
the onclick event handler.

The inline event handler attributes are formed by adding the prefix on to an
event. To use them, add the event attribute to an HTML element. When the
specified event occurs, the JavaScript within the value of the attribute will
be performed. For example, Listing 11-1 pops up an alert when the link is
clicked.

Listing 11-1: Attaching an onclick Event Handler to a Link Using
Inline Method

Click
Here To Go Home

If you put this markup into an HTML document and click the link, you see an
alert window with the words Go Home! When you dismiss the alert window,
the link proceeds with the default event handler associated with the a
element — namely, following the link in the href attribute.

In many cases, you may not want the default action associated with an
element to happen. For example, what if you just wanted the alert window in
Listing 11-1 to pop up without doing anything else?

JavaScript programmers have come up with several different methods to
prevent default actions. One technique is to make the default action be
something that is inconsequential. For example, by changing the value of the
href attribute to a #, the link will point to itself:

Click Here

A better method, however, is to tell the event handler to return a boolean
false value, which tells the default action not to run:

<a href="homepage.html" onclick="alert ('Go Home!')
;return false'>Click Here

Chapter 11: Using Events in JavaScript 7 73

Event handling using element properties

One of the biggest problems with the older, inline technique of assigning
events to elements is that it violates one of the best practices of program-
ming: keeping presentation (how something looks) separate from functional-
ity (what it does). Mixing up your event handlers and HTML tags makes your
web pages more difficult to maintain, debug, and understand.

With version 3 of their browser, Netscape introduced a new event model

that allows programmers to attach events to elements as properties.
Listing 11-2 shows an example of how this model works.

Listing 11-2: Attaching Events to Elements Using Event Properties

<html>

<head>

<title>Counting App</title>

<script>

// wait until the window is loaded before registering the
onclick event

window.onload = initializer;

// create a global counting variable
var theCount = 0;

/**

Registers onclick event

Y/

function initializer () {
document .getElementById ("incrementButton") .onclick =

increaseCount;

/**

Increments theCount and displays result.

A

function increaseCount () {

theCount++;

document .getElementById ("currentCount") . innerHTML =
theCount;

</scripts>

</head>

<body>

<hl>Click the button to count.</hls>

<p>Current Number: 0</p>
<button id="incrementButton">Increase Count</button>
</body>

</html>

’ 74 Part lll: JavaScript on the Web

One thing to notice about Listing 11-2 is that function names that are
assigned to the event handler don’t have parentheses after them. What’s
going on here is that the whole function is assigned to the event handler and
is telling it “run this when this event happens,” rather than actually using a
function call. If you add the parentheses after the function name, the function
will be executed, and its result will be assigned to the onclick event, which
is not what we want.

Event handling using addEventListener

Although the previous two methods of event handling are very commonly
used and are supported by every browser, a more modern and flexible way
to handle events (and the recommended way for new browsers) is to use the
addEventListener () method.

The addEventListener method listens for events on any DOM node and
triggers actions based on those events. When the function specified as an
action for the event runs, it automatically receives a single argument, the
Event object. By convention, we name this argument e.

addEventListener () has several benefits over using the DOM event
attributes:

»* You can apply more than one event listener to an element.

v It works on any node in the DOM tree, not just on elements.

v It gives you more control over when it’s activated.
Listing 11-3 demonstrates the use of the addEventListener () method.
This example has the same counting function as Listing 11-2, but it adds a

second event handler to the button that increases the size of the number
each time it’s clicked.

Listing 11-3: Assigning an Event with addEventListener()

<html>

<head>

<title>Counting App</titles>

<scripts>

// wait until the window is loaded before registering
the onclick event

window.addEventListener ('load',registerEvents, false) ;

// create a global counting variable

var theCount = 0;

/**

Chapter 11: Using Events in JavaScript 7 75

Registers onclick events
*
/
function registerEvents (e) {
document .getElementById ("incrementButton") .addEventListener
('click', increaseCount, false) ;
document .getElementById ("incrementButton") .addEventListener
('click', changeSize, false) ;
}

/**

Increments theCount and displays result.

A

function increaseCount (e) {

theCount++;

document .getElementById ("currentCount") .innerHTML =
theCount;

/**

Change the font size of the count text

A

function changeSize (e) {

document .getElementById ("currentCount") .style.fontSize =
theCount;

</script>
</head>
<body>

<hl1>Click the button to count.</hl>

<p>Current Number: 0</p>
<button id="incrementButton"sIncrease Count</buttons
</body>

</html>

Figure 11-1 shows what the page created by Listing 11-3 looks like after an
exciting afternoon of clicking the button.

The addEventListener () method is implemented by using three
arguments.

The first argument is the event type. Unlike the other two event handling
methods, addEventListener () just wants the name of the event, without
the on prefix.

The second argument is the function to call when the event happens. As
with the event properties method of event handling, it’s important to not use
the parentheses here in order for the function to be assigned to the event
handler, rather than the result of running the function.

176

Part lll: JavaScript on the Web

Figure 11-1:
Attaching
two events
to the same
element
increases
the possi-
hilities!
|

Figure 11-2:
Events
within

events.
|

ece Counting App x Ghris

&« C [www.codingjsfordummies.com/code/ch11/listing11- =

Click the button to count.

Current Number:

Increase Count

The third argument is a Boolean value (true or false) that indicates the
order in which event handlers execute when an element with an event has a
parent element that also is associated with an event.

When elements are nested, it’s important to know which one will happen
first. Figure 11-2 illustrates a common problem: The outer square is clickable,
but so is the inner circle. When you click on the inner circle, should the event
attached to the square happen first, or should the event attached to the
circle happen first?

Most people would say that it makes sense that the circle event should
happen first. However, when Microsoft implemented its version of events
in Internet Explorer, it decided that the outer event (the square) should
happen first.

Click Me!

Chapter 11: Using Events in JavaScript 7 77

The most common way for events to be handled in a situation like the one in
Figure 11-2 is called bubbling up. Events on the inside-most element happen
first and then bubble up to the outermost elements. To use the bubble up
method, set the last argument of the addEventListener () method to false,
which is also the default value.

The other way to handle this scenario is called the capture method. In
capture mode, the outermost events happen first, and the innermost events
happen last.

Listing 11-4 shows an example demonstrating why knowing the order in

which event handlers execute is important. The h1 elements have click
events, but so do words within that header.

Listing 11-4: Demonstrating Event Capture and Event Bubbling

<html>
<head>

<title>Event capturing vs. Event bubbling</title>
<style>

#theText {font-size: 18px;}
hil

border:1px solid #000;
background-color: #dadada;
}

#capEvent, #bubEvent (
background-color: #666;

</style>
<script>
// wait until the window is loaded before registering
the events
window.addEventListener ('load', registerEvents, false) ;
/**
Registers onclick events
*
/
function registerEvents (e) {
document .getElementById ("capTitle") .addEventListener
('click',makeTiny, true) ;
document .getElementById ("capEvent") .addEventListener
('click',makeHuge, true) ;
document .getElementById ("bubTitle") .addEventListener
('click',makeTiny, false) ;
document .getElementById ("bubEvent") .addEventListener
('click',makeHuge, false) ;
}

function makeHuge (e) {

console.log("making the text huge") ;

document .getElementById ("theText") .style.fontSize =
n 8 Opxll I.

(continued)

’ 78 Part lll: JavaScript on the Web

Listing 11-4 (continued)
}

function makeTiny (e) {
console.log("making the text tiny");
document .getElementById ("theText") .style.fontSize =

n lOPXII ,.

}

</scripts>

</head>

<body>

<hl id="capTitle">Event capturing
</hl>

<hl id="bubTitle">Event bubbling
</hl>

<p id="theText">Hello, Events!</p>

</body>

</html>

Figure 11-3 shows what Listing 11-4 looks like in a web browser.

In Figure 11-3, when the word capturing is clicked, the event registered to
the larger container fires first, followed by the event registered to the event
containing the word capturing.

When you click the word bubbling, the event registered to that span fires
first, followed by the event on its parent element.

L} L] [] Event capturing vs. Event =
<« C A [filev//Users/chris/WatzThis%20Google %20Drive/WatzThis % 3F %20Projects/Coding%20JavaScri. . Ti? g O =
vent |
vent |
Hello, Events!
@ [] Elements Network Sources Timeline Profiles Resources Audits |Consale | = 10, %
© ¥ <topframe> v [Preserve log
making the text tiny Stingli-4 himl:34
making the text huge tinglld htnl:3n
making the text tiny etinglid. himlidd
making the text huge st —a_htmls
I e
Figure 11-3:
Handling
nested
events.
|

\\3

Chapter 11: Using Events in JavaScript 7 79

Stopping propagation

In addition to bubbling and capturing, you can handle nested events

in a third way: just do the single event and then stop. You can turn off
bubbling and capturing for an event (or even for all events) by using the
stopPropagation () method.

If you don’t need event propagation in your script, it’s a good idea to just
turn it off because all that bubbling and capturing does use system resources

and can make your website slower.

Listing 11-5 demonstrates how to turn off event propagation.

Listing 11-5: Turning Off Event Propagation

function load(e) {

if (!e) var e = window.event;

// set cancelBubble for IE 8 and earlier
e.cancelBubble = true;

if (e.stopPropagation) e.stopPropagation() ;

document .getElementById ("capTitle") .addEventListener
('click',makeTiny, true) ;

document .getElementById ("capEvent") .addEventListener
('click',makeHuge, true) ;

document .getElementById ("bubTitle") .addEventListener
('click',makeTiny, false) ;

document .getElementById ("bubEvent") .addEventListener
('click', makeHuge, false) ;

}

’ 80 Part lll: JavaScript on the Web

Chapter 12
Integrating Input and OQutput

In This Chapter
Working with forms
Using input
Sending output

“Malfunction. Need Input.”
— Number 5, Short Circuit (1986)

Handling user input and sending back results are basic and necessary
functions for any computer program. In this chapter, you find out how
JavaScript and HTML can work together to receive and output data.

Understanding HTML Forms

The primary way to get input from users of web applications is through
HTML forms. HTML forms give web developers the ability to create text
fields, drop-down selectors, radio buttons, checkboxes, and buttons.
With CSS, you can adjust the look of a form to fit your particular website.
JavaScript gives you the ability to enhance the functionality of your form.

The form element

All HTML forms are contained within a form element. The form element is the
container that holds the input fields, buttons, checkboxes and labels that make
up a user input area. The form element acts much like any container element,

such asadiv,article, or section. But it also contains some attributes that
tell the browser what to do with the user input from the form fields it contains.

Listing 12-1 shows an HTML form containing two input fields and a submit
button.

’ 82 Part lll: JavaScript on the Web

Listing 12-1: Example of an HTML Page Containing a Form

<html>
<head>
<title>HTML form</titles>
</head>
<body>

<form action="subscribe.php" name="newsletterSubscribe"
method="post">
<label for="firstName">First Name: </label>
<input type="text" name="firstName"
id="firstName">

<label for="email">Email: <input type="text"
name="email" id="email"s></labels>

<input type="submit" value="Subscribe to our
newsletter!">
</form>

</body>
</html>

When you view this form in a web browser, it looks like Figure 12-1.

®ce HTML form x Chris
“« & A [www.codingjsfordummies.com/cod... 97| =
First Name:

Email:
Subscribe to our newsletter!

|
Figure 12-1:
An HTML
form.
|

In the preceding example, the form element has three attributes:

v action: Tells the browser what to do with the user input. Often, the
action is a server-side script.

v name: Specifies the name that the programmer assigned to this form.
The name attribute of the form is useful for accessing the form using
the DOM.

Chapter 12: Integrating Input and Output 783

v method: Takes a value of either get or post, indicating whether the
browser should send the data from the form in the URL or in the HTTP
header.

In addition to these three attributes, the form element can also contain
several other attributes:

v accept-charset: Indicates the character sets that the server accepts.
Unless you’re working with multilingual content (and even then), you
can safely leave this attribute out.

V¥ autocomplete: Indicates whether the input elements of the form
should use autocomplete in the browser.

»* enctype: Indicates the type of content that the form should
submit to the server. For forms that are submitting only text data
to the server, this should be set to text/html. If your form is sub-
mitting a file to the server (such as an uploaded graphic), the
enctype should be multipart/form-data. The default value is
application/x-www-form-urlencoded.

v novalidate: A Boolean value indicating whether the input from the
form should be validated by the browser on submit. If this attribute isn’t
specified, forms are validated by default.

v target: Indicates where the response from the server should be
displayed after the form is submitted. The default (" _self")is to open
the response in the same browser window where the form was. Another
option is to open the response in a new window (" _blank").

The label element

You can use the 1abel element to associate an input field’s description
(label) with the input field. The for attribute of the label element takes the
value of the id attribute of the element that the label should be associated
with, as shown in this example:

<label for="firstName">First Name: </labels>
<input type="text" name="firstName">

Another method for associating a label with a form field is to nest the form
field within the 1abel element, as shown in this example:

<label>First Name: <input type="text"
name="firstName"></label>

This method has the advantage of not requiring the input field to have an id
(which is often just a duplicate of its name attribute).

’ 84 Part lll: JavaScript on the Web

The input element

The HTML input element is the most fundamental form-related HTML
element. Depending on the value of its type attribute, it causes the browser
to display (or not display) several types of input fields.

Most commonly, the input element’s type is set to "text", which creates

a text input in the browser. The optional value attribute assigns a default
value to the element, and the name attribute is the name that is paired with
the value to form the name/value pair that can be accessed through the DOM
and that is submitted along with the rest of the form values when the form is
submitted.

A basic text input field looks like this:
<input type="text" name="streetAddress">

With HTMLS5, the input element gained a bunch of new possible type
attribute values. These new values allow the web developer to more pre-
cisely specify the type of value that should be provided in the input. They
also allow the web browser to provide controls that are better suited to the
type of input that’s required to do input validation and results in better web
applications.

It may seem odd that this chapter focuses so much on the form capabilities
of HTML, rather than jumping right into JavaScript. However, forms are an
area where HTML can really reduce the workload of programmers, so it’s
vital that JavaScript programmers learn what can be accomplished with
forms through HTML.

The input element’s possible values for the type attribute are shown in

Table 12-1.
Table 12-1 Possible Values for the input Element’s
Type Attribute
Value Description
button A clickable button
checkbox A checkbox
color A color picker
date A date control (year, month, and day)
datetime A date and time control (year, month, day, hour, minute,

second, and fraction of a second based on the UTC time
zone)

Chapter 12: Integrating Input and Output ’85

Value Description

datetime-local A date and time control (year, month, day, hour, minute,
second, and fraction of a second; no time zone)

email Afield for an email address

file Afile-select field and a Browse button

hidden A hidden input filed

image A submit button using an image, rather that the default
button

month A month and year control

number A number input field

password A password filed

radio A radio button

range An input using a range of numbers, such as a slider con-
trol

reset A reset button

search A text field for entering a search string

submit A submit button

tel Afiled for entering a telephone number

text Default; a single-line text field

time A control for entering a time (no time zone)

url A field for entering a URL

week A week and year control (no time zone)

As of this writing, not all browsers support all possible values for the input
element’s type attribute. Using a type attribute that a browser doesn’t
understand will just result in the display of a text input field.

The select element

The HTML select element defines either a drop-down or a multiselect input.
The select element contains option elements that are the choices that the
user will have in the select control, as shown in Listing 12-2.

’ 86 Part lll: JavaScript on the Web

|
Figure 12-2:
An HTML
drop-down
control.
|

NG/
&

Listing 12-2: A Drop-Down Form Control, Created Using the
select Element

<select name="favoriteColor">
<option value="red">red</option>
<option value="blue">blue</option>
<option value="green'">green<options
</select>

The form created by the markup in Listing 12-2 is shown in Figure 12-2.

(B [=[E] &]

HTML farm %\

« C N [0 wwweodingjsfordummies sy =

red ¥

The textarea element

The textarea element defines a multiline text input field:

<textarea name="description" rows="4"
cols="30"></textarea>

The button element
The button element defines another way to create a clickable button:

<button name="myButton">Click The Button</buttons

The but ton element can be used in place of input elements with the type
attribute set to ' submit'. Or, you can use button elements anywhere you
need a button, but where you don’t want the submit action to happen.

If you don’t want the button to submit the form when clicked, you need to
add a type attribute to it with the value of 'button’.

Chapter 12: Integrating Input and Output ’8 7

Working with the Form Object

The HTML DOM represents forms using the Form object. Through the Form
object, you can get and set values of form fields, control the action that’s
taken when a user submits a form, and change the behavior of the form.

Using Form properties

The properties of the Form object match up with the attributes of the
HTML form element (see the section earlier in this chapter). They're used
for getting or setting the values of the HTML form element attributes with
JavaScript. Table 12-2 lists all the properties of the Form object.

‘x‘gN\BEH DOM obijects are representations of HTML pages. Their purpose is to give

& you access (also known as programming interface) to the different parts of the
document through JavaScript. Anything within an HTML document can be
accessed and changed with JavaScript by using the DOM.

Table 12-2 Form Object Properties

Property Use

acceptCharset Gets or sets a list of character sets that are supported
by the server.

action Gets or sets the value of the act ion attribute of the
form element.

autocomplete Gets or sets whether input elements can have their
values automatically completed by the browser.

encoding Tells the browser how to encode the form data (either
as text or as a file). This property is synonymous with
enctype.

enctype Tells the browser how to encode the form data (either
as text or as a file).

length Gets the number of controls in the form.

method Gets or sets the HTTP method the browser uses to
submit the form.

name Gets or sets the name of the form.

noValidate Indicates that the form does not need to be validated

upon submittal.

target Indicates the place to display the results of a submitted
form.

’ 88 Part lll: JavaScript on the Web

Using the autocomplete attribute

The autocomplete attribute in an HTML
form element sets the default autocomplete
value for the input elements inside the form.
If you want the browser to provide autocom-
plete functionality for every input in the form,
set autocomplete to ‘on’ . If you want to be
able to select which elements the browser can

autocomplete or if your document provides
its own autocomplete functionality (through
JavaScript), set the form’s autocomplete
attribute to *of £’, and then you can set the
autocomplete attribute for each individual
input element within the form.

You can find techniques for setting or getting the value of a form’s properties
in Chapter 10. After referencing the form using one of these methods, you
then access the property using dot notation or the square bracket method.

To get the value of the name property of the first form in a document, you

could use the following statement:

document .getElementByTagName ("form") [0] .name

A more common way to access a form is by assigning it an id attribute and
using getElementById to select it.

The DOM provides another, more convenient method for accessing forms:
the forms collection. The forms collection lets you access the forms in a

document in two different ways:

v By index number: When a form element is created in the document, it
is assigned an index number, starting with zero. To access the first form
in the document, use document . forms [0].

+* By name: You can also access forms using the value of the name
attribute of the form element. For example, to get the value of the
action property of a form with a name of "subscribeForm", you
would use document . forms . subscribeForm.action. Or you can
use the square brackets method of accessing properties and write
document . forms ["subscribeForm"] .action.

Using the Form object’s methods

The Form object has two methods: reset () and submit () .

Chapter 12: Integrating Input and Output 7 89

The reset () method

The reset () method clears any changes to the form’s fields that were made
after the page loaded and resets the default values. It does the same thing as
the HTML reset button, which is created by using a type="reset" attribute
with an input element, as shown in the following code:

<input type="reset" value="Clear the form">

The submit () method

The submit () method causes the form to submit its values according to the
properties of the form (action, method, target, and so on). It does the same
thing as the HTML submit button, which is created by using a type="submit"
attribute with an input element, as shown in the following code:

<input type="submit" value="Submit the form"s>
Listing 12-3 demonstrates the use of the submit () and reset () methods,

along with several of the form object’s properties.

Listing 12-3: Using the Form Object's Properties and Methods

<html>
<head>
<title>Subscribe to our newsletter!</title>
<script>
function setFormDefaults () {
document . forms . subscribeForm.method = "post";
document . forms . subscribeForm.target = " blank";

document . forms . subscribeForm.action =
"http://watzthis.us9.list-manage.com/subscribe/
post?u=1e6d8741f7db587af747ec056&
id=663906e3ba";

//register the button events
document .getElementById ('btnSubscribe!') .
addEventListener ('click', submitForm) ;
document .getElementById ('btnReset!') .
addEventListener ('click', resetForm) ;
}
function submitForm() {
document . forms . subscribeForm. submit () ;
}

function resetForm() {
document . forms. subscribeForm.reset () ;

</scripts>
</head>
<body onload="setFormDefaults() ;">

(continued)

http://watzthis.us9.list-manage.com/subscribe/post?u=1e6d8741f7db587af747ec056&id=663906e3ba

’ 90 Part lll: JavaScript on the Web

Listing 12-3 (continued)

<form name="subscribeForm">
<h2>Subscribe to our mailing list</h2>
<label for="mce-EMAIL">Email Address </label>

<input type="email" value="" name="EMAIL" id="mce-
EMATIL" >
<button type="button" id="btnSubscribe">Subscribe!
</buttons>
<button type="button" id="btnReset">Reset</button>
</form>
</body>
</html>

Accessing form elements

JavaScript offers several different ways to access form input fields and their
values. These ways are not all created equal, however, and differences of
opinion exist among JavaScript programmers as to which technique is the
best. The following list presents the different techniques and their benefits
and drawbacks:

v Use the index number of the form and of its input fields. For example,
to access the first input field in the first form, you could use the
following code:

document . forms [0] .elements [0]

Vg‘“‘NG! Avoid the preceding technique because it relies on the structure of the
S document and the order of the elements within the form not to change.
As soon as someone decides that the email field should come before the
first name field in the form, your whole script will break.

+* Use the name of the form and the name of the input field. For example:
document .myForm. firstName

This technique has the benefit of being easy to read and easy to use. It’s
supported by every browser (and has been since very early in the devel-
opment of the DOM).

1 Use getElementById to select the form and the name of the input
field to select the input. For example:

document .getElementById ("myForm") . firstName

This technique requires you to assign an id attribute to the form of the
element. For example, the preceding code would match an input field
named firstName inside of the following form element.

<form id="myForm" action="myaction.php">

</form>

Chapter 12: Integrating Input and Output

+” Use a unique id attribute value on the field to access the field
directly. For example:

document .getElementById ("firstName")

Something to remember when using the preceding technique is that if
you have multiple forms on your page, you need to make sure that each
form field has a unique id attribute (id attribute values must be unique
anyway, so it’s not really an issue).

Getting and setting form element values

The DOM gives you access to form elements’ names and values using the
name and value properties.

Listing 12-4 demonstrates the getting and setting of form input fields using a

simple calculator application.

Listing 12-4: A Calculator App Demonstrating the Getting and Setting
of Form Input Fields

<html>
<head>
<title>Math Fun</title>
<scripts>
function registerEvents() ({

document .mathWiz.operate.addEventListener ('click"',
doTheMath, false) ;

function doTheMath() {
var first =
parselnt (document .mathWiz.numberOne.value) ;
var second =
parselnt (document .mathWiz.numberTwo.value) ;
var operator = document.mathWiz.operator.value;

switch (operator) {
case "add":
var answer = first + second;
break;
case "subtract":
var answer = first - second;
break;
case "multiply":

(continued)

191

’ 92 Part lll: JavaScript on the Web

Listing 12-4 (continued)

var answer = first * second;
break;

case "divide":
var answer = first / second;
break;

}

document .mathWiz.theResult.value = answer;
}
</scripts>
</head>
<body onload="registerEvents() ;">
<form name="mathWiz">
<label>First Number: <input type="number"
name="numberOne"></label>

<label>Second Number: <input type="number"
name="numberTwo"></label >

<label>Operator:
<select name="operator"s>
<option value="add"> + </option>
<option value="subtract"> - </options>
<option value="multiply"> * </options>
<option value="divide"> / </options>
</select>
</label>

<input type="button" name="operate" value="Do the
Math!"><brs>
<label>Result: <input type="number" name="theResult">
</label>
</form>
</body>
</html>

Validating user input

One of the most common uses for JavaScript is to check, or validate, form
input before submitting user input to the server. JavaScript form validation
provides an extra safeguard against bad or potentially unsafe data making
its way into a web application. It also provides users with instant feedback
about whether they’ve made a mistake.

Some of the most common JavaScript input validation tasks have been
replaced by HTML attributes in HTML5. However, due to browser incompatibil-
ities, it’s still a good practice to validate user-submitted data using JavaScript.

In the calculator program in Listing 12-4, the input type was set to number for
the operand units. This should cause the browser to prevent the user from
submitting non-numeric values into these fields. Because the number input

3

Chapter 12: Integrating Input and Output 7 93

type is relatively new, you can’t always count on the browsers to support it,
so using JavaScript user input validation is important.

Listing 12-5 demonstrates an input validation script. The important thing to
notice here is that the action of the form has been set to the input validation
function. The submit () method of the form runs only after the tests in the
input validation function have finished.

The line in the preceding code that does the real magic is this strange-looking
one inside of the validate () function:

if (/"\d+$/.test(first) && /"\d+$/.test (second)) ({

The characters between / and / make up what’s called a regular expression.
A regular expression is a search pattern made up of symbols that represent
groups of other symbols. In this case, we’re using a regular expression to
check whether the values the user entered are both numeric. You can find
out more about regular expressions in Chapter 14.

Input validation is such a common use for JavaScript that many different
techniques have been created for doing it. Before you reinvent the wheel
for your particular JavaScript application, do a search for “open source
JavaScript input validation” and see whether any existing libraries of code
can save you some time and give you more functionality.

Listing 12-5: Performing Input Validation with JavaScript

<html>
<head>
<title>Math Fun</title>
<scripts>
function registerEvents () {

document .mathWiz.operate.addEventListener ('click',
validate, false) ;

function validate() {

var first = document.mathWiz.numberOne.value;

var second = document.mathWiz.numberTwo.value;

var operator = document.mathWiz.operator.value;

if (/7\d+$/.test (first) && /"\d+$/.test(second)) ({
doTheMath () ;

} else {
alert ("Error: Both numbers must be numeric") ;

(continued)

194

Part lll: JavaScript on the Web

Listing 12-5 (continued)
}
}

function doTheMath ()
var first =

parselnt (document .mathWiz.numberOne.value) ;

var second = parselnt (document.mat
value) ;
var operator = document.mathWiz.op
switch (operator) {
case "add":
var answer = first + second;
break;
case "subtract":
var answer = first - second;
break;
case "multiply":
var answer = first * second;
break;
case "divide":
var answer = first / second;
break;

document .mathWiz.theResult.value =
}
</scripts>
</head>
<body onload="registerEvents() ;">
<div id="formErrors"></div>
<form name="mathwWiz">

hWiz.numberTwo.

erator.value;

answer;

<label>First Number: <input type="number"

name="numberOne"></label>

<label>Second Number: <input type="number"

name="numberTwo"></label>

<label>Operator:
<select name="operator"s
<option value="add"> + </options
<option value="subtract"> - </op
<option value="multiply"> * </op
<option value="divide"> / </opti
</select>
</label>

<input type="button" name="operate"
Math!">

<label>Result: <input type="number"
</label>
</form>
</body>
</html>

tion>
tion>
on>

value="Do the

name="theResult">

Chapter 13

Working with CSS and Graphics

In This Chapter
Editing styles

Employing images
Executing JavaScript animations
Developing a slideshow

“To achieve style, begin by affecting none.”

— E.B. White, The Elements of Style

Once you understand how to manipulate the DOM objects using
JavaScript, web pages change from static documents into interactive
applications that can respond to user input, change without reloading, and
deliver live data to a variety of different computing devices.

Using the Style Object

The DOM’s style object is a powerful tool for making a web page change
its look and adapt in real time to user input or current browser conditions.
The Style object gives programmers access to CSS style properties for any
selected element or collection of elements in a document. (For more on the
basic rules and syntax of CSS, see Chapter 1.)

Some of the things that you can do with the Style object are

v Change text colors to highlight keywords entered into search boxes
v Animate an object after a user clicks on it

v Change the border and background color of the part of a form the user
is currently editing

’ 96 Part lll: JavaScript on the Web

A\\S

v Expand and collapse or hide and show different parts of a page

v Create tips or help boxes that appear above the content of the page
when a user clicks a link

The Style object works the same way as other DOM objects. It includes a set of
properties that you can use to get or set different aspects of a selected element.

The properties of the Style object mirror CSS properties. The difference
between the two is that the DOM Style objects’ properties are spelled using
camelCase instead of using CSS’s dashed format.

Table 13-1 shows a few of the most commonly used Style object properties,
along with what CSS property they modify.

For a complete list of the Style object’s properties, and of every other DOM
objects properties, visit http://overapi.com/html-dom.

Getting the current style of an element

The style object returns the currently applied inline styles of an element. It
doesn’t tell you what the actual style is that the browser will render because
it doesn’t include styles held in the external CSS files or styles inside of
style elements.

For this reason, the Style object is not entirely useful for getting the style
of an element. In Listing 13-1, the div element has an inline style and several
style rules that are set within a style element.

Table 13-1 Common Style Object Properties
and Their CSS Equivalents

Property CSS Style Description

backgroundColor background-color Gets or sets the background
color of an element

borderWidth border-width Sets the width of all four borders
of an element

fontFamily font-family Gets or sets a list of font family
names assigned to the textin an
element

lineHeight line-height Gets or sets the distance

between lines of text

textAlign text-align Gets or sets the horizontal align-
ment of textin a black element

http://overapi.com/html-dom

Chapter 13: Working with CSS and Graphics 7 9 7

When using the Style object to get the style properties of an element, only
styles set using JavaScript or inline CSS are returned.

Listing 13-1: The Wrong Way to Get an Element'’s Current Style

<html>
<head>
<title>Getting Inline Styles</title>
<style>
#myText {
color: white;
background-color: black;
font-family: Arial;
margin-bottom: 20px;

#stylesOutput {
font-size: 18px;
font-family: monospace;

</style>
<scripts>
function getElementStyles (e) {
var colorOutput = "color: " + e.target.style.color;
var fontSizeOutput = "font size: " + e.target.style.
fontSize;

document .getElementById ("stylesOutput") . innerHTML =
colorOutput + "
" + fontSizeOutput;

}

</scripts>
</head>
<body>
<div id="myText" style="font-size: 26px;"
onclick="getElementStyles (event) ; ">Here is

some text.</div>
<div id="stylesOutput"></div>
</body>
</html>

Figure 13-1 shows what happens when you load this page in a browser and
click on the div element.

The two important things to notice about the results of this script are

v The value of the Style object’s property is blank, even though the div’s
color was set to white using CSS in the head.

v The value of the Style object’s font size is set correctly because the
CSS font-size property was set using inline CSS.

’ 98 Part lll: JavaScript on the Web

Figure 13-1:
The result
of using the
Style
object to
getan ele-
ment's style.
|

MBER
e&
&

L NeN] Getting Infine Styles x

« C f [www.codingjsfordummies.com/code/ch13/listing1301.himl 5'¢ =

Here is some text.

color:
font-size: 26px

The style object’s properties behave like inline styles and will retrieve only
the values of inline styles applied to an element.

A good way to get the current style of an element is by using window.
getComputedStyle (), as shown in Listing 13-2.

Listing 13-2: The Correct Way to Get an Element's Current Style

<html>
<head>
<title>Getting Computed Styles</title>
<styles>
#myText {
color: white;
background-color: black;
font-family: Arial;
margin-bottom: 20px;

#stylesOutput {
font-size: 18px;
font-family: monospace;

</style>
<script>
function getElementStyles (e) {
var computedColor =
window.getComputedStyle (e.target) .
getPropertyValue ("color") ;
var computedSize = window.getComputedStyle
(e.target) .getPropertyValue ("font-size") ;

var colorOutput = "color: " + computedColor;
var fontSizeOutput = "font size: " + computedSize;

Chapter 13: Working with CSS and Graphics 7 99

|
Figure 13-2:
Displaying
computed
styles.
|

document .getElementById ("stylesOutput") . innerHTML =
colorOutput + "
" + fontSizeOutput;

</scripts>
</head>
<body>
<div id="myText" style="font-size: 26px;"
onclick="getElementStyles (event) ; ">Here is some
text.</div>
<div id="stylesOutput"></div>
</body>
</html>

Figure 13-2 shows the output of Listing 13-2: showing the computed (and
correct) style property values.

Notice in Listing 13-2, the get PropertyValue function takes the CSS
property (font -size) rather than the style property (fontSize). The
reason is that the script is querying the value of font-size directly from
the element, rather than through the Style object (which will only tell us
about the inline styles).

ede Getting Computed Styles %

€« C & [www.codingjsfordummies.com/code/ch13/listing1302.html 5 =

Here is some text.

color: rgb(255, 255, 255)
font size: 26px

Setting style properties

To set properties of the Style object, select the element you want the
new style to apply to and then use dot notation or bracket notation
to assign a new value to a property of the Style object.

200 Part lll: JavaScript on the Web

To change the border-width of an element that has the id of
"borderedSquare", you would use the following code:

document .getElementById ("borderedSquare") .style.
borderWidth = "15px";

Animating Elements with
the Style Object

You can use CSS styles to control the look of elements, but you can also use
them to control the positioning of elements. By using JavaScript loops with
style property modifications, you can create basic animations fairly easily.

In Listing 13-3, a JavaScript function moves a square across the screen by
using a for loop to change the CSS 'left' property.

Listing 13-3: Animating an Element with the Style Object

<html>
<head>
<title>JavaScript animation</title>
<style>
#square {
width: 100px;
height: 100px;
background-color: #333;
position: absolute;
left: Opx;
top: 100px;

</style>
<script>
function moveSquare () {
for (i=0; 1<500; i++){
document .getElementById ("square") .style.left =
i+lleII ;

}
</scripts>
</head>
<body onload="moveSquare () ;">
<div id="square"></div>
</body>
</html>

Chapter 13: Working with CSS and Graphics

If you open this script in a browser, it seemingly opens with animation
already complete. In fact, the animation actually does run, but it happens so
fast that you can’t see it happening (unless you happen to have a very slow
computer or very fast eyes).

What’s needed in order to make this animation run at human speed is a
pause between each iteration of the loop. The most common way to create
a loop with pauses is by using the setTimeout () method of the Window
object.

The setTimeout () method takes two arguments:

v A function or piece of code to run

v A number of milliseconds (thousandths of a second) to wait before
running

By putting a call to setTimeout () within a function and calling the function
recursively, we can gain control over how fast the animation runs. (For more
on writing recursive functions, see Chapter 7.)

In Listing 13-4, the box is now moving at the much slower pace of 1 pixel per
1/100th second. This example also features a few other improvements over
Listing 13-3:

v The square is now clickable. Clicking the square triggers the animation.

v The animation of the square is based on the position of the square when
the click event happens. Clicking on the square causes it to move 100
pixels to the right of wherever it is when it is clicked.

Listing 13-4: Animation with the Style Object, setTimeout(),
and Recursion

<html>
<head>
<title>JavaScript animation</title>
<style>
#square {
width: 100px;
height: 100px;
background-color: #333;
position: absolute;

left: Opx;

top: 100px;
</style>
<scripts>

(continued)

201

202 Part lll: JavaScript on the Web

Listing 13-4 (continued)

// wait until the window is loaded
window.addEventListener ('load', initialize, false) ;

function initialize() {

//move the square when clicked
document .getElementById ("square") .
addEventListener ('click', function (e) {

//get the starting position
var left = window.getComputedStyle (e.target) .
getPropertyValue ("left") ;

//convert left to a base 10 number
left = parselnt(left, 10);
moveSquare (left,100) ;

}, false);

}

function moveSquare (left,numMoves) {
document .getElementById ("square") .style.left =
left+"px";

if (numMoves > 0) ({

numMoves--;

left++;

setTimeout (moveSquare, 10, left, numMoves) ;
} else {

return;

}
</scripts>
</head>
<body>
<div id="square"></div>
</body>
</html>

Figure 13-3 shows the output of Listing 13-4 when run in a browser.

Look closely at the code that registers the click event on the square. An
anonymous function is used as an event handler. Although it may look con-
fusing at first glance, if you reduce it to its basic parts, it’s still just the same
basic addEventListener () method at work, with its three arguments:
the event type, the listener (in this case, an anonymous function), and the
Boolean value for whether to use event capture.

Chapter 13: Working with CSS and Graphics 203

Figure 13-3:
JavaScript
enables
animations
based on
events.
|

Working with Images

MBER
\‘\"
&

HTML img elements are normally pretty static, unchanging things — unless
the image is an animation, of course. With JavaScript, effects such as the
resizing of images, repositioning images, lightbox effects, rollover effects, and
more are all possible by manipulating the attributes of the img element and
by changing CSS styles.

Using the Image object

The DOM’s Image object gives you access to the properties of an HTML

img element. Once you have that access, you can set and get values in order
to change any of the valid attributes of the element. The properties of the
Image object are shown in Table 13-2.

The most important and most widely used property of the Image object are
the src property, the width property, and the height property. With these
three properties, you can create image swap effects, amazing image size
effects, cool rollover buttons, and a lot more!

Creating rollover buttons

A rollover button is a button that changes in some way when the mouse
pointer is hovering over it. Rollover buttons are a great way to indicate to
the user that an image can be clicked. You can also use them to reveal more

204 Part lll: JavaScript on the Web

information about what will happen if a button or a link is clicked. You can
even use them just for fun or aesthetics. Some web designers like to put so-
called easter eggs into their websites that will trigger image changes or other
changes on a site when a mouse hovers over them or when someone clicks

on certain hidden areas on a page.

Table 13-2 Properties of the Image Object

Property Description

alt Gets or sets the value of an image’s alt attribute

complete Is true when the browser is finished loading the image

height Gets or sets the value of an image’s height attribute

isMap Gets or sets whether an image should be partof a
server-side image-map

naturalHeight Gets the image’s original height

naturalWidth Gets the image’s original width

src Gets or sets the value of an image’s src attribute

useMap Gets or sets the value of an image’s usemap attribute

width Gets or sets the value of an image’s width attribute

\\j

You can create rollovers using CSS, but for more sophisticated rollovers
or image swapping, JavaScript, or a combination of JavaScript and CSS, is
required.

The example in Listing 13-5 shows how to create a simple image rollover
effect in JavaScript.

Listing 13-5: An Image Rollover Effect

<html>

<head>
<title>Rollover image</title>
<scripts>

function swapImage (imgToSwap) {

imgToSwap.src = "button2.png";

imgToSwap.alt = "you're mousing over my button!";
}
function swapBack (imgToSwap) {

imgToSwap.src = "buttonl.png";

imgToSwap.alt = "mouse over me!";

}

Chapter 13: Working with CSS and Graphics 205

</scripts>
</head>
<body>
<img src="buttonl.png" id="myButton"
onmouseover="swapImage (this) ;"
onmouseout="swapBack (this) ;" alt="mouse over
me!">
</body>
</html>

In order for the page in Listing 13-5 to work correctly, you’ll need to have the
images named buttonl.png and button2 . png saved in the same direc-
tory as your HTML file. You can create your own or download ours from the
books’ website.

Grow images on mouseover

Another useful user interface trick to make your websites more user-friendly
is to slightly increase the size of image buttons when a user hovers over
them. This nice little trick subtly indicates that the target image is clickable
and provides a little bit of interactivity as well.

Listing 13-6 modifies the code from Listing 13-5 to increase the image size by
5 percent on mouseover events.

Be careful with increasing image sizes too far above the image’s natural size.
If you increase it too much, the image quality will be noticeably degraded.

Listing 13-6: Increasing Image Size on mouseover

<html>

<head>
<title>Rollover image size</title>
<scripts>

function growlImage (imgToGrow) {
imgToGrow.width += imgToGrow.width * .05;
imgToGrow.height += imgToGrow.width * .05;

}

function restorelImage (imgToShrink) {
imgToShrink.width = imgToShrink.naturalWidth;
imgToShrink.height = imgToShrink.naturalHeight;

</scripts>
</head>

(continued)

206 Part lll: JavaScript on the Web

Listing 13-6 (continued)

<body>
<img src="buttonl.png" id="myButton"
onmouseover="growImage (this) ;" onmouseout="rest
oreImage (this) ;" alt="mouse over me!">
</body>
</html>

You may have noticed that Listings 13-5 and 13-6 used the inline event
method. While not ideal for actual web application development, inline
events are frequently used for simple mouseover effects that are really
interface-related rather than functionality-related.

Creating an image slideshow

Slideshows (also known as carousels) are a popular way to display multiple
images in a single space on a site. Often used on the homepage of websites,
they can really liven up your site.

Slideshows often feature transition effects to switch between multiple
images. These transition effects are generally created using a library of
JavaScript functions, such as jQuery. You can also create transition effects
using just ordinary JavaScript, CSS, and the DOM. In the interest of simplicity,
the slideshow in Listing 13-7 only switches between images and doesn’t
feature a transition of any sort.

Listing 13-7: A Slideshow Built Using JavaScript and CSS

<html>
<head>
<title>JavaScript slideshow</title>

<style>
#carousel ({

position: absolute;
width: 800px;
height: 400px;
top: 100px;
left: 100px;
display: hidden;

}

</style>
<scripts>
var slides = [

Chapter 13: Working with CSS and Graphics 20 7

"<div id='slidel'smy first slide
</div>",

"<div id='slide2'>my second slide
</div>",

"<div id='slide3'smy third slide
</div>"];

var currentSlide = 0;
var numberOfSlides = slides.length-1;

window.addEventListener ("load", loader, false) ;

function loader () {
changeImage () ;

}

function changeImage () {
console.log("changeImage function") ;
if (currentSlide > numberOfSlides) {
currentSlide = 0;

document .getElementById ("carousel") .
innerHTML=slides [currentSlide] ;

console.log('displaying slide' + currentSlide +
"of " + numberOfSlides) ;
currentSlide++;

setTimeout (changeImage, 1000) ;

}

</scripts>
</head>
<body>
<div id="carousel"></div>
</body>
</html>

Using the Style Object’s Animation
Properties

CSS3 and the DOM’s Style object have properties for simplifying the task
of animating elements. Used together, the animation properties can enable
you to create some pretty cool animations with minimal effort. The Style
object’s animation properties are listed in Table 13-3.

208 Part lll: JavaScript on the Web

A\

Table 13-3 Animation-Related Properties of the Style Object

Property Description

animation Sets all the animation properties except
the animationPlayState property
simultaneously.

animationDelay Gets or sets a delay to happen before the

animation starts

animationDirection

Gets or sets whether the animation should
play in reverse on some or all cycles

animationDuaration

Gets or sets the length of time an animation
takes to complete one cycle

animationFillMode

Gets or sets what values are applied by the
animation outside the time it's executing

animationIterationCount

Gets or sets the number of times an anima-
tion should be played

animationName

Gets or sets a list of animations, using key-
frame at-rules

animationTimingFunction

Gets or sets the speed curve that describes
how the animation should progress over
time

animationPlayState

Gets or sets whether the animation is run-
ning or paused.

In Listing 13-8, a simple animation is created using CSS. The timing and key-
frames of the animation are first configured with CSS, and then JavaScript is
used to pause and resume the animation. With a little creativity, there are

many possibilities for how you could control this animation using JavaScript.

CSS3 animation is still pretty new, and not all browsers support it in the same

way. Because it’s still considered an experimental technology, some brows-
ers require a browser prefix before the name of the animation properties.

In Listing 13-8, both the standard and prefixed CSS styles are included.

Listing 13-8: Controlling CSS3 Animation Using JavaScript

< !DOCTYPE>
<html>
<head>
<style>
#words {

position: relative;
width: 300px;
height: 200px;
text-align: center;
padding-top: 20px;
font-family: Arial;
border-radius: 6px;
color: white;

/* Chrome, Safari, Opera */

-webkit-animation-name: movewords;

-webkit-animation-duration: 6s;

-webkit-animation-timing-function:

-webkit-animation-delay: 0s;

-webkit-animation-iteration-count:

linear;

infinite;

-webkit-animation-direction: alternate;
-webkit-animation-play-state: running;

/* Standard syntax */
animation-name: movewords;
animation-duration: 6s;

animation-timing-function: linear;

animation-delay: Os;

animation-iteration-count: infinite;

animation-direction: alternate;
animation-play-state: running;

}

/* Chrome, Safari, Opera */
@-webkit-keyframes movewords {

0% {background:red; left:100px; top:0px;}

25% {background:blue; left:200px;
50% {background:blue; left:300px;
75% {background:blue; left:200px;
100% {background:red; left:100px;

}

/* Standard syntax */
@keyframes movewords {

top:100px; }
top:200px; }
top:200px; }
top:0px; }

0% {background:red; left:100px; top:0px;}

25% {background:blue; left:200px;
50% {background:blue; left:300px;
75% {background:blue; left:200px;
100% {background:red; left:100px;

</style>
<scripts>

top:100px; }
top:200px; }
top:200px; }
top:0px; }

Chapter 13: Working with CSS and Graphics 209

window.addEventListener ("load", registerEvents, false) ;

function registerEvents (e) {

document .getElementById ("stop") .addEventListener ("

click", stopAni, false) ;

(continued)

2 ’ 0 Part lll: JavaScript on the Web

Listing 13-8 (continued)

document .getElementById ("go") .addEventListener ("clic
k",startAni, false) ;
}

function stopAni () {
document .getElementById ("words") .style.

webkitAnimationPlayState = "paused";
document .getElementById ("words") .style.
AnimationPlayState = "paused";

}

function startAni ()
document .getElementById ("words") .style.

webkitAnimationPlayState = "running";
document .getElementById ("words") .style.
AnimationPlayState = "running";
}
</scripts>
</head>
<body>

<hl id="words">Movin' Around</hl>

<button type="button" id="stop">Pause</buttons>
<button type="button" id="go">Run</button>

</body>
</html>

Part IV
Beyond the Basics

Email Validator Chris

\ C f [\ www.codingjsfordummies.com/code/ch14/listing... 5.7

Enter an email address: mrjones@nowhere Validate

The page at www.codingjsfordummies.com
! ‘ says:

invalid!

————

Find out how to force web browsers to run a restricted version of JavaScript in the

J) article “JavaScript Strict Mode” online at www . dummies .com/extras/
DT codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

AN W WY

In this part . . .

Find out how to search with regular expressions.
Discover how to use callbacks and closures.
Go above and beyond by embracing AJAX and JSON.

Find out how to force web browsers to run a restricted
version of JavaScript in the article “JavaScript Strict Mode”
online at www . dummies.com/extras/
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Chapter 14

Searching with Regular
Expressions

In This Chapter
Finding patterns with regular expressions
Writing regular expressions

Using regular expressions in JavaScript

“Creating problems is easy. We do it all the time. Finding solutions, ones
that last and produce good results, requires guts and care.”

— Henry Rollins

R egular expressions are a powerful tool within many programming lan-
guages that help you find and change text within documents according
to patterns within the text. The syntax for regular expressions can be intimi-
dating at first, but once you get the hang of it, there will be nothing you can’t
do with text.

Finding It Out with Regular Expressions

Regular expressions are a way to look for patterns or character combinations
in strings.

Example uses for regular expressions include

v Checking a user-entered email address to make sure that it’s in the right
format

v Finding and replacing all instances of a person’s name in an article

2 ’4 Part IV: Beyond the Basics

v Locating capitalized words in the middle of sentences throughout
a book

v Finding strings of numbers that look like phone numbers inside a
document

Here’s what a regular expression looks like:

ACONAA{3I\)) | (\a{3}-))2\d{3}-\d{4a}s
Looks pretty intimidating, right? Don’t worry, you’ll very soon have the tools
needed to decode this expression, and you’ll discover that it’s a regular
expression designed to match a common format for U.S. phone numbers:
(555)555-5555
Regular expressions can be much simpler than the preceding example,

however. Listing 14-1 shows a simple example use for a regular expression,
and Figure 14-1 shows what Listing 14-1 looks like when rendered in a browser.

Listing 14-1: Does the String Include "JavaScript"?

<html>
<head>
<title>Looking for JavaScript</title>
<scripts>
window.addEventListener ("load", registerEvents, false) ;

function registerEvents (e) {

document .getElementById ("ask")

. addEventListener ("click", findAnswer, false) ;
}
function findAnswer () {

//get the user's question

var question = document.
getElementById ("userQuestion") .value;

/* create a new regular expression object that
will look for an exact match of the string
"JavaScript". */

var re = new RegExp ("JavaScript") ;

// if "JavaScript" is found in the user's question
if (re.test (question)===true) {

//print out an answer.

document .getElementById ("answer") . innerHTML =
"JavaScript Question? Check out Coding with
JavaScript For Dummies by Chris Minnick and Eva
Holland";

Chapter 14: Searching with Regular Expressions 2 ’5

//and yell "JavaScript!" in the console.
console.log("JavaScript!") ;

}
}
</scripts>
</head>
<body>
<form id="userInput">
<label>Enter your question:
<textarea id="userQuestion"/>

</label>
<button id="ask" type="button">Get An Answer</buttons>
</form>
<div id="answer"/>
</body>
</html>
eoce Looking for JavaScript x Chris
« C # [9 www.codingjsfordummies.com/code/chi4/listing... 17 =
better JavaScript
Enter your question: [programmer? 2| Get An Answer

JavaScript Question? Check out Coding with JavaScript For Dummies by Chris
Minnick and Eva Holland

|
Figure 14-1:
The result

of running
Listing
14-1ina
browser.
|

Writing Regular Expressions

Before you can make use of a regular expression, you need to create an
object containing the expression. You can write regular expressions in one of

two ways:

v By using a regular expression literal

v Through the constructor function of the RegExp object

2 ’6 Part IV: Beyond the Basics

Using the RegExp object

When you create a regular expression by calling the RegExp constructor
function, the resulting object gets created at run time, rather than when

the script is loaded. You should use the RegExp constructor function when
you don’t know the value of the regular expression when you’re writing the
script. For example, you may be asking the user to input a regular expression,
or you may be getting the regular expression from an external source or cal-
culating some part of the regular expression when the script runs.

The program in Listing 14-2 creates a regular expression using a random
letter and then asks the user to type a sentence. When the user submits the
form, the program calculates how many instances of the random letter were
in the user-submitted text.

Listing 14-2: Creating Regular Expressions at Run Time with
the RegExp object

<html>
<head>
<titlesLetter Counting Game</title>
<script>
window.addEventListener ('load', loader, false) ;

//get a random letter
var letter = String.fromCharCode (97 + Math.floor (Math.
random () * 26));

/* Create a regular expression using the letter. Set
the g option to find all occurrences. */
var re = new RegExp(letter,'g');

function loader (e) {
document .getElementById ("getText") .addEventListener (
'submit', countLetter, false) ;

}

function countlLetter (e) {
e.preventDefault () ;

document .getElementById ("results") .innerHTML = "The
secret letter was " + letter +".";

var userText = document.getElementById ("userWords") .
value;

var matches = userText.match (re) ;
if (matches) {

var count = matches.length;
} else {

var count = 0;

}

Chapter 14: Searching with Regular Expressions 2 ’ 7

document .getElementById ("results") .innerHTML +=
" You typed the secret letter " + count + "

times.";
}
</scripts>
</head>
<body>

<form id="getText">

<p>I'm thinking of a letter! Type a sentence, and then
I'll tell you how many times your sentence uses
my secret letter!</p>
<input type="text" name="userWords" id="userWords">
<input type="submit" name="submit">
</form>
<div id="results"></div>
</body>
</html>

Figure 14-2 shows the result of running the preceding program in a web

browser.
[Bw|[=[=] 3
Letter Counting Game x| |
« C i[9 wwweodingjsfordurmmies.com/codefchl4/listingl402 himl ool =

I'm thinking of a letter! Type a sentence, and then I'l tell you how many times your sentence uses my secret letter!

What is the secret letter? Submit

The secret letter was 5. You typed the secret letter 2 times

Figure 14-2:
The Letter
Counting
Game result
of Listing
14-2.

Regular expression literals

To create a regular expression literal, you enclose the value of the regular
expression between slashes instead of quotes.

2 ’8 Part IV: Beyond the Basics

For example:
var myRegularExpression = /JavaScript/;

Regular expression literals are compiled by the browser when the script is
loaded and remain constant through the life of the script. The result is that
regular expression literals offer better performance for expressions that will
be unchanging.

The preceding example uses a regular expression to look for an exact match
of the string "JavaScript". A regular expression containing a string of char-
acters to be matched exactly is called a simple pattern.

In a real application or program, you’ll want to account for users who use
some variation on the correct spelling. For example, a user may input any of
the following words and clearly mean JavaScript:

V¥ javascript
v Javascript
V¥ java script
v JS
Vs

There may even be more exotic variations. One of the wonderful and frustrat-
ing things about dealing with input from real live people is that you never
know for sure what they’re going to do! In order to be able to detect varia-
tions in capitalization and spelling, you can use more sophisticated regular
expressions to look for patterns or sets of characters, rather than just literal
strings.

The following is a revised regular expression that will match "JavaScript™"
as well as "Javascript" or "javascript":

var myRegularExpression = /[Jjlaval[Ss]lcript/;

Things are starting to look a little foreign, but if you understand the meaning
of the different characters, you'll see that this is actually still pretty simple.
The square brackets in a regular expression define a character set and will
match any one of the characters within that set. By writing [Jj1, what you're
saying is that either a capital or lowercase j will match.

Chapter 14: Searching with Regular Expressions 2 ’ 9

Figure 14-3:
Using
regex101.
com to test
aregular
expression.
|

Testing reqular expressions

Sometimes when you’re writing regular expressions, it’s helpful to have an
easy way to test an expression to make sure that it’s actually doing what you
want. A number of websites and tools can help you test your regular expres-
sions. One such site is http://regex101.com. To use regex101.com, type
your regular expression in the box at the top of the screen and type some
text in the box underneath it. The site checks the text against using your
regular expression and highlights the matches that are found.

Figure 14-3 shows regex101.com using our example regular expression to test
against a question about JavaScript.

® O @ | 5 oniine regex tester and de x Chris

< C i & httpsi/iregex101.com

> - - 0O $ 4 A -
~" REGULAR EXPRESSION =S ©xPLANATION
PCRE
/‘[Jj]uva[s](r‘lpt / o 4/ [Jj3]ava[s]cript/
4 [J7] match a single character present in
b TESTSTRING the list below
L Jj asingle character in the list 17 literally
Why should I learn Javascript? (case sensitive)

ava matches the characters ava literally (case
sensitive)
4 [5] match a single character present in the

MATCH INFORMATION
No match groups were extracted
This means that your pattern matches but

there were no (capturing fgroupsf) in it that
matched anything in the subject string.

QUICK REFERENCE
FULL REF...(Q, MOST USED TOKENS I
| most used to... Asingle character ... [abc]
all tokens Acharacter exce... [1
CATEGORIES Acharacter inther... [a-z]
SUBSTITUTION general tokens A character notin... ["a-z]

Special characters in reqular expressions

Regular expressions make it possible for you to look for numbers in strings,
letters, groups of letters, repetitions of characters, and much more.

To create complex search patterns, you can use the regular expression
special characters. The most commonly used special characters are listed
in Table 14-1.

http://regex101.com

220 Part IV: Beyond the Basics

Table 14-1 Regular Expression Special Characters

Special Character Meaning

\ Designates whether the next character should be treated
as a special character or whether it should be treated as a
literal character. If the following character is a special char-
acter, the \ designates that it should be treated literally.

A Finds the beginning of the input.
Finds the end of the input.
* Finds the preceding character 0 or more times.

Finds the preceding character 1 or more times.

Finds the preceding character 0 or 1 time.

Finds any single character except the newline character.

x|y Finds either x ory.

{n} Finds exactly n occurrences of the preceding character.

[xyz] Finds any one of the characters in the brackets.

[Axyz] Finds any characters other than the ones in the brackets.

[\b] Finds a backspace.

\b Finds a word boundary.

\B Finds a nonword boundary.

\d Finds a digit character.

\D Finds any nondigit character.

\n Finds a line feed.

\s Finds a single white space character, including space, tab,
form feed, and line feed.

\S Finds a single nonwhite-space character.

\t Finds a tab.

\w Finds any alpha-numeric character, including an
underscore.

\W Finds any nonword character.

Using Modifiers

Modifiers can be used to modify several parameters of the search as a whole.
To use modifiers, pass them as the second argument to the RegExp ()
constructor function when you’re creating your regular expression object or
put them after the ending / in a regular expression literal.

Chapter 14: Searching with Regular Expressions

The three modifiers are
v g (global): Indicates that the entire string should be searched, rather
than just searching until the first match is found.

v i (case insensitive): Indicates that the case (upper or lower) of the char-
acters in the input should be ignored.

v m (multiline): Performs multiline matching. For example, when using *
(start) and $ (end) special characters, treat each new line as a new start
and end, rather than just considering the start and end of the input.

The following regular expression will match all the variations of the word
JavaScript that we show earlier in this chapter throughout a document:

/javascript/ig

Coding with Regular Expressions

Regular expressions are used with the regular expression methods and with
a subset of the string functions (see Chapter 3).

The regular expression methods are
v test: Tests for a match and returns true if a match is found and false
if none is found.
v exec: Tests for a match and returns an array of information about

the match.

If all you need to know is whether a string contains a match for the regular
expression, you should use the test method. If you need to know where the
match or matches are in a string, how many matches there are, and the text
that was matched, you should use exec.

The string functions that can use regular expressions are shown in Table 14-2.

Email verification is a good, and surprisingly complex, use for regular expres-
sions. Every valid email address has certain rules that it conforms to. The
basic rules are

»* Must contain one @ symbol

1 Must contain characters before and after the @ symbol

v Must contain at least one separating groups of characters after the
@ symbol

221

222 Part IV: Beyond the Basics

Table 14-2 String Functions That Use Regular Expressions

Function Use

match Looks for a match of for the regular expression in a string. It returns
an array of information about the match or returns null if no match
is found.

search Tests for a match in a string. If one is found, it returns the index of the

match. If no match is found it returns - 1.

replace Searches for a match in a string and replaces the match with a
replacement string.

split Breaks a string into an array of substrings, using a regular expression
or fixed string.

There are other rules, but things get complicated pretty quickly when you
start talking about details, such as the fact that spaces are allowed in email
addresses in certain cases, as are international characters.

For someone who is asking users to input a valid email address, usually any
sort of simple test of the email address before accepting the input will dra-
matically cut down on fake entries.

Listing 14-3 demonstrates an email validation script. After a user enters an
email address and presses the validate button, the script tests the email
address against the following regular expression literal:

/\b[A-Z0-9. %+-1+@[A-Z0-9.-1+\.[A-Z]{2,4}\b/1
This regular expression starts out with \b, the word boundary special char-
acter. A word boundary matches the start of a new word. After that, we have
the following pattern:

[A-Z0-9. %+-1+

This matches one or more combination of letters or numbers, which may
contain underscores, percent signs, or dashes.

@[A-Z0-9.-1+

Chapter 14: Searching with Regular Expressions 223

This part requires the @ symbol, followed by one or more combinations of
letters, numbers, or dashes.

\.[A-2]1{2,4}\b/1

The end of the regular expression looks for a two to four character-long
string (the com or net or org parts of an email address) followed by the end
of the word. At the very end of the regular expression, it uses the /i modifier
to indicate that the regular expression will match upper or lowercase
characters.

If a match occurs, then the data entered has passed the test, and a popup
declaring the address 'valid!' appears.

Listing 14-3: An Email Validation Script

<html>
<head>
<title>Email Validator</title>
<scripts>
window.addEventListener ('load', loader, false) ;
function loader (e) {
e.preventDefault () ;
document .getElementById ('emailinput') .addEventListen
er ('submit',validateEmail, false) ;
}

function validateEmail (e)
var re = /\b[A-Z0-9. %+
{2,4}\b/i;
if (re.test (e.target.yourEmail.value)) ({
alert ("valid!") ;
} else {
alert ("invalid!") ;

}
}

</scripts>
</head>
<body>
<form id="emailinput"s>
<label>Enter an email address:
<input type="text" id="yourEmail"s>
</label>
<input type="submit" value="Validate" id="validate">
</form>
</body>
</html>

{
-1

+@[A-Z20-9.-1+\. [A-Z]

224 Part IV: Beyond the Basics

The result of running Listing 14-3 in a browser is shown in Figure 14-4.

[Email validator x | Chris |
= C ff [) www.codingjsfordummies.com/code/chi4/listing... 32| =
Enter an email address: mrjones@nowhere validate
The page at www.codingjsfordummies.com
— G says:
Figure 14-4: e
Using a (oK
regular
expression
in an email
validation
script.
|

Chapter 15

Understanding Callbacks
and Closures

In This Chapter
Understanding callback functions
Using callbacks

Creating closures

“O, call back yesterday, bid time return.”

— William Shakespeare

‘ allbacks and closures are two of the most useful and widely used tech-
niques in JavaScript. In this chapter, you find out how and why to pass

& WEB functions as parameters to other functions.

R\

|
&=

=

Don'’t forget to visit the website to check out the online exercises relevant to
this chapter!

—

What Are Callbacks?

SMBER
‘{9‘&‘ JavaScript functions are objects. This statement is the key to understanding
many of the more advanced JavaScript topics, including callback functions.

Functions, like any other object, can be assigned to variables, be passed
as arguments to other functions, and created within and returned from
functions.

226 Part IV: Beyond the Basics

Passing functions as arguments

A callback function is a function that is passed as an argument to another
function. Callback functions are a technique that’s possible in JavaScript
because of the fact that functions are objects.

Function objects contain a string with the code of the function. When you call
a function by naming the function, followed by (), you're telling the function
to execute its code. When you name a function or pass a function without the
(), the function does not execute.

Chapter 11 has examples of callback functions where you can use the
addEventListener method, such as

document .addEventListener ('click', doSomething, false) ;

This method takes an event (c1ick) and a Function object (doSomething)
as arguments. The callback function doesn’t execute right away. Instead,
the addEventListener method executes the function when the event
occurs.

Writing functions with callbacks

Here’s a simple example function, doMath, that accepts a callback function
as an argument:

function doMath (numberl,number2,callback) {
var result = callback (numberl, number2) ;
document .write ("The result is: ": + result);

This function is a generic function for returning the result of any math opera-
tion involving two operands. The callback function that you pass to it speci-
fies what actual operations will be done.

To call our doMath function, pass two number arguments and then a func-
tion as the third argument:

doMath(5,2,function(numberl,number2){
var calculation = numberl * number2 / 6;
return calculation;

1)

Listing 15-1 is a complete web page that contains the doMath function and
then invokes it several times with different callback functions.

Chapter 15: Understanding Callbacks and Closures 22 7

Listing 15-1: Calling a Function with Different Callback Functions

<html>
<head>
<title>Introducing the doMath function</titles>
<script>
function doMath (numberl,number2,callback) {

var result = callback (numberl, number2) ;
document .getElementById ("theResult") .innerHTML +=
("The result is: " + result + "
");

}

document .addEventListener (' DOMContentLoaded’ ,
function() {

doMath (5,2, function (numberl, number2) {
var calculation = numberl * number2;
return calculation;

) 5

doMath(lO,3,function(numberl,numberZ){
var calculation = numberl / number?2;
return calculation;

1) ;

doMath(Sl,9,function(numberl,numberZ){
var calculation = numberl % number2;
return calculation;

) 5

}, false);

</scripts>
</head>
<body>

<hl>Do the Math</hl>

<div id="theResult"</div>
</body>
</html>

The result of running Listing 15-1 in a browser is shown in Figure 15-1.

Using named callback functions

In the examples in the preceding section, the callback functions were all writ-
ten as anonymous functions. It’s also possible to define named functions and
then pass the name of the function as a callback function.

228 Part IV: Beyond the Basics

ece Introducing the doMath fu: X Chris

« C f [wwwcodingjsfordummies.com/code/ch15/listing1501.html 57| =

Do the Math

The result is: 10
The result is: 3.3333333333333335
The result is: 0

Figure 15-1:
Doing cal-
culations
using call-
backs.
|

Anonymous functions (see Chapter 7) are functions that you create without
giving them names.

Using named functions as callbacks can reduce the visual code clutter that
can come with using anonymous functions. Listing 15-2 shows an example
of how to use a named function as a callback. This example also features the
following two improvements over Listing 15-1:

1 A test has been added to the doMath function to make sure that the
callback argument is actually a function.

v~ It prints out the code of the callback function before it displays the
result of running it.

Listing 15-2: Using Named Functions as Callbacks

<html>
<head>
<title>doMath with Named Functions</title>
<script>
function doMath(numberl,numberZ,callback){

if (typeof callback === "function") {

var result = callback (numberl, number2) ;

document .getElementById ("theResult") . innerHTML +=
(callback.toString() + "

The result is:
" + result + "

");

}
}

function multiplyThem (numberl, number2) {
var calculation = numberl * number2;
return calculation;

}

Chapter 15: Understanding Callbacks and Closures 229

function divideThem(numberl,numberZ){
var calculation = numberl / number?2;
return calculation;

}

function modThem (numberl, number2) {
var calculation = numberl % number2;
return calculation;

}

document .addEventListener ('DOMContentLoaded',
function()

doMath (5,2, multiplyThem) ;
doMath (10, 3,divideThem) ;
doMath (81, 9, modThem) ;

}, false);

</scripts>
</head>
<body>

<hl1>Do the Math</hl>

<div id="theResult"</div>
</body>
</html>

The result of running Listing 15-2 in a browser is shown in Figure 15-2.

[Ballo =] &

y. doMath with Named Fu x § |

€« C [www.codingjsfordummies.com/code/ch15/listingl502him| 9% =
Do the Math

function multiplyThem(number 1 number2) { var calculation = number] * mumber2; return calculation, }
The resultis: 10

function divideThem{tumber 1 number2){ var calculation = number1 / number2; return caleulation; }
The result is: 3.3333333333333325

function modThem(nmber1,number2}{ var calculation = mumber1 % mmberZ; return calculation; }

The result is: 0

Figure 15-2:
Doing math
with named
callbacks.
|

230 Part IV: Beyond the Basics

Using named functions for callbacks has two advantages over using
anonymous functions for callbacks:

v It makes your code easier to read.

v Named functions are multipurpose and can be used on their own or as
callbacks.

Understanding Closures

A closure is the local variable for a function, kept alive after the function has
returned.

Take a look at the example in Listing 15-3. In this example, an inner function
is defined within an outer function. When the outer function returns a refer-
ence to the inner function, the returned reference can still access the local
data from the outer function.

In Listing 15-3, the greetVisitor function returns a function that is created
within it called sayWelcome. Notice that the return statement doesn’t use ()
after sayWelcome. That’s because you don’t want to return the value of run-
ning the function, but rather the code of the actual function.

Listing 15-3: Creating a Function Using A Function

function greetVisitor (phrase) ({

var welcome = phrase + ". Great to see you!"; // Local
variable
var sayWelcome = function() {

alert (welcome) ;

}

return sayWelcome;

}

var personalGreeting = greetVisitor ('Hola Amiga') ;
personalGreeting(); // alerts "Hola Amiga. Great to see
youl!"

The useful thing about Listing 15-3 is that it uses the greetVisitor function
to create a new custom function called personalGreeting that can still
access the variables from the original function.

Normally, when a function has finished executing, the local variables within it
are inaccessible. By returning a function reference (sayWelcome), however,
the greetVisitor function’s internal data becomes accessible to the out-
side world.

Chapter 15: Understanding Callbacks and Closures

3

Figure 15-3:
A closure
includes the
code of the
returned
inner
function.
|

The keys to understanding closures are to understand variable scope in
JavaScript and to understand the difference between executing a function
and a function reference. By assigning the return value of the greetvisitor
function to the new personalGreeting function, the program stores

the code of the sayWelcome function. You can test this by using the
toString () method:

personalGreeting.toString ()

If you add to Listing 15-3 an alert statement to output the toString () value
of personalGreeting, you get the result shown in Figure 15-3.

In Figure 15-3, the variable welcome is a copy of the variable welcome from
the original greetVisitor function at the time that the closure was created.

The page at www.codingjsfordummies.com
(- says:
personalGreeting.toString()

function { {
alert{welcome);

OK

In Listing 15-4, a new closure is created using a different argument to the
greetVisitor function. Even though calling greetVvisitor () changes
the value of the welcome variable, the result of calling the first function
(personalGreeting) remains the same.

Listing 15-4: Closures Contain Secret References to Outer Function
Variables

<html>
<head>
<title>Using Closures</title>
<script>
function greetVisitor (phrase) ({

var welcome = phrase + ". Great to see
you!

"; // Local variable

var sayWelcome = function ()

document .getElementById ("greeting") . innerHTML +=

} welcome;

(continued)

231

232 Part IV: Beyond the Basics

\\3

Listing 15-4 (continued)
return sayWelcome;

// wait until the document is loaded
document .addEventListener (' DOMContentLoaded’',
function ()

// make a function

var personalGreeting = greetVisitor ("Hola Amiga") ;
// make another function

var anotherGreeting = greetVisitor ("Howdy, Friend") ;

// look at the code of the first function

document .getElementById ("greeting") . innerHTML +=

"personalGreeting.toString()
" + personalGreeting.
toString () + "
";

// run the first function
personalGreeting(); // alerts "Hola Amiga. Great to
see youl!l""

// look at the code of the 2nd function

document .getElementById ("greeting") . innerHTML +=

"anotherGreeting.toString()
" +
anotherGreeting.toString() + "<brs>";

// run the 2nd function
anotherGreeting(); // alerts "Howdy, Friend. Great to
see youl!l"

// check the first function
personalGreeting(); // alerts "Hola Amiga. Great to
see you!""

// finish the addEventlListener method

}, false);
</script>
</head>
<body>
<p 1d="greeting"</p>
</body>
</html>

The result of running Listing 15-4 in a web browser is shown in Figure 15-4.

Closures are not hard to understand after you know the underlying concepts
and have a need for them. Don’t worry if you don’t feel totally comfortable
with them just yet. It’s fully possible to code in JavaScript without using clo-
sures, but once you do understand them, they can be quite useful and will
make you a better programmer.

Chapter 15: Understanding Callbacks and Closures 233

Figure 15-4:
Creating
customized
greetings
with
closures.
|

[Ba[=[E] =

Using Clasures x \

« C M [1 www.eodingjsfordummies.com/code/ch15/157 =

personalGreeting toString ()
finction () { document. getElementByld("greeting”) innerHTML += welcome; }
Hola Amiga Great to see youl

anotherGreeting to String()
function () { document. getEletmentByld("greeting”) innerHHTML += welcome; }
Howedy, Friend. Great to see youl

Hela Arniga. Great to see youl

Using Closures

A closure is like keeping a copy of the local variables of a function as they
were when the closure was created.

In web programming, closures are frequently used to eliminate the dupli-
cation of effort within a program or to hold values that need to be reused
throughout a program so that the program doesn’t need to recalculate the
value each time it’s used.

Another use for closures is to create customized versions of functions for
specific uses.

In Listing 15-5, closures are used to create functions with error messages
specific to different problems that may occur in the program. All the error
messages get created using the same function.

When a function’s purpose is to create other functions, it’s known as a
function factory.

Listing 15-5: Using a Function to Create Functions

<html>

<head>
<title>function factory</titles>
<scripts>

(continued)

234 Part IV: Beyond the Basics

Listing 15-5 (continued)

function createMessageAlert (theMessage) {
return function() {
alert (theMessage) ;

}

var badEmailError = createMessageAlert ("Unknown email

address!") ;
var wrongPasswordError = createMessageAlert ("That's

not your password!") ;

window.addEventListener ('load', loader, false) ;

function loader () {
document .login.yourEmail .addEventListener ('change',

badEmailError) ;
document . login.yourPassword.addEventListener ('change

', wrongPasswordError) ;

</scripts>
</head>
<body>
<form name="login" id="loginform">
<p>
<label>Enter Your Email Address:
<input type="text" name="yourEmail">
</label>
</p>
<p>
<label>Enter Your Password:
<input type="text" name="yourPassword"x>
</label>
</p>
<button>Submit</button>
</body>
</html>

The key to understanding Listing 15-5 is the factory function.

function createMessageAlert (theMessage) {
return function()
alert (theMessage);
}
}

Chapter 15: Understanding Callbacks and Closures 235

To use this function factory, assign its return value to a variable, as in the
following statement:

var badEmailError = createMessageAlert ("Unknown email
address!") ;

The preceding statement creates a closure that can be used elsewhere in the
program just by running badEmailError as a function, as in the following
event handler:

document .login.yourEmail .addEventListener ('change',badEmai
1Error) ;

236 Part IV: Beyond the Basics

Chapter 16

Embracing AJAX and JSON

In This Chapter
Reading and writing JSON
Understanding AJAX
Using AJAX

“The Web does not just connect machines, it connects people.”

— Tim Berners-Lee

A JAX is a technique for making web pages more dynamic by sending
and receiving data in the background while the user interacts with the
pages. JSON has become the standard data format used by AJAX applica-
tions. In this chapter, you find out how to use AJAX techniques to make your
site sparkle!

Working Behind the Scenes with AJAX

Asynchronous JavaScript + XML (AJAX) is a term that’s used to describe a
method of using JavaScript, the DOM, HTML, and the XMLHt tpRequest
object together to refresh parts of a web page with live data without needing
to refresh the entire page. AJAX was first implemented on a large scale by
Google’s Gmail in 2004 and then was given its name by Jesse James Garret

in 2005.

The HTML DOM changes the page dynamically. The important innovation
that AJAX made was to use the XMLHt t pRequest object to retrieve data
from the server asynchronously (in the background) without blocking the
execution of the rest of the JavaScript on the web page.

238 Part IV: Beyond the Basics

Figure 16-1:
Craigslist.
org is quite
happy with
Web 1.0,
thank you
very much.
|

Although AJAX originally relied on data formatted as XML (hence the X in the
name), it’s much more common today for AJAX applications to use a data
format called JavaScript Object Notation (JSON). Most people still call appli-
cations that get JSON data asynchronously from a server AJAX, but a more
technically accurate (but less memorable) acronym would be AJAJ.

AJAX examples

When web developers first started to use AJAX, it became one of the hallmarks
of what was labeled Web 2.0. The most common way for web pages to show
dynamic data prior to AJAX was by downloading a new web page from the
server. For example, consider craigslist.org, shown in Figure 16-1.

To navigate through the categories of listings or search results on Craigslist,
you click links that cause the entire page to refresh and reveal the content of
the page you requested.

While still very common, refreshing the entire page to display new data in
just part of the page is unnecessarily slow and can provide a less smooth
user experience.

® 0 ® Psetof hoe 1950's Frenc x Chris

<« C' i | [sacramento.craigslist.org/ata/4862809205. html] =

CL sacramento > for sale > antiques - by owner

reply prohibited @ Posted: 35 minutes ago dprev A nexth

Set of Three 1950's French Nesting Tables, Leather Tops (Antelope)

ra
La

© craigslist - Map data © OpenStrestMap

(google map) (yahoo map)

+ safety tips

- prohibited items
+ product recalls
- avoiding scams

saRE

Set of Three 1950's French Nesting Tables, Leather Tops. Beautiful, gorgeous set of 1950's French Provincial nesting tables in good condition with
normal ware. Well proportioned nest of table with excellent brown mahogany woods. Vellum green tooled leather tops all supported by turned incised
kick out legs. Great i

http://craigslist.org

Figure 16-2:
Google Plus
uses AJAX
to provide a
modern user
experience.
|

Chapter 16: Embracing AJAX and JSON 239

Compare the craigslist-style navigation with the more application-like
navigation of Google Plus, shown in Figure 16-2, which uses AJAX to load
new content into part of the screen while the navigation bar remains static.

In addition to making web page navigation smoother, AJAX is also great for
creating live data elements in a web page. Prior to AJAX, if you wanted to
display live data, a chart, or an up-to-date view of an email inbox, you either
needed to use a plug-in (such as Adobe Flash) or periodically cause the web
page to automatically refresh.

With AJAX, it’s possible to periodically refresh data through an asynchronous
process that runs in the background and then update only the elements of
the page that need to be modified.

See Chapter 10 to find out how to update the HTML and CSS of a web page
using the HTML DOM’s methods and properties. AJAX relies on these same
techniques to display web pages with updated data.

Weather Underground’s Wundermap, shown in Figure 16-3, shows a weather
map with constantly changing and updating data overlays. The data for the
map is retrieved from remote servers using AJAX.

[JON] Efcoogie+ x Chris

€« C' M | & httpsi/iplus.google.com/u/0/stream/circles/p36624aeb0a01fcof bl

-
5 “ Ch =0 A L2
E‘ SR -

4> Home v Al Friends Family Following More v Mentions Explore 05

Share what's new...

In this circle
A -
s @ o [o .

Text

@ Paul Irish Q. Google Partners

45 Promises Banchmark? Join Nordahl & Valentine for a 45 minute conversation on brand

measurement where they will address questions such as:
These days pretty much any mention of a implementation of

Promises/A+ will quickly attract a link to the Bluebird Promises

What should | be measuring outside of account data? (i.e. Brand ift,

131 a2 O ESE

21 comments

, Benjamin Gruenbaum

240 Part IV: Beyond the Basics

Figure 16-3:
Wundermap
uses AJAX
to display
live weather
data.
|

® O ® WwunderMap® | Interactive Chris
- C i | [www.wunderground.com/wundermap/ b =
=]‘L WunderMap @ savePrefs Share & ‘ﬁ

= Layers | @ Tips |, Legends ¥

~ (@
s ~ > ' e f ¥ Weather Stations -]
=), cormix
Knights. @ .
x \ Lgnding ’ (65 Rock o @ Radar L
@ é g
* () :
e & Rosevile B l WEE] @ Frecipitation Start Time
[Citrus Hdlghts @ @ satelite
! ‘mo Lindal Q \Dor:
a::- dy ,’ 9 'ggams A ‘%
bo % @%
T — T oy Fair 0ak(E2)
ke b Gold Rwer
~ [C }
B: ~ 3 @y : [} A - Arden NZ'% . @ Ssevere Weather

. U.S. Storm Reports
» : g —— ;,-f-\' @ Lightning

. Tornado

2 = Map data ©2015Google Skmi_—— Termsef Use Report a mop emor
q A Elzmemsmemurk s:.urces Timeline Profiles Resources Audits Console

@® © ¥ := (Preservelog [Disable cache
Name %
Path Headers Preview | Response
) | dataimage/pngibase... 1 jQuery17206245256261900067 1422205397452 ({"conds" : {" ISACRAME2" 1 {" Lu"1 " 1422265467" , "agen” : *0" , "agem":" 0", "ages" :* 1", " type" : "PWs"

] stationlo
) stationd

225 requests | 825 KB transferr

Console Search Emulation Rendering

Viewing AJAX in action

In Figure 16-3, shown in the preceding section, the Chrome Developer Tools
window is open to the Network tab. The Network tab shows all network activ-
ity involving the current web page. When a page is loading, this includes the
requests and downloads of the page’s HTML, CSS, JavaScript, and images.
After the page is loaded, the Network tab also displays the asynchronous
HTTP requests and responses that make AJAX possible.

Follow these steps to view AJAX requests and responses in Chrome:
1. Open your Chrome web browser and navigate to

www.wunderground. com/wundermap.

2. Open your Chrome Developer Tools by using the Chrome menu
or by pressing Command+Option+I (on Mac) or Control+Shift+I
(on Windows).

3. Open the Network tab.

Your Developer Tools window should now resemble Figure 16-4. You
may want to drag the top border of the Developer Tools to make it
larger at this point. Don’t worry if this makes the content area of the

http://www.wunderground.com/wundermap

Chapter 16: Embracing AJAX and JSON

Figure 16-4:
The
Network

tab of the
Developer
Tools.
|

® © ® WwundoMap® | Intoractive Chris
L C A | [) www.wunderground.com/wundermap/
= YW WunderMap @ savePrefs share & RF
o° 1) > - s
v C\trus F: h = Layers @& Trips Q, Legends ¥
A Rio Linda e & g
9 ¢ 5 Whodiand 1 éuulhl\\hrm ?
A~ ¥ ¥ Weather Stations -]
‘ @
o+ 2, Ci 5 ¥ Radar

@ Precipitation Start Time

aC ____F R = el @ sotelite

1
Map data 2015 Google 5 km L Temis of Use . Report a map error

www.google.com/intl/en-US_US/heip SernrTs Al e

s_maps.html

‘ @ ¥ = (Preservelog [Disable cache
Name Method SRS ype Initiator size Time Timeline
Path ext Content _ Latency 20,005 30.005
=T ibadnxs.com e oK RTINS eript 0B 121ms
transparent.png cer 200 \agar.. | ox 4728 45ms ,
image/. her
| maps.gstatic.com/mapfiles oK maae 958 45ms
StatsService.RecordStats?1ms, 200 main.js:24 4398 68ms
- 2 . textfjav. .
(=21 maps.googleapis.com/maps/ oK Script 378 67ms
stationdata?minlar=38.4999. 200 query.minjs:é 5.7KB 88ms
GET - textfjav.
==/ stationdata.wunderground.co. oK Seript 3L6KB 86ms
| WUNIDS_compositezmaxlat=. = 200 Joif | Ox 7.8B 256ms i
I radblast wunderground.com/ oK s e 7.5K8 253ms
dat; Ipngib: oms
y | dataimage/png:base GET data) imagef... Othe (from ¢ |
= oms
] dawii - oms
P | TR cET data) Imagef... Othe {from c. |
L& oms
et 200 query.min.js:4 8738 S7ms
oK textfla et 33KB S6ms I

304 requests | 2.8 MB transferred | 30.11 s (load: 10.15 5, DOMContentLoaded: 2.39'5)

Console Search Emulation Rendering

browser too small to use. What’s going on in the Developer Tools is the
important thing right now.

Notice that new items are periodically appearing in the Network tab.
These are the AJAX requests and responses. Some of them are images
returned from the server, and some are data for use by the client-side
JavaScript.

4. Click on one of the rows in the Name column of the Networks tab.

Additional data will be displayed about that particular item, as shown in
Figure 16-5.

o

Click through the tabs (Headers, Preview, Response and so on) in the
detailed data pane and examine the data.

The first tab, Headers, displays the HTTP request that was sent to the
remote server. Take a look in particular at the Request URL. This is a
standard website address that passes data to a remote server.

&

Select and copy the value of the Request URL from one of the items
you inspected.

7. Open a new tab in your browser and paste the entire Request URL
into the address bar.

A page containing data or an image opens, as in Figure 16-6.

241

24 2 Part IV: Beyond the Basics

Figure 16-5:
Viewing
additional
information
abouta
particular
record in
the Network
tab.
|

Figure 16-6:
The result
of copying

an HTTP
Request

URL from
the Network
tah.
|

L]
«

5

B

337 requests | 2.9 MB transferr.

LJ B WunderMap® | Interactive Chris

C fi [www.wunderground.com/wundermap/

© savePrefs Share ‘ ‘ﬁ

© Ciusdogys ¢ LR 2 ¢ P A

oothill Farms s
@ S B o Weather Stations

% ® s @)y
Gold River

Ca r%ql

Aglen-Arca

@ Precipitation Start Time

%, @ sateliite

l
Map data ©2015 Google 5km L Tesms of Use - Report a map errar

= Dcadlr
a0 Elements |Network| Sources Timeline Profiles. Resources Audits Console
® OV Preserve log [Disable cache

Name x

Path Headers | Preview Response Cookies Timing

stationlookup?station=K.
stationdata.wundergrou

Remote Address: 38.162.137.159:80
Request URL: http://stationdata.wunderground. com/cgi-bin/stationlookup?stat 10n=KCAFOLSO22%2CKCACARMI1E%2CKCAFALRO12%2CKCASACRAS

] WUNIDS_composite?max. 2%2CKCAANTEL 3%2CKCAWDODL 17%2C T SACRAME 2%2 CKCASHING1 7%2CKCASACRAIRN2CKCACT TRU8%2 CKCASHING13%2CKCAMATHE 1%2 CKCAELDOR1 3%2CKCASACRAT
) radblastwunde rground. 3%2CKCASACRA4BY2CKCAFATROT1%2CKCAELDORL4%2CKCAFOLS013%2CKCAWE STS2%2CKCASACRAS 9%2CKCADAVIS 1242 CKCASACRAT 1%2CKCARESCUA%2 CKCAWOODL

20%2CKCADAVTS 38%2CKCARANCHE 22 CKCASACRAS BA2CKCACAMER 104 2CKHOC2CKSMF&To rmat=] sonimaxage=10&ca | lback=] Query17289769918625243608_

statlonlookup?station=K... 14222096482616_=1422200709745

Request Method: GET

Status Code: @ 200 0%
v Request Headers view source

Accept: =/=
dataimage/png;base. Accept-Encoding: gzip, deflate, sdch

8

data:image/png:base

stationlookup?station=K.

Connection: keep-alive
stationdata.wundergrou

Cookie: DT=1422205397:13703:365-p1; optimizelyEndUserId=0ey1422205399520r0. 26877609459683299
data:image/pngibase.. 2205400: S=ALNI_MZrWC17nySKImhWHCQLDIiyytdwd; tag.ViewTarget_1=1; s_vnun=2; _gat=1; s_invisit=1; s_dslv=1422209622999; tag.Vi
ewTarget_2=1; tag.ProgGroup_2=1; cto_wun=; utag_main=v_id:014b226c2 Sedgdldbe 38§_sn:25_ss:08_st:14222
11450391%_pn: 243Bexp-sessionsses_id:1422200267228%3Bexp-session; 5_gadsd; s_cestrue; ASC=1422209651:13; _ga=GA1.2.1773063337.

gads=1D=79¢@fe5208e2c34c: T=142

- | stationlookup?station=i 14 399; optimizel 22343766 Ch%22%2C%22234376673%22%3A%220 C¥22%2C%22234506809522%3A%22n0Ne%22%

20%22234773107%22%3A%221a15e%22%70; optimizelyBuckets=%7B%JD; s_fid=754BE3I0BASCFC488-3341307307C4E3A2; 5_gpv=wundermapk3AL2e%

Console Search Emulation Rendering

®

[B wunderMap® | Interactive % | [stationdata.wundergrounc % Chris

&«

C' i [3 statior ind. ‘cgi-bin/stationlookup?station=KCAFOLS022%2CKCACARMI10%2CKCAFAIRO12%2CKCASACRAS2...

P

209769918625243008 1422209648261
422210606", !
("tempf":"46.4",

KCACARMTI10"
"type": "PWS", "winddir":"292", "winds

30.09%, dewpoint”: "
07, "agem” . winddic::°23", i
.00, “dailyrainin” '"n 01", "baromin”:"30.20", “dewpoint £
Yo", "agem”: "0", "age :ypc":"[’ws" wJ.nddn: +7360", "wi

0", "agem":"0", "ages":"5"

"0.00", "dailyrainin’

"t humidity”:"10

i 0"

"humidity”:"92"

humidity”:"39

0.00"," dulyumm barom 0.31", ”duwpumv.f‘ "", "windohillf®
0", "agem”: "ag "‘PHS", wxnddn: ' *:"0.0", . “humidity”:"97"
00", omi ","mndsmu : :

0", "agem”: a 3.1", "humidity”:"91
0.00", "dailyrainin®: "0. in":"30.23", "dewpointf"s" ", “windchillf

0, agem: b “winddle®: 5°, i iDL 0") iy ;

0.00%, “dailyrainia’s i30.18", " w.ﬂ"'” ndehillf®s "3}, " e

"i¥on, Fagem”: "0 S "type":"PWS", ‘winddir" »"0", umdspeemn“ "0.0", "windgustmph":"0.0", "humidity":" 76",

'0.00", "dailyrainin’ 1487}, "KCANESTS2)
tagem™i 10" “age

"dajlyranun
] n c!‘

0", “humidity":"96",

"30.06", dewpoin
", "winddir! "0" w! ":"0.
*30.19", "deupmne.f":”', wmde:mut'
e oypan «msu Finddivts "3,

70.00%, "baromin”:"30.30"

. : ages":“l“ type""‘l’ws", ULlIddl

.00", *dailyrainin”s"0.00", "baromin”:"30.

0.0", "humidity":"95",
'45"}, "KCASACRA40 "+
2.

7", "bumidity”:"95"

£ 4g. T,

Kote
ewpointf

0", "humidity":"95"

0" ”a gem”: "0" "agea": 5“,"type" ' u.\.lldd:.r £7107, " 4.5", "humidity”:"94"
0.00", dally ainin":"0.00", "baromi; ewpoint
0", "agem":"0", "ages" type": ,"winddir®:"77", . “humidity”:"41"

"dn.l.ynnru.n “baromin”:*30.22", "dewpointf
aq " age typor s BUAT, "winddirt: 180",
baromin®:*30. 37",“dnwpnx.nt£“="‘ ,"wxndnh:.,Ll('
":"PWS", "winddir”:"227" , "windspeedmph":"0.0", "windgustmph":"0.0
omin®: %30, 18", "dewpointf':"", “windohillf': '43 "} KCARANCHGO" :
“BuS", "winddir® 329” - a "0
in":"30,05" ”dewp LE":" ", Mwindchillf s "4 'J,"RCIASACH.AEB"
irt:vor, ”umdspeedmgn” “0.0", "windgustmph *, "humidity":"88",

’ w;.ndcm.lll' “4e” } N XEACANERU!
= windspeednpl 17, "windgustmph'
”d:wpol.ntf” vt wlndclu.llf B -999)

2.7

humidity

agel age; .
empE":"59.2", "rainin” »"u nu" ”dmlyxamm 0.00", "baromin®:428.75",

Chapter 16: Embracing AJAX and JSON 2/} 3

8. Compare the results of opening the Request URL in a new tab with the
results shown in the Response tab in the Developer Tools.

They should be similar, although they may not look identical because
they weren’t run at the same time.

As you can see, there’s really no magic to AJAX. The JavaScript on the web
page is simply requesting and receiving data from a server. Everything

that happens behind the scenes is open to inspection through the Chrome
Developer Tools (or the similar tools that are available with most other web
browsers today).

Using the XMLHt tpRequest object

The XMLEHttpRequest object provides a way for web browsers to request
data from a URL without having to refresh the page.

The XMLHt tpRequest object was created and implemented first by
Microsoft in its Internet Explorer browser and has since become a web
standard that has been adopted by every modern web browser.

You can use the methods and properties of the XMLHt t pRequest object to
retrieve data from a remote server or your local server. Despite its name, the
XMLHt tpRequest object can get other types of data besides XML, and it can
even use different protocols to get the data besides HTTP.

Listing 16-1 shows how you can use XMLHt tpRequest to load the contents of
an external text document containing HTML into the current HTML document.

Listing 16-1: Using XMLHttpRequest to Load External Data

<html>
<head>

<title>Loading External Data</title>

<script>

window.addEventListener (’load’,init, false) ;

function init (e) {

document .getElementById ('myButton’) .

addEventListener (’click’,documentlLoader, false) ;
}

function reqglListener () ({

console.log(this.responseText) ;

document .getElementById (’content’) .innerHTML = this.
responseText;

}

(continued)

244 Part IV: Beyond the Basics

Listing 16-1 (continued)

function documentLoader () {

var oReq = new XMLHttpRequest () ;
oReg.onload = reglistener;
oReqg.open("get", "loadme.txt", true);
oReq.send () ;

</scripts>
</head>
<body>

<form id="myForm">

<button id="myButton" type="button">Click to

Load</button>
</form>
<div id="content"></div>
</body>
</html>

The heart of this document is the documentLoader function:

function documentLoader () {

var oReqg = new XMLHttpRequest () ;
oReqg.onload = reglListener;
oReqg.open("get", "loadme.txt", true);
oReqg.send () ;

}

The first line of code inside the function creates the new XMLHt tpRequest
object and gives it the name of oReq:

var oReq = new XMLHttpRequest () ;

The methods and properties of the XMLHt tpRequest object are accessible
through the oReq object.

This second line assigns a function, regListener, to the onload event of

the oReq object. The purpose of this is to cause the regListener function
to be called when oReq loads a document:

oReg.onload = reqglListener;
The third line uses the open method to create a request:

oReg.open ("get", "loadme.txt", true);

In this case, the function uses the HTTP GET method to load the file called
loadme. txt. The third parameter is the async argument. It specifies

Chapter 16: Embracing AJAX and JSON 2/ 5

\NG/
Vg‘\\

Figure 16-7:
Errors when
trying to use
XMLHttp
Request
on alocal
file.
|

whether the request should be asynchronous. If it’s set to false, the send
method won’t return until the request is complete. If it’s set to true, notifica-
tions about the completion of the request will be provided through event
listeners. Because the event listener is set to listen for the 1oad event, an
asynchronous request is what’s desired.

It’s unlikely that you’ll run into a situation where you’ll want to set the async
argument to false. In fact, some browsers have begun to just ignore this argu-
ment if it’s set to false and to treat it as if it’s true either way because of the
bad effect on the user experience that synchronous requests have.

The last line in the documentLoader function actually sends the requests
that you created with the open method:

oReqg.send () ;

The . open method will get the latest version of the requested file. So-called
live-data applications often use loops to repeatedly request updated data
from a server using AJAX.

Working with the same-origin policy

If you save the HTML document in Listing 16-1 to your computer and open
it in a web browser, more than likely, you won’t get the results that you’d
expect. If you load the document from your computer and then open the
Chrome Developer Tools JavaScript console, you will see a couple of error
messages similar to the error in Figure 16-7.

ece Loading External Data x Chris

€« C | [} file//Users/watzthisvideo/Google%20Drive/Watz This%3F % 20Projects/Wiley%20... 17| =

Click to Load

@ [] Elements Newwork Sources Timeline Profiles Resources Audits | Censole| 02)= # I:I‘X
©® W <topframe> v [J|Preserve log

@ > XMLHttpRequest cannot load listingl6-1.htm1:20
file:///Users/vatzthisvideo/Coog let20Drive/iatThish3ra2eproject s/w;lemzapubu hing/Coding%20@JavaScrip
t%20F0 r20Dunnies/Chapterl6/code/ Loadme. tx
schemes: http, data, chrome, chrome-extension

o » Ur\caught Networkzrmr: Failed to execute '
Load
'tile:f//Users/watzthisvideo/Googlen20Drive /WatzThiss3F420Projects/Wileys28Publishing/Coding%2@JavaScri
pt428Fors200unmies/Chapteri6/code/ loadme. txt' .

Cross origin req
htp chrome-ext;

*on 'XMLHETpRe

upported for protocol
source.

iled to listingl6-1.html:2@

246 Part IV: Beyond the Basics

WNG/
g““

The problem here is what’s called the same-origin policy. In order to prevent
web pages from causing users to unknowingly download code that may be
malicious using XMLHt tpRequest, browsers will return an error by default
whenever a script tries to load a URL that doesn’t have the same origin. If you
load a web page from www.example.com and a script on that page tries to
retrieve data from www.watzthis.com, the browser will prevent the request
with a similar error to the one you see in Figure 16-7.

The same-origin policy also applies to files on your local computer. If it
didn’t, XMLHt tpRequests could be used to compromise the security of your
computer.

There’s no reason to worry about the examples in this book negatively
affecting your computer. However, in order for the examples in this chapter
to work correctly on your computer, a way around the same-origin policy is
needed.

The first way around the same-origin policy is to put the HTML file
containing the documentLoader function and the text file together onto
the same web server. You can see an example of this working by going to
www . codingjsfordummies.com/code/chl6/1listingl6-1.html.

The other way around the same-origin policy is to start up your browser with
the same-origin policy restrictions temporarily disabled.

These instructions are to allow you to test your own files on your local
computer only. Do not surf the web with the same-origin policy disabled.
You may expose your computer to malicious code.

To disable the same-origin policy on MACOS:

1. Close your Chrome browser.

2. Open the Terminal app and launch Chrome using the following
command:

/Applications/Google\ Chrome.app/Contents/Mac0S/
Google\ Chrome --disable-web-security

To disable the same-origin policy in Windows:

1. Close your Chrome browser.

2. Open the Command prompt and navigate to the folder where you
installed Chrome.

3. Type the following command to launch the browser:

Chrome.exe --disable-web-security

http://www.codingjsfordummies.com/code/ch16/listing16-1.html

Figure 16-8:
Listing 16-1
runina
browser
with the
same-
origin policy
disabled.

Chapter 16: Embracing AJAX and JSON 24} 7

Once the browser starts up, you'll be able to run files containing AJAX
requests locally until you close the browser. Once the browser is closed and
reopened, the security restrictions will be re-enabled automatically.

Figure 16-8 shows the result of running Listing 16-1 in a browser without the
same-origin policy errors.

ece Loading External Data x Chris

&« C i | [1 www.codingjsfordummies.com/code/ch16/listing16-1.html T;* =

Click to Load

Here it is!

@ [] Elements Network Sources Timeline Profiles Resources Audits | Console| > # O, x
® W <wpframe> v [JPreserve log

<p>Here it is!</p> listing16-1.html:11
>

Using CORS, the silver bullet
for AJAX requests

It’s quite common for a web application to need to make requests to a differ-
ent server in order to retrieve data. For example, Google provides map data
for free to third-party applications.

In order for the transactions between servers to be secure, mechanisms have
been created for browsers and servers to work out their differences and
establish trust.

Currently, the best method for allowing and restricting access to resources
between servers is the standard called Cross-Origin Resource Sharing (CORS).

To see CORS in action, take a look at the Network tab in the Chrome
Developer Tools while browsing Weather Underground’s Wundermap.
Click on one of the requests starting with the following URL:
http://stationdata.wunderground.com/cgi-bin/stationlookup.

http://stationdata.wunderground.com/cgi-bin/stationlookup

248 Part IV: Beyond the Basics

Click on the Headers tab, and you’'ll see the following text within the HTTP
header:

Access-Control-Allow-Origin: *

This is the CORS response header that this particular server is configured to
send. The asterisk value after the colon indicates that this server will accept
requests from any origin. If the owners of wunderground.com wanted to
restrict access to the data at this script to only specific servers or authenti-
cated users, they could do so using CORS.

Putting Objects in Motion with JSON

Figure 16-9:
gasbuddy.
com uses
AJAX to
display gas
pricesona
map.
|

In Listing 16-1, you use AJAX to open and display a text document containing
a snippet of HTML. Another common use for AJAX is to request and receive
data for processing by the browser.

For example, gasbuddy . com uses a map from Google along with data about
gas prices, to present a simple and up-to-date view of gas prices in different
locations, as shown in Figure 16-9.

Y ——— (IES | EEIES
/B usa Mational Gas price x N
« C' A [www.gasbuddy.com/gb_gasternperaturemap.aspx &=

USA National Gas Price Heat Map -

Mow you can see what gas prices are around the country at a glance. Areas are color coded according to their
price far the average price far regular unleaded gasoline. Click here far the Canada MNational Gas Price Heat

Ivlap.
Search by City, State or Zip 95817 Go
sacramenio
International Airport
~
< >
& ~ _ 2:2)
— L5
+
T . ; @
EB [227] % B Rosemont
P o
. o &2,
Yalo Bypass -
Wildiife Area
-2

Vineyard

®

Fuel Typs

http://gasbuddy.com

Chapter 16: Embracing AJAX and JSON 249

If you examine gasbuddy.com in the Network tab, you'll find that some requests
have responses that look something like the code shown in Listing 16-2.

Listing 16-2: Part of a Response to an AJAX Request on gasbuddy.com

([{id:"tuwtvtuvvvv",base:[351289344,822599680],zrange:[
11,11],layer:"m@288429816", features: [{id:"172
43857463485476481",a:[0,0] ,bb:[-8,-8,7,7,-47-
,7,48,22,-41,19,41,34] ,c:"{1:{title:\"Folsom
Lake State Recreation Area\"},4:{type:1}}"}1},
{id:"tuwtvtuvvvw",zrange:[11,11],1ayer:"m@2884
29816"}, {id: "tuwtvtuvvwv" , base: [351506432, 8242
91328] ,zrange: [11,11],layer: "m@288429816", feat
ures:[{id:"8748558518353272790",a:[0,0],bb:[—
8,-8,7,7,-41,7,41,22] ,c:"{1:{title:\"Deer Creek
Hills\"},4:{type:1}}"}1}, {id: "tuwtvtuvvww", zran
ge:[11,11],layer: "me288429816"}]1)

If you take a small piece of data out of this block of code and reformat it, you
get something like Listing 16-3, which should look more familiar to you.

Listing 16-3: gasbuddy.com Response Data, Reformatted

{id: "tuwtvtuvvvv",

base: [351289344,822599680] ,
zrange: [11,11],
layer:"m@288429816",
features: [{
id:"17243857463485476481",

a:[0,0],
bb:[-8,-8,7,7,-47,7,48,22,-41,19,41,34],

C:"{

1:{title:\"Folsom Lake State Recreation Area\"},
4:{type:1}

}II

1}

}

By looking at the format of the data, you can see that it looks suspiciously
like the name : value format of a JavaScript object literal (see Chapter 8).

The main reason JSON is so easy to use is because it’s already in a format
that JavaScript can work with, so no conversion is necessary. For example,
Listing 16-4 shows a JSON file containing information about this book.

250 Part IV: Beyond the Basics

Listing 16-4: JASON Data Describing Coding with JavaScript

For Dummies
{ "book title": "Coding with JavaScript For Dummies",
"book author": "Chris Minnick and Eva Holland",
"summary": "Everything beginners need to know to start

coding with JavaScript!",
"isbn":"9781119056072"

Listing 16-5 shows how this data can be loaded into a web page using
JavaScript and then used to display its data in HTML.

Listing 16-5: Displaying JSON data with JavaScript

<html>
<head>

<title>Displaying JSON Data</title>

<script>

window.addEventListener ('load',init, false) ;

function init (e) {

document .getElementById ('myButton') .

addEventListener ('click',documentLoader, false) ;
}

function reglistener () ({
// convert the string from the file to an object with
JSON.parse
var obj = JSON.parse (this.responseText) ;

// display the object's data like any object

document .getElementById('book title') .innerHTML =
obj .book title;

document .getElementById ('book author') .innerHTML =
obj .book_ author;

document .getElementById ('summary') .innerHTML =
obj .summary;

}

function documentLoader () {
var oReq = new XMLHttpRequest () ;
oReqg.onload = regListener;
oReg.open ("get", "listinglé-4.json", true);
oReqg.send () ;
}

</scripts>

</head>

Chapter 16: Embracing AJAX and JSON 25]

<body>
<form id="myForm">
<button id="myButton" type="button">Click to
Load</button>
</form>
<hl>Book Title</hl>
<div id="book title"></div>

<h2>Authors</h2>
<div id="book author"s></divs>
<h2>Summary</h2>
<div id="summary"></div>
</body>
</html>

The key to displaying any JSON data that's brought into a JavaScript
document from an external source is to convert it from a string to an object
using the JSON. parse method. After you do that, you can access the values
within the JSON file using dot notation or bracket notation as you would
access the properties of any JavaScript object.

Figure 16-10 shows the results of running Listing 16-5 in a web browser and
pressing the button to load the JSON data.

eo0e Displaying JSON Data Chris
< c N www.codingjsfordummies.com/code/ch16/listing18-5.html =

Click to Load

Book Title
Coding with JavaSeript For Dummies
Authors
Chris Minnick and Eva Holland
Summary
I | Everything beginners need to know to start coding with JavaScript!
Figure 16-10:
Displaying
JSON data
within an
HTML page.
|

252 Part IV: Beyond the Basics

web™

extras

«

PartV
JavaScript and HTML

Getthe Media @ x \

c o

www.codingjsfordummies.com/co

Screenshot taken
Click o view

Copy to clipbeard

Find out how to use polyfills to implement features in browsers that don't yet support

them in the article “Using Polyfills” online at www . dummies.com/extras/
codingwithjavascript.

mix

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

In this part . . .

v Find out how to use HTML5's APIs to access a wide range of
computer and mobile device functionality.

v~ Discover the basics of jQuery in order to speed up and simplify
JavaScript development.

v Find out how to use polyfills to implement features in
browsers that don't yet support them in the article “Using
Polyfills” online at www . dummies.com/extras/
codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Chapter 17

HTMLS APis

In This Chapter
Discovering APIs
Taking advantage of geolocation

Accessing media

“Language is a virus from outer space.”

— William S. Burroughs

H TML5’s APIs provide you with access to a wide range of computer and
mobile device functionality. In this chapter, you discover how to use
APIs, the standard methods and techniques used by APIs, and example code
for working with some of the more exciting APIs.

Understanding How APls Work

APIs, or Application Programming Interfaces, are sets of software routines

and standards that give programmers access to the capabilities of a soft-
ware application. APIs are the means by which one computer program gives
another computer program the ability to interact with it. When a web browser
allows a JavaScript program to interact with it, it does so by using APIs.

For example, the W3C’s Battery Status APIs describes how browsers should
report data about what’s currently happening with the battery in a device
(such as a smartphone or tablet). Other programs (for example, JavaScript
programs within web pages) can access the Battery Status API to find out
whether the device’s battery is low, or charging, or how much battery time
is left. You can then make use of this battery status information in your
program.

256 Part V: JavaScript and HTML5

Figure 17-1:
An engag-
ing excerpt
from the
Battery
Status API.

CMBER
&

The language in an API is highly precise and describes exactly how the API
should be implemented by web browsers. Figure 17-1 shows a quote from the
most recent version of the Battery Status API.

The charging attribute musT be set to false if the battery is discharging, and set to frue, if the battery is charging, the implementation is
unable to report the state, or there is no battery attached to the system, or otherwise. When the battery charging state is updated, the
user agent musT queue a task which sets the charging attribute's value and fires a simple event named chargingchange at the
BatteryManager Object.

The chargingrime attribute must be set to 0, if the battery is full or there is no battery attached to the system, and to the value positive
Infinity if the battery is discharging, the implementation is unable to report the remaining charging time, or otherwise. When the
battery charging time is updated, the user agent must queue a task which sets the chargingrine attribute's value and fires a simple
event named chargingtimechange at the patterymanager object.

The dischargingrime attribute must be set to the value positive Infinity, if the battery is charging, the implementation is unable to
report the remammg discharging time, there is no battery attached to the system, or otherwise. When the battery discharging time is
updated, the user agent musT queue a task which sets the dischargingrine attribute's value and fires a simple event named
dischargingtimechange at the BatteryManager Object.

The 1evel attribute musT be set to 0 if the system's battery is depleted and the system is about to be suspended, and to 1.0 if the
battery is full, the implementation is unable to report the battery's level, or there is no battery attached to the system. When the
battery level is updated, the user agent musT queue a task which sets the 1eve1 atiribute's value and fires a simple event named
levelchange at the Batterymanager ODject.

Typically, an APl is written up as a specification that tells what properties
and methods are available to programmers, what arguments can be passed
to the methods, and what sorts of values are returned by the properties.

In many cases with the APIs developed by standards bodies like the World
Wide Web Consortium, the APIs are written to describe how programs
should be able to interact with web browsers, rather than how they actually
can. It’s up to the browser makers to decide whether to actually implement
an API standard.

An API tells programmers how they can interact with software and how

the software should respond. When you’re reading about APIs that describe
ways to interact with web browsers, it’s important to keep in mind that

just because an API exists doesn’t mean that programmers can actually

use it. Many APIs have been proposed and written that haven’t yet been
implemented or that have only been partially implemented in web
browsers.

Checking HTML5 API browser support

The best source for checking which web browsers support a particular stan-
dard or proposed standard is www.caniuse.com. CanlUse.com lists all of
HTMLS5’s elements and APIs and provides a table of browser support for each
of them. Figure 17-2 shows the browser support, at the time of this writing,
for the IndexedDB standard.

http://www.caniuse.com

Chapter 17: HTML5 APIs 25/

® O ® /Licaniuse.. Support table *

cf caniuse.comifeat=indexeddb

Method of storing data client-side, allows indexed database
queries,

Global

unprefised

Firefox Chrome Safari Opera 105 Safari* Opera Mini *

= 7352%
= 72.79%

- 18.08% = 76.34%
58.01% + 17.5% = 75.51%

Android Chrome for

Browser * Android

|

. Notes Known issues(1) Resources (7) Feedback

Figure 17-2:
BrOWSer ! Partial support in IE 10 & 11 refers to a number of subfeatures not being supported.

support for 2 Partial support in i0S 8 refers ta seriously buggy behavior.
IndexedDB,

accordin

cing SEQ Course

to caniuse.

Achieve Top Search Engine Positions - Still Time to Join January Group!

com. o
—— i

Getting to know HTML5’s APls

The HTML5 standard defines and documents a number of APIs that
JavaScript programmers can use to access the capabilities of web browsers

in a standardized way.

Many of the HTML5 APIs are still not finalized and implemented by every web
browser. The APIs that have been implemented are extremely useful and are

expanding the limits of what’s possible in web apps.

The list of HTML5 APIs is constantly changing and growing. Table 17-1 lists

the most popular and well-supported APIs that are defined in HTML5 at

P this time.

You can find a more exhaustive list of HTML5 APIs on the website for this

book at www.dummies.com/extras/codingwithjavascript.

Each HTML5 API is designed to precisely specify how programmers should

be able to interact with functionality of web browsers or computers. The pro-
cess for these APIs to get from idea to reality, however, can be painfully long

and complex.

http://www.dummies.com/extras/codingwithjavascript

258 Part V: JavaScript and HTML5

Table 17-1

HTML5 APIs

API

Use

Battery Status

Provides information about the battery status of the
device

Clipboard

Provides access to the operating system’s copy, cut
and paste functionality

Drag and Drop

Supports dragging and dropping items within and
between browser windows

File

Provides programs with secure access to the
device’s file system

Forms

Gives programs access to the new data types
defined in HTML5

Geolocation

Provides web applications with access to geograph-
ical location data about the user’s device

getUserMedia/Stream

Provides access to external device data (such as
webcam video)

Indexed database

Creates a simple client-side database system in the
web browser

Internationalization

Provides access to local-sensitive formatting and
string comparison

Screen Orientation

Reads the screen orientation state (portrait or land-
scape) and gives programmers the ability to know
when it changes and to lock it in place

Selection

Supports selecting elements in JavaScript using
CSS-style selectors

Server-sent events

Allows the server to push data to the browser
without the browser needing to request it

User Timing

Gives programmers access to high precision time-
stamps to measure the performance of applications

Vibration

Allows access to the vibration functionality of the
device

Web Audio

Processes or synthesizes audio

Web Speech

Provides speech input and text-to-speech output
features

Web storage

Allows the storage of key-value pairs in the browser

Web sockets

Opens an interactive communication session
between the browser and server

Chapter 17: HTML5 APIs 259

API Use

Web workers Allows JavaScript to execute scripts in the
background

XMLHTTPRequest 2 Improves XMLHt tpRequest to eliminate the need

to work around the same-origin Policy errors and to
make XMLHt tpRequest work with new features
of HTML5

Several of the HTML5 APIs have passed through the gamut of test and review
processes needed in order to become well supported standards. Foremost
among these is the Geolocation APL

Using Geolocation

The Geolocation API gives programs access to the web browser’s geolocation
functionality, which can tell the program the device’s location on Earth.

The Geolocation API is among the most well-supported HTML5 APIs and is
implemented in about 90 percent of desktop and mobile browsers, including
all of the big ones, except for Opera Mini.

What does geolocation do?

The Geolocation API describes how JavaScript can interact with the
navigator.geolocation object in order to get data about a device’s
current position, including

v~ Latitude: The latitude in decimal degrees

” Longitude: The longitude in decimal degrees

v Altitude: The altitude in meters

v Heading: The direction the device is traveling

v Speed: The velocity of the device in meters per second

v Accuracy: The accuracy of the latitude and longitude, measured in

meters

By obtaining some or all of this data, a JavaScript application running in a
web browser can place a user on a map, query sources such as Google Maps
for landmarks or restaurants local to the user, and much more.

260 Part V: JavaScript and HTML5

|
Figure 17-3:
Chrome
displays

geolocation [

requests
below the
address bar.
|

How does geolocation work?

When JavaScript initiates a request for the devices position, through the
Geolocation object, a number of steps take place, prior to the position
information being returned.

The first thing to happen is that the browser needs to make sure that the
user has given permission for the particular web app to access the device’s
geolocation information. Different browsers prompt the user for permission
in different ways, but it’s typically done through some sort of popup or
notification.

The Chrome browser displays a geolocation icon and a message below the
address bar when a website requests access to geolocation data, as shown in
Figure 17-3.

ece 5 Geclocation - Dive Into + Chris

€ C' # [diveintohtml5.info/geclocation.htm o =

'@ http://diveintohtmi5.info wants to use your computer's location. Block Allow x

b

DIVING IN

eolocation is the art of figuring out where you are in the world and
(optionally) sharing that information with people you trust. There is more
than one way to figure out where you are — your IP address, your wireless
B network connection, which cell tower your phone is talking to, or dedicated
IGPS hardware that calculates latitude and longitude from information sent by satellites in

the sky.

After you give a website access to your geolocation data, the browser tries to
find you. It does this through a number of different means, starting with the
most accurate and proceeding through to less accurate ways.

If the program indicates that high accuracy is required, geolocation will spend
a longer time trying to access highly accurate GPS information. Otherwise, the
browser will attempt to balance speed with accuracy to obtain the most accu-
rate results from any of the following sources, when available:

v GPS satellite positioning

v Your wireless network connection

v The cell tower your phone or mobile device is connected to

v The IP address of your device or computer

Chapter 17: HTML5 APIs 20]

How do you use geolocation

The key to using geolocation is the navigator.geolocation object’s
getCurrentPosition method. The getCurrentPosition method can
take three arguments:

V¥ success: A callback function that’s passed a Position object when
geolocation is successful

v error: An optional callback function that’s passed the PositionError
object when geolocation fails

V¥ options: An optional PositionOptions object that can be used to
control several aspects of how the geolocation lookup is performed

The Position object that’s returned by the getCurrentPosition method
contains two properties:

V* Position.coords: Contains a Coordinates object that describes the
location
v Position.timestamp: The time when the location was retrieved
Listing 17-1 shows how you can use the getCurrentPosition method

to get the Position object and loop through the return values in
Position.coords.

Listing 17-1: Getting Position Information and Displaying It in
the Browser

<html>
<head>
<title>The Position object</title>
<script>
var gps = navigator.geolocation.getCurrentPosition (

function (position)
for (key in position.coords) {

document .write (key+': '+ position.coords [key]) ;
document .write ('
') ;
}
1) i
</scripts>

</head>
<body>
</body>

</html>

262 Part V: JavaScript and HTML5

If the device you run this code on supports geolocation and the browser can
determine your location, the results of running this script should resemble
Figure 17-4.

® O ® /[yuwcodingistordummies. x Chris

« C ff [www.codingjsfordummies.com/code/ch7/listing17-1.ntml vel =

speed: null
N | hcading: null
altitude Accuracy: null
T A accuracy: 20
Flgure 17 4 altitude: null
Tt longitude: -121 45
Prmtmg the latitude: 38.56 N

return val-
ues of the
Position
object.
|
Notice in Figure 17-4, that several of the properties of the Coordinates
object are all null. This is because it was run using a desktop computer
that doesn’t have the ability to get some of these coordinates. The result of
running the same script in a mobile browser on a smartphone is shown in
Figure 17-5.
[wewe0 Sornt = TG PH T e
codingjsfordummies.com <
latitude: 38.56 NEG_G_N
longitude: -121.48 [NENG_G_GNE
altitude: 5.601812839508057
accuracy: 65
altitudeAccuracy: 10
heading: null
speed: null
|
Figure 17-5:
Getting
geolocation
data with a
smartphone
browser. ~ e
e | < [L

Chapter 17: HTML5 APIs 20 3

Notice that the mobile browser displays figures for altitude, but heading and
speed are still null because the device was stationary at the time when the
page was loaded.

Combining geolocation with Google maps

One of the most common things that programmers need to do with geoloca-
tion data is to display a location on a map. In order to do this, you first need
to get the latitude and longitude. You've got that now. But, how do you draw
the map and figure out where on the map that latitude and longitude are?
That, it seems, is the daunting task.

Fortunately, there are people who have done this before and who have cre-
ated an API for interacting with their mapping software. Most famously,
Google makes their mapping software available for free to anyone through
the Google Maps API (even for commercial purposes, in most cases).

To use the Google Maps AP, follow these steps:
1. Go to the Google APIs console at http://code.google.com/apis

/console and log in with your Google Account.

2. After you log in, you may be asked to agree to the terms of use; if so,
click Accept.

3. Click the button labeled Enable an API.
Your screen now displays a list of APIs and a Browse APIs search box.
4. In the Browse APIs search box, type Google Maps JavaScript API v3.
The link for this API appears.
5. Click the button that says OFF under the status heading.
This step turns the API ON.

After you activate the Google Maps JavaScript API, a green ON appears
next to the API, as shown in Figure 17-6.

6. Click the Credentials link on the left navigation bar.
You see the API Access Screen.

7. Click the link labeled Create New Key.
The Create a New Key dialog box appears.

8. Click Browser key in the Create New Key dialog box.

A dialog box containing a text input field labeled Accept requests from
these HTTP Referrers opens.

http://code.google.com/apis/console
http://code.google.com/apis/console

264

Part V: JavaScript and HTML5

C ”\;\S\\‘ Sign up for a frea tria +Eva aﬁ
Walcoma to the new Google Developers Consele! Prefer the old console? Go back | Dismiss
Fiojects Enabled APIs
Some APl are enabled automatically, You can disable them T jou'a not using their services
AP Project
NAME oUOTA STATUS
Overview
Bllling & seftings
AELOE Browse APIs
APts
Credantials
Consent soreen
" QuoTa A

I Rt

Menitoring Ad Exchange Buyer AP 000 requesta/dz; OFF

Figure 17-6: | soucccoi
Activating | cemeee —— |
the Google | s e s | o
Maps API. | sigoe
I

#d Exchange Sellar 4P 10,000 requests/da: oFF

9. Leave the input box labeled Accept requests from these HTTP refer-
rers blank and click Create.

The dialog box closes, and your API key will be created.

In the Public API access section, you now find a long string of letters and
numbers inside a box labeled Key for browser applications. This is your
API key.

The API key is all you need to gain access to all the great functionality of the
Google Maps APIL

Now that you have access to the Google Maps JavaScript API, it’s time to try
it out. The web page in Listing 17-2 gets the location of your computer using
the navigator.geolocation object and then passes it to Google Maps to
get a map. Notice the highlighted area of the code, showing where to insert
your API key.

Listing 17-2: Mapping Your Location with the Geolocation APl and the
Google Maps API

<!DOCTYPE html>
<html>
<head>

<title>Mapping your location</title>

<style type="text/css">

html, body, #map-canvas { height: 100%; margin: O;
padding: 0;}
</style>

Chapter 17: HTMI5 APIs 205

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=Y0
UR_API_KEY">
</scripts>

<scripts>

// run the initialize function after the map loads
google.maps.event .addDomListener (window, 'load',
initialize) ;

function initialize() ({

// get the Position object and send it to a callback
function
var gps = navigator.geolocation.getCurrentPosition (

// the callback function
function (position) {

//set Google Map options, using latitude and
longitude from position object
var mapOptions = {
center: { lat: position.coords.latitude, 1ng:
position.coords.longitude},
zoom: 8

b5

// make the map and load it into the map-canvas div
in the <body>
var map = new google.maps.Map (document.
getElementById('map-canvas'),
mapOptions) ;

) 5
i 5

</scripts>

</head>
<body>
<div id="map-canvas"</div>
</body>
</html>

ngﬁﬂ
&
In order for this script to run correctly, you have to replace the text YOUR_
API_KEY with the API key that you obtained from Google.

The results of running Listing 17-2 in a browser are shown in Figure 17-7.

266 Part V: JavaScript and HTML5

ece Mapping your location Chris
“« C & [) www.cedingjsfordummies.com/code/ch17/listing17-2.htm =
Map
< 2 Red\Biuf
v :
&
[i1]
¥ @
+ © Y -\ P .
Chigo "%
5 fumas National
Forest office
Renos
0
Tafoe National Forest
YubaCity Cars
- &)
Lingoln Aubgm
Roseville @
wobdland GCitrus Heights'
| 505 Sacramento 150F
o) ool !
Pavis
Santauﬁusa B rove
Rohnert Park Vocaple %
Napa L
Petajuma F . Faigfield g
o 5
Novato— Vallejo Lodi Stanislaus National For
San Rafael Coneord—irioch; Stockton
o
£Walnut Creek
San Frgn:mco Tricy —iManteca e
Livermore ™, °
Daly Citys Hayward L vermor — Modesto
SanMateo Fremont Ceres
| © Turlock
Redwood City)
Fl ure 17_7 Los Altgs; 1San|Jose
g) Cupertingg=-£9 Merced
. . Saratogasegcampbell (5]
Finding Los Gatos (1)
3tsorgan Hill
you rself. santa Cruz Sioy Nader
Watsonville
I Map ms of Use _Report a miap error

Accessing Audio and Uideo

Prior to HTML5, the only way for a web page to use a camera connected to
a computer or built into a computer was through the use of plugins, such as
Flash.

One of the major goals of HTMLS5 is to eliminate the need for plugins, with
their constant updates and security issues. Since HTML5 was first proposed,
there have been several attempts to define a standard for using input from
cameras.

The latest and greatest API for enabling live video and audio communications
through web browsers is called WebRTC (Web Real Time Communications).

At the heart of WebRTC is navigator.getUserMedia (), which does
exactly what its name would imply: It gets media (audio and video) from the
user (well, from the user’s device, specifically).

Chapter 17: HTML5 APIs 20 7

getUserMedia is currently supported in Chrome, Opera, and Firefox. If
you want to use it in other browsers, such as Safari or Internet Explorer,
you’ll need to use a tool called a polyfill. Visit the book’s website at

www .dummies.com/extras/codingwithjavascript to learn about
polyfills.

3

The first parameter of getUserMedia is an object with properties indicating
what type of media you want to access. For example, if you want to access
both video and audio, you would use the following object as the first
parameter:

{video: true, audio: true}

The other parameters that getUserMedia takes are a success callback and
an error callback. Listing 17-3 shows a sample use of getUserMedia.

Listing 17-3: Getting and Displaying User Video and Audio

<!DOCTYPE html>
<html>
<head>
<title>Get the Media</title>
<style type="text/css">
html, body, #map-canvas { height: 100%; margin: 0;
padding: 0;}
</style>
<scripts>
window.addEventListener ('DOMContentLoaded', function ()
{
var v = document.getElementById('v') ;
navigator.getUserMedia = (navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia | |
navigator.msGetUserMedia) ;

if (navigator.getUserMedia) ({
// Request access to video only
navigator.getUserMedia (

video:true,
audio:false

Iy

function (stream) {

var url = window.URL || window.webkitURL;
v.src = url ? url.createObjectURL (stream)
stream;

v.play () ;

12

(continued)

http://www.dummies.com/extras/codingwithjavascript

268 Part V: JavaScript and HTML5

Listing 17-3 (continued)

function (error) {
alert ('Something went wrong. (error code ' +
error.code + ')');
return;

D 5
} else {
alert ('Sorry, the browser you are using doesn\'t
support getUserMedia') ;

return;
) 5
1)
</scripts>
</head>
<body>
<video id = "v"/>
</body>
</html>

Examine Listing 17-3’s key lines:
window.addEventListener ('DOMContentLoaded', function/() {

An event listener that waits until the DOM is loaded before running the rest
of the code is

var v = document.getElementById('v') ;

The preceding line creates a new variable, called v, to hold a reference to the
video element with an id ="v":

navigator.getUserMedia = (navigator.getUserMedia ||
navigator.webkitGetUserMedia | |
navigator.mozGetUserMedia ||
navigator.msGetUserMedia) ;

getUserMedia is an experimental technology still not fully standard-
ized. Because of this, web browsers have different implementations of

it, which they indicate by using vendor prefixes. This statement sets the
value of the standard navigator.getUserMedia object to the vendor pre-
fixed version supported by the user’s current browser. So, when you're
using Firefox and call navigator.getUserMedia, you're actually calling
navigator.mozGetUserMedia

if (navigator.getUserMedia) ({

Chapter 17: TML5 APIs 20 9

which checks to see whether the user’s browser supports getUserMedia:
navigator.getUserMedia (

Call the getUserMedia method:

{

video:true,
audio:false

}

The first parameter is an object telling which media you want to access:
function (stream) {

The success callback runs if the request to getUserMedia succeeds. It takes
a single argument:

var url = window.URL || window.webkitURL;
v.src = url ? url.createObjectURL (stream) : stream;

The preceding two lines smooth out the differences between how different
browsers handle the media stream object. The second line features our pal,
the ternary operator! This statement sets the src property of the video ele-
ment to either url.createObjectUrl (stream) or to stream, depending
on which method is supported by the browser:

v.play () ;

Finally, the video is played. If your computer supports getUserMedia and
you have a camera, you'll see video of yourself (or whatever the camera is
pointing at) at this point:

function (error) ({
alert ('Something went wrong. (error code ' + error.code
+ ') ')
return;

}

The preceding code is an error callback. If the browser does support
getUserMedia (), but the user doesn’t allow the browser to access the
camera, this function will run and print out a specific error message:

else {
alert ('Sorry, the browser you are using doesn\'t support
getUserMedia') ;
return;

iz

2 70 Part V: JavaScript and HTML5

Figure 17-8:
Success!
The browser
is displaying
live video
without a
plugin.

The preceding code is the else condition. If the user’s browser doesn’t sup-
port getUserMedia (), this alert will be displayed:

If the user’s browser does support getUserMedia, the user has a camera,
and they allow the app to access the camera, the app will display live video
in the browser window, as shown in Figure 17-8.

/1) Getthe Media ® x|

mn | x

<« C A) www.codingjsfordummies.com/code/chi7/listing17-3.htrmi [

Screenshot taken L
=] click o view

Cony to clipboard

Chapter 18
|Query

In This Chapter
Understanding jQuery
Selecting elements

Creating animations and transitions with jQuery

“It’s best to have your tools with you. If you don’t, you're apt to find
something you didn’t expect and get discouraged.”

— Stephen King

Query is the most popular JavaScript framework around and is used by

nearly every JavaScript programmer in order to speed up and simplify
JavaScript development. In this chapter, you discover the basics of jQuery
and see why it’s so popular.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Writing More and Doing Less

jQuery is currently used by more than 61 percent of the top 100,000 websites.
It’s so widely used that many people see it as an essential tool for doing
JavaScript coding.

jQuery smoothes out some of the rough spots in JavaScript, such as problems
with browser compatibilities, and makes selecting and changing parts of an
HTML document easier. jQuery also includes some tools that you can use to
add animation and interactivity to your web pages.

The basics of jQuery are easy to learn once you know JavaScript.

272 Partv:JavaScript and HTMLS

Getting Started with jOuery

\\J

QWING!

To get started with jQuery, you first need to include the jQuery library in
your web pages. The easiest way to do this is to use a version hosted on a
content delivery network (CDN). The other method for including jQuery is
to download the library from the jQuery website and host it on your server.
Listing 18-1 shows markup for a simple web page that includes jQuery.

Google has hosted versions of many different JavaScript libraries, and
you can find links and include tags for them at http://developers
.google.com/speed/library.

Once you’ve found a link for a CDN-hosted version, include it between your
<head> and </head> tags in every page that will use jQuery functionality.

There are currently two branches of jQuery: the 1.x branch and the
2.xbranch. The difference between the latest versions of the 1.xbranch and
the latest versions of the 2.xbranch is that the 1.xbranch works in Internet
Explorer 6-8, while the 2.xbranch had eliminated support for these old and
buggy browsers.

Listing 18-1: Your First Web Page with jQuery

<html>
<head>
<title>Hello JQuery</title>
<style>
#helloDiv {
background: #333;
color: #fff;
font-size: 24px;
text-align: center;
border-radius: 3px;
width: 200px;
height: 200px;
display: none;

</style>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></script>
</head>
<body>
<button id="clickme">Click me!</button>
<div id="helloDiv">Hello, JQuery!</div>

<scripts>
$("#clickme").click (function () {
if ($("#helloDiv").is(":hidden")) {

http://developers.google.com/speed/library
http://developers.google.com/speed/library

Chapter 18: jQuery 2 73

S("#helloDiv") .slideDown("slow") ;
} else {
$("div") .hide() ;

}
1)
</scripts>
</body>
</html>

The jOuery Object

All of jQuery’s functionality is enabled by the jQuery object. The jQuery
object can be referenced using two different methods: the jQuery keyword
or the $ alias. Both methods work exactly the same. The difference is that $ is
shorter, and so it’s become programmers' preferred method for using jQuery.

The basic syntax for using jQuery is the following:

S ("selector") .method () ;

The first part (in parentheses) indicates what elements you want to affect,
and the second part indicates what should be done to those elements.

In reality, jQuery statements often perform multiple actions on selected
elements by using a technique called chaining, which just attaches more
methods to the selector with additional periods. For example, in Listing 18-2,
chaining is used to first select a single element (with the ID of pageHeader)
and then to style it.

Listing 18-2: Using Chaining

<html>
<head>
<title>JQuery Chaining Example</title>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></script>
</head>
<body>
<div id="pageHeader"/>
<script type="text/javascript">

S ("#pageHeader") .text ("Hello, world!") .css("color",
"red") .css ("font-size",
"60pX") ;
</script>
</body>

</html>

2 74 Part V: JavaScript and HTML5

Chained jQuery methods can get pretty long and confusing after you put just
a couple of them together. However, keep in mind, JavaScript doesn’t really
care much about whitespace. It’s possible to reformat the chained statement
from Listing 18-2 into the following, much more readable, statement:

S ("#pageHeader")
.text ("Hello, world!")
.css("coloxr", "red")
.css("font-size", "60px");

Is Vour Document Ready?

jQuery has its own way to indicate that everything is loaded and ready to go:
the document ready event. To avoid errors caused by the DOM or jQuery
not being loaded when the scripts run, it’s important to use document ready,
unless you put all your jQuery at the very bottom of your HTML document
(as we do with Listing 18-1 and Listing 18-2.)

Here’s the syntax for using document ready:

$ (document) . ready (function () {

// jQuery methods go here.
1)

Any jQuery that you want to be executed upon loading of the page needs to
be inside of a document ready statement. Named functions can go outside of
document ready, of course, because they don’t run until they’re called.

Using jOuery Selectors

Unlike the complicated, and limited, means that JavaScript provides for
selecting elements, jQuery makes element selection simple. In jQuery, pro-
grammers can use the same techniques they use for selecting elements with
CSS. Table 18-1 lists the most frequently used jQuery and CSS selectors.

In addition to these basic selectors, you canmodify a section or combine

selections in many different ways. For example, to select the first p element
in a document, you can use

S('p:first')

Chapter 18: jQuery 2 75

Table 18-1 The Common jQuery/CSS Selectors
Selector HTML Example jQuery Example
element <p></p> S('p') .css
('font-size','12")
.class <p class="redtext"> $('.redtext') .css
</p>
#id <p id="intro"> S('#intro') .
</p> fadeIn('slow)

[attribute] <p data-role="content"> $('[data-role]"').
</p> show ()

To select the last p element, you can use
S('p:last')

To select the even numbered elements, you can use
S('li:even')

To select the odd numbered elements, you can use
$('li:odd")

To combine multiple selections, you can use commas. For example, the
following selector selects all the p, h1, h2, and h3 elements in a document.

$('p,hl,h2,h3")
You can selecteelements in many more ways with jQuery than with plain

JavaScript. To see a complete list, visit www.dummies.com/extras/
codingwithjavascript

Changing Things with jOuery

After you make a selection, the next step is to start changing some things.
The three main categories of things you can change with jQuery are attri-
butes, CSS, and elements.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

2 76 Part V: JavaScript and HTML5

Getting and setting attributes

The attr () method gives you access to attribute values. All that you need in
order to use attr () is the name of the attribute whose value you want to get
or set. In the following code, the attr () method is used to change the value
of the href attribute of an element with an id of "homepage-1link".

S ('a#thomepage-link') .attr('href') =
"http://www.codingjsfordummies.com/";

The result of running this statement is that the selected element’s href attri-
bute will be changed in the DOM to the new value. When a user clicks the
modified link, the browser will open the web page at the specified address,
rather than the one that was originally written in the img element.

kx‘Q,\J\BEII Modifying an element using jQuery changes only the element’s representa-
& tion in the DOM (and therefore on the user’ screen). jQuery doesn’t modify
the actual web page on the server, and if you view the source of the web
page, you won'’t see any changes.

Changing CSS

Changing CSS using jQuery is very similar to the technique we describe in
Chapter 13 for modifying the Style object’s properties. jQuery makes modify-
ing the style properties much easier than standard JavaScript, and the style
properties are spelled exactly the same as in CSS.

Listing 18-3 combines live CSS style changes with form events to give the user
control over how large the text is.

Listing 18-3: Manipulating Styles with jQuery

<html>
<head>
<title>JQuery CSS</title>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></scripts>
<script type="text/javascript"s>
$ (document) . ready (function () {

$('#sizer') .change (function() {

S('#theText') .css('font-size',$('#sizer') .val());
¥
1

Chapter 18: jQuery 2 7 7

</script>
</head>
<body>
<div id="theText">Hello!</div>
<form id="controller">
<input type="range" id="sizer" min="10" max="100">
</form>
</body>
</html>

Figure 18-1 shows the results of running Listing 18-3 in a browser.

EEES

Query CS8 %\

€« C M [wwweodingjsfordummiessy =

Hello!

Figure 18-1:
Changing
CSS with

aninput
element.
|

Manipulating elements in the DOM

jQuery features several methods for changing the content of element, moving
elements, adding element, removing elements, and much more. Table 18-2 lists
all the available methods for manipulating elements within the DOM.

Table 18-2 Manipulating Elements within the DOM
Method Description Example
text () Gets the combined text $('p') .text ('hello!")

content of the matched
elements, or sets the text
content of the matched
elements

(continued)

2 78 Part V: JavaScript and HTML5

Table 18-2 (continued)
Method Description Example
html () Get the value of the first $('div') .html ('<p>hi</p>")

matched element, or set
the contents of every
matched element

val ()

Get the value of the first
matched element, or set
the value of every
matched element

S('select#choices') .val ()

append ()

Insert content to the end
of the matched elements

S('div #closing') .append
('<p>Thank You</p>')

prepend ()

Insert content at the
beginning of the matched
elements

$('dive #introduction') .
prepend ('<p>To whom it
may concern:</p>")

before ()

Insert content before the
matched elements

S('#letter') .before
(header)

after ()

Insert content after the
matched elements

S('#letter') .after (footer)

remove ()

Remove the matched
elements

S (' .phonenumber') .remove ()

empty ()

Remove all of the child
nodes of the matched
elements

S('.blackout') .empty ()

Events

Chapter 11 discusses the different methods for registering event handlers in
JavaScript, which are all still perfectly valid in jQuery. However, jQuery has
its own syntax for registering event listeners and handling events.

jQuery’s event method, on (), handles all of the complexity of ensuring that
all browsers will handle events in the same way, and it also requires far less

typing than the pure JavaScript solutions.

Chapter 18: jQuery 2 79

Using on () to attach events

The jQuery on () method works in much the same way as addEvent
Listener (). It takes an event and a function definition as arguments. When
the event happens on the selected element (or elements), the function is
executed. Listing 18-4 uses on () and a jQuery selector to change the color
of every other row in a table when a button is clicked.

Listing 18-4: Changing Table Colors with the Click of a Button

<html>
<head>
<title>jQuery CSS</title>
<style>
td {
border: 1lpx solid black;

</style>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></script>
<script type="text/javascript"s>
$(document).ready(function(){

S('#colorizer') .on('click', function() {
S('#things tr:even') .css('background', 'yellow') ;

1)
1)

</scripts>
</head>
<body>
<table id="things">
<tr>
<td>iteml</td>
<tds>item2</td>
<tds>item3</td>
</tr>
<trs>
<td>apples</td>
<td>oranges</td>
<td>lemmons</td>
</tr>
<tr>
<td>merlot</td>
<tds>malbec</td>
<td>cabernet sauvignon</td>
</tr>

(continued)

280 Part V: JavaScript and HTML5

Listing 18-4 (continued)

</table>
<form id="tableControl">
<button type="button" id="colorizer">Colorize</button>
</form>
</body>
</html>

Figure 18-2 shows the alternating table colors after the button is clicked.

[Ney jQuery 33 " Chris

&« C f [www.codingjsfordummies.... o¢ =

iteml |[item2 |item3
apples|loranges||lemmons
merlot|[malbec |cabernet sauvignon

Colorize

|
Figure 18-2:
Alternating
table colors.
|

QP Do you notice something seemingly odd about the colorized rows in
Figure 18-2? The first and third rows of the table are colorized, but we told
jQuery to colorize the even numbered rows. The explanation is simple:
The even and odd determinations are based on the index number of the
tr elements, which always start with 0. So, the colorized ones are the first
(index number 0) and the third (index number 2).

Detaching with off ()

The of £ () method can be used to unregister a previously set event listener.
For example, if you want to disable the button in Listing 18-4 (maybe until the
user paid for the use of this feature), you use the following statement:

S('#colorizer') .off ('click') ;

Or, if you want to remove all event listeners on an element, you can do so by
calling off with no arguments:

S('colorizer') .off () ;

Chapter 18: jQuery 28’

Binding to events that don’t exist yet

With the dynamic nature of today’s web, you sometimes need to register
an event listener to an element that is created dynamically after the
HTML loads.

To add event listeners to elements that are created dynamically, you can
pass a selector that should be monitored for new elements to the on ()
method. For example, if you want to make sure that all rows, and all future
rows, in the table are clickable, you can use the following statement:

$ (document) .on('click', 'tr', function () {
alert ("Thanks for clicking!") ;

Other event methods

Besides on (), jQuery also has a simplified shortcut syntax for attaching event
listeners to selected elements. jQuery has methods with the same names as
the events that you can just pass the event handler to. For example, both of
these statements accomplish the same thing:

$ ('#myButton') .on('click', function()
alert ('Thanks!') ;

$ ('#myButton') .click (function() {
alert ('Thanks!') ;

Other shortcut event methods include

V¥ change ()
V¥ click()

v dblclick ()
V¥ focus ()

V¥ hover ()

V¥ keypress ()
V¥ load()

For a complete list of event methods, visit the jQuery website at
http://api.jquery.com/category/events.

http://api.jquery.com/category/events

282 Part V: JavaScript and HTML5

Effects

NG/
&

jQuery makes a JavaScript programmer’s life much easier. It even makes
simple animations and effects easier.

jQuery effects are so simple that they're often overused. Once you see what
can be done and have played with each of the different variations, it would
probably be a good idea to build one web app that uses them all every time
any event happens. Then, delete this file and consider this urge to overuse
effects to be out of your system.

Basic effects

jQuery’s basic effects simply control whether selected elements are
displayed or not. The basic effects are

v hide (): The hide method hides the matched elements.

v show () : The show method shows the matched elements

v toggle (): The toggle method toggles between hiding and showing the
matched elements. If the matched element is hidden, toggle will cause it
to be shown. If it’s shown, toggle will cause it to be hidden.

Fading effects

You can transition selected elements between displaying and hiding by using
a fade effect. The fading effects are

v fadelIn(): The fadeIn method causes the matched element to fade
into view over a specified amount of time (become opaque).

v fadeoOut (): The fadeout method causes the matched element to fade
out over a specified amount of time (become transparent).

Vv fadeTo (): The fadeTo method can be used to adjust the opacity of ele-
ments to a specified level over a specified amount of time.

v fadeToggle (): The fadeToggle method fades matched elements in
or out over a specified amount of time.

Chapter 18: jQuery 283

Sliding effects

The sliding effects transition selected elements between showing and hiding
by using an animated slide effect. The sliding effects are

v slideDown (): The sildeDown method displays the matched elements
with an upward sliding motion.

v s1ideUp (): The s1ideUp method hides the matched elements with an
upward sliding motion.

V¥ slideToggle (): The slideToggle method toggles between sliding up
and sliding down.

Setting arguments for animation methods

Each of the jQuery animation methods has a set of optional arguments that
control the details of how the animation takes places and when.

The arguments of the basic, sliding and fading methods are
v duration: Duration is a numeric value indicating how long (in millisec-

onds) the animation should take.

v easing: Easing is a string value telling what easing function should be
used to do the animation. An easing function determines how the ele-
ment animates. For example, it may start slow and speed up or start fast
and slow down. jQuery has two easing functions built-in:

¢ swing (default): Progress slightly lower at the beginning and end
than in the middle.

® linear: Progress at a constant rate through the animation.

v complete: The complete argument specifies a function to execute
when the current animation is finished.

Custom effects with animate ()

The animate method performs a custom animation of CSS properties. To
specify the animation, you pass a set of properties to the animate method.
When it runs, the animation will move toward the values you set for each

284 partv: JavaScript and HTMLS

property. For example, to animate increasing with width and color of a div,
you could use this statement:

('div #myDiv') .animate (
width: 800,

color: 'blue'
}, 5000) ;

In addition to the required CSS properties argument, the animate method
takes the same optional arguments as the other animation methods.

Playing with jQuery animations
Listing 18-5 implements several of the jQuery animation methods. Try chang-

ing values and experimenting with the different settings for each of these
methods and see what you come up with!

Listing 18-5 Fun with jQuery Animations

<html>
<head>
<title>JQuery CSS</title>
<style>
td {
border: 1lpx solid black;

</style>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></script>
<script type="text/javascript"s>
// wait for the DOM to be ready
$(document).ready(function(){
// when the animator button is clicked, start doing
things
S('#animator') .on('click', function () {
S('#items') .fadeToggle (200) ;
S('#fruits') .slideUp (500) ;
$('#wines').toggle(400,‘swing',function(){
S('#wines') .toggle (400, 'swing') ;
1)
$('hl') .hide() ;
$('hl').slideDown (1000) .animate ({
'color': 'red',
'font-size': '100px'},1000), ;
1)
1)

</scripts>

Chapter 18: jQuery 285

</head>
<body>
<hl>Here are a bunch of things!</hl>
<table id="things">
<tr id="items">
<tds>iteml</td>
<td>item2</td>
<td>item3</td>
</tr>
<tr id="fruits">
<td>apples</td>
<td>oranges</td>
<td>lemmons</td>
</tr>
<tr id="wines">
<td>merlot</td>
<td>malbec</td>
<td>cabernet sauvignon</td>
</tr>
</table>
<form id="tableControl">
<button type="button" id="animator">Animate
Stuff!</buttons>
</form>
</body>
</html>

AJAX

One of the most useful things about jQuery is how it simplifies AJAX and
makes working with external data easier.

Chapter 16, discusses AJAX, the technique of loading new data into a web
page without refreshing the page. It also covers how to use JSON data in
JavaScript.

Using the ajax () method

At the head of jQuery's AJAX capabilities lies the ajax () method. The

ajax () method is the low-level way to send and retrieve data from an exter-
nal file. At its most simple, the AJAX method can take just a filename or URL
as an argument, and it will load the indicated file. Your script can then assign
the content of that file to a variable.

286 Part V: JavaScript and HTML5

You can also specify many different options about how the external URL
should be called and loaded, and you can set functions that should run if the
request succeeds or fails.

For a complete list of the optional arguments of the ajax () method, visit
http://api.jquery.com/jQuery.ajax.

In Listing 18-6, the script opens a text file containing a paragraph of text and
displays that text inside of a div element.

Listing 18-6: Loading and Displaying an External File with jQuery
and AJAX

<html>
<head>
<title>Dynamic Introduction</title>
<script src="http://code.jquery.com/jquery-
1.11.2.min.js"></script>
<scripts>
// wait until everything is loaded
$ (document) . ready (function () {
// when the button is clicked
$('#loadIt') .on('click', function ()
// get the value of the select and add .txt to it
var fileTolLoad = S$('#intros') .val() + '.txt';
// open that file
$.ajax ({url:fileToLoad, success:function (result) {
// 1f successful with opening, display the file
contents
S('#introtext') .html (result) ;

1
1) ;
1)

</scripts>
</head>
<body>
<hl>Select the type of introduction you would like:</hl>
<form id="intro-select">
<select id="intros">
<option value="none">Please Select</optionx>
<option value="formal">Formal</option>
<option value="friendly">Friendly</options>
<option value="piglatin">Piglatin</option>

</select>
<button id="loadIt" type="button"sLoad It!</button>
</form>
<div id="introtext"s></divs>
</body>

</html>

http://api.jquery.com/jQuery.ajax

Chapter 18: jQuery 28 7

\NG/
Vg‘\\

If you try to run Listing 18-6 on your local computer, you’ll run into the
browser security restriction called same-origin policy, which won’t allow data
to load via AJAX unless it’s loading from the same domain (see Chapter 16).
To try out this example, visit http://www.codingjsfor
dummies.com/extras/coding with javascript, upload it to your own
web server, or disable your browsers security restrictions.

Shorthand AJAX methods

jQuery also has several shorthand methods for handling AJAX. The syntax for
these is simplified because they’re designed for specific tasks. The shorthand
AJAX methods are as follows:

v .get () loads data from a server using an HTTP GET request.

V* .getJSON () loads JSON data from a server using an HTTP GET request.

v .getScript () loads a JavaScript file from a server using an HTTP GET
request and then executes it.

v .post () loads data from a server and place the returned HTML into the
matched element.

To use the shorthand methods, you can pass them a URL and, optionally,
a success handler. For example, to get a file from a server using the get ()
method and then insert it into the page, you can do the following:

$.get ("getdata.html", function(data) {
S(".result").html(data);

1

The preceding example is equivalent to the following full .ajax () statement:

$.ajax ({

url: getdata.html,

success: function(data) {
S(".result").html(data);
!

1

The savings in effort isn’t enormous in this example. With more complex
AJAX requests, learning and using the shorthand AJAX can result in more
understandable and concise code.

http://www.codingjsfordummies.com/extras/coding%20with%20javascript
http://www.codingjsfordummies.com/extras/coding%20with%20javascript
http://www.codingjsfordummies.com/extras/coding

288 PartV: JavaScript and HTMLS

Part Vi
The Part of Tens

web— Enjoy an additional Part of Tens chapter at www . dummies . com/extras/
YRy codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

In this part . . .

Figure out which ten JavaScript frameworks and libraries to
learn next.

Discover ten common JavaScript bugs and how to avoid
them.

Take advantage of ten online tools that help you write better
JavaScript.

Enjoy an additional Part of Tens chapter at www . dummies.
com/extras/codingwithjavascript.

http://www.dummies.com/extras/codingwithjavascript
http://www.dummies.com/extras/codingwithjavascript

Chapter 19

Ten JavaScript Frameworks
and Libraries to Learn Next

In This Chapter
Discovering some popular JavaScript frameworks and libraries
Seeing what sites are using what frameworks and libraries

“I am hitting my head against the walls, but the walls are giving way.”

— Gustav Mahler

ou've only just begun your JavaScript journey. The universe of tools,
frameworks, and libraries built with JavaScript and that will help you
write better JavaScript programs is vast and growing at a mind-boggling pace.

In this chapter, we list ten of our favorite JavaScript frameworks and libraries.
You don’t need to learn them all, but a familiarity with all of them and profi-
ciency in a couple will help you tremendously in your JavaScript voyage.

Each of these tools has a loyal base of users, fans, and people who contribute
to it. Under each tool, we list a few of the most well-known sites that use it.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

Angular]S

Angular JS, commonly referred to as Angular, is an open source JavaScript
application framework (see Figure 19-1). Often confused with a library
because of its lightweight design, Angular JS is maintained by Google and the
community of developers.

292 Partvi: The Part of Tens

Figure 19-1:
http://
angularjs.
org.
—

NGULARJS

vy Google

HTML enhanced for web apps!

& View on GitHub % Download ¢ 22

Fallow +AngularJs on [841 raa W Follow @angularjs | SOEK folowers | W Tweet (4,023

’@’ Learn Angular in your rowser for free|

October 22nd-23rd, 2014
n g-e u ro p E Joinus in Paris, France in October for the first official AngulardS
Euroean conference.

Buy Tickets More Info

Why AngularJ8? Alternatives Extensibility

HTML s great for declaring static documents, but f Other fiamewaiks dealwith HTML's shartcomings AngulardS is & toolset for buliding the framework

falters when we try 10 use it for declating dynamic by either abstracting away HTML, CSS, andfor Fhast suiled to your application Gevelopment. 1 is -

The framework adapts and extends traditional HTML to serve dynamic
content through two-way data-bindings that allow for the automatic syn-
chronization of models (data) and views (web pages). As a result, AngularJS
de-emphasizes DOM manipulation with the goal of improving testability and

performance.
Angular’s design goals are to
v Improve testability of the code by separating DOM manipulation from
application logic.
v Emphasize the testing of code just as much as the writing of code.

v Create separation between the client-side of the application and the
server side.

v Provide structure for the application building process, from designing to
the Ul through writing logic to testing.

Who uses it? YouTube.com, Lynda.com, Netflix.com, and freelancer.com.

http://angularjs.org
http://angularjs.org
http://angularjs.org

Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 2 93

Backbone.js

|
Figure 19-2:
http://
back
bonejs.
org.
|

Backbone.js, shown in Figure 19-2, is an open source MVC JavaScript library
designed for building single-page web apps. Developing web apps with
Backbone gives your app structure and enforces the very good principle that
communication with the server should be done through a RESTful API.

The result of using Backbone is that your code will be more modular, and
you’ll be able to build and keep track of very complicated web apps with
minimal code and in an organized way.

Backbone only has one dependency (underscore.js) and adds very minimal
load to your web app.

Who uses it? reddit.com, bitbucket.org, tumblr.com, pintrest.com, and
linkedin.com.

|}/ B adbonejs * o[E] X

<« C fi [backbonejs.org &

Backbone.s .12

romenr ﬁ BACKBONE.JS

Introduction

radin
Uograding Backbone s gives structure to web applications by providing models with key-value
Events bineling and custom events, collections with a rich API of enumerable funetions,
o views with declarative event handling, and connects it all to your exsting API over a
—off RESTful JSON Interface.
— gz
et The project is hosted on Gitth, and the annotated sowee code is available, s well as
— stopListering. an online test suite, an example application, a list of tutorials and @ long list of reak-
i Wil rojEats that Use Backbone. Backbone 15 avallanle 1o LSe Under te wT
- Catalg of Bultin Fuents :

software license

Model
—entend You can report bugs and discuss fealures on the GitHub issues page, on Freenode

- constrstor fatises IRC N the #decunentcloud Channel, post guestons to the Gongle Group, aod pages

ot
- to the iki or send tweets to @documenteloud
[
_“:;t Backnone is an open-source component of Lo
—elaas
-ia
e Downloads & Dependencies pin cic, anduse sae asy
— atetes
- chamged
aepmlte Development Version (1.1.2) [apyp e R e
o
T Production Version (1.1.2) |EEECRCECREatp TRl
T (3ource hizp)
— deteny
— Undenscore Methods (6) Edge Yersion (master) Unrefeased] Use &t your own st
wkidite
— validationErroy
it
et Backbone's only hard dependency is Underscore s ¢ = 1.50). For RESTHul persistence,
R
pue RiStary SUPROT vi3 BCKRa Nz ROUter ho DOM manipulation wih ke vies,
o inclurle jOuery, and json2.js for alder Internet Explorer support. (Mimias of the
’:J‘:’h . Undersoore and [Query APJS, such as Lo-Dash and ZE0io, wil afso [end o work, with
- s
ettt varying ciegrees of compatibliiy)

J—
- previcushttbnte:

Collection Introduction

http://backbonejs.org
http://backbonejs.org
http://backbonejs.org
http://backbonejs.org

294 Partvi:The Part of Tens

Ember.js

Ember.js is one of the older MVC JavaScript frameworks, with roots going
way back to 2007. Ember, shown in Figure 19-3, calls itself “a framework for
creating ambitious web applications.” Like many of the other frameworks
described in this chapter, it’s based on the MVC software architecture pat-
tern. Like Backbone, it’s designed for creating single-page web applications.

Ember has a reputation for having a steep learning curve. However, once you
know it, the benefits of using Ember are many. Ember is designed to favor
convention over configuration. What this means for Ember developers is that
if they write code according to Ember’s normal practices, Ember will infer
much of the configuration of the app, rather than requiring the developer to
specify everything about the app manually. This can be a great timesaver.

Who uses it? digitalocean.com, vine.co, nbcnews.com, twitch.tv, and
mediabistro.com.

[0 T Emberjs - Aframewort x _ =3 el

GUIDES APl COMMUNITY BLOG BUILDS

mBARD! A framework for creating
ambitious web applications

DOWNLOAD THE STARTER KIT

1.8.0: production (min + gzip 97kh) | debiug | Handlebars | packages

wrotow gemvene e on [

MORE PRODUCTIVE OUT OF THE BOX.

Write dramatically [ess code with

e " Dot waste bine making lrivial EMBer s is buill for procuctivity
— Embess Handiebars e ated choices Ember js incarporates Designed with developer
(g L5 e “_ﬂ““lé common idioms 50 you can facus Ergonomics in mind. its friendly
. autmaricatywhen thelLaderying o what makes your app special, APl Nelp you getyour job done—
Flgure 19_3 datz changes. not reinventing the wheel fast
emberjs.
com.

| AUTO-UPDATING HANDLEBARS TEMPLATES =

http://emberjs.com
http://emberjs.com
http://emberjs.com

Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 2 9 5

Famo.us

|
Figure 19-4:
http://
famo.us.

Famo.us, shown in Figure 19-4, is an open source JavaScript framework for
creating complex user interfaces for any screen. It has a 3D rendering engine
built into it, which makes it possible for developers to write JavaScript code
that can move objects around the browser in 3D and to create effects and
interfaces that previously were only available in native software applications.
The result is that web apps created with Famo.us can be much faster and
work much more smoothly than web apps built using just HTML5, CSS3, and

JavaScript.

Who uses it? InkaBinka.com, SuperStereo, Requested App, and Japan Today.

L1 @Famous *

€ = C A [femous

THE ULTIMATE WEB PLATFORM FOR

DEVELOPERS AND DESIGNERS

Email Addiess Gel Updates

5355 Stare 53 734 Forks S Follow @hefamous - 36 81 foll ourers

What is Famo.us? Build your career Never stop learning
Fameus is the only JausScript Choesing 2 development platform is Getting started is sasy. Farmo.us
framework thatincludes an open more than justa technical decision-it's University will teach you to code in
source 30 layout angine fully 5 carser decision. Whather you're 3 Farmno.us with lessons, lve cods
intagrated with 3 3D physics animation seasonad developer expanding your examples, and real app projects. And

skills, s designer looking to bring your the Famo,us community is s lways here

=ngine thet can rendsr 1o

http://famo.us.
http://famo.us.

296 Part VI: The Part of Tens

Knockout

Knockout, shown in Figure 19-5, is an open source JavaScript framework for
simplifying dynamic JavaScript user interfaces. It uses the Model-View-View-

Model pattern.
Knockout includes

v Declarative bindings

v Automatic User Interface Refresh (the Ul updates automatically when
data changes)

v Dependency tracking

v Templating

Who uses it? mlb.com, ancestry.com, Eventbrite.com, and ameritrade.com.

E / @ Knockaut : Home =

€« C M [knockoutjs.com

Download/ Install Tutorials Live examples Documentation Forum Source

Dowvnload
o

Key concepts

O @ O D

Automatic Ul Refresh Dependency Tracking
Quickly generats sophisticated.

Declarative Bindings
WhER your data model's state Impalicitly set up chains of
relationships betwsen model data, nested Uls as 3 function of your
model data

Easlly associats DOM elements
with model data Using a concise, changes, your Ul Updates
readable syitax automatically to transform and combine it

New: Interactive tutorials

More features
Get started with knockout js quickly, leaming to build singls-page sppications,

Free, open source (MIT license:
0t (MIT license) CuSIom DINGINGS aNd MOFE with these interactive wionzis

& Pure JavaScript — works with any web framewnrk

Small & lightweight — 5dko minified
reduces to 20kb when usiag HTTE compression X
Live example

| & Nodependencies

- @ Supports all mainstream browsers, even ancient ones D

Fi gure 1 9-5 1E 6%, Firefox 3 6%, Chrome, Opers, Safan (desktopdmobite)
http . // Fully documented
° AP docs, live examples, and interactive tuiorials included
knockoutjs. Source code:
com.

Get started

Choose alicket class: Choose... v | Clear

http://knockoutjs.com
http://knockoutjs.com
http://knockoutjs.com

Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 2 9 7

OUnit

QUnit (see Figure 19-6) is a unit testing framework for JavaScript, which is
used by many open source JavaScript projects, including jQuery. It can test
any generic JavaScript code and is known for being powerful as well as easy

Figure 19-6:
http://
qunitijs.
com.
|

to use.

Who uses it? jQuery, jQuery Ul, jQuery Mobile, sitepoint.com, and many

JavaScript developers.

x

[}/ @aunit =
€ C f

C 9 ™ D w

[qunitjs.com

a. QUnit

js unit testing

Home IntrotoUnitTesting APIDocumentation Cookbook Plugins

GV ASTRIP B iaetd

S 2014 18-20

QUnit: A JavaScript Unit Testing framework.

What is QUnit?

QUnit is & powerful, easy-to-use JavaScript unit testing framework. It's used
by the jQuery, jQuery Ul and jQuery Mabile projects and is capable of testing
any generic JavaScript code, including itself

Getting Started

A minirel QU TSt setup:

1
2
3
4
5 <title>QUnit Exampla</titles
6
7
8

<link rel='stylesheat! hraf=!//code.jquery. com/qunit/ql
<fhaad?
<body >

Fd=Ngqunit-Fixturals</div>
Jcode. jquery . com/qunit/qunit-1.15.0.35" ¢

asts.95'>¢/script>

13 | </bady>

14 | </html>

The contents of tests js:

1| Qunit.test("hello test”, function(assert) {
2| assert.ok(1 == "1", "Passad!" };
31

The result,

underscore.js

Underscore (see Figure 19-7) is a JavaScript library that provides many
useful helper functions to programmers. Once you start using the features of
Underscore, you'll wonder how you ever got by without them.

Download
Qnit is available from the |Query CON hosted by MaxCOM

Current Release - v1.15.0

i1 1500z
qunit-1 150 css

Changelog

MM npm instsll e-dev qunitis

Bower bower install --save-dev qunit

To test the latest features and hug fixes to QUL a version automatically
generated frorn the latest commit to the QlUnit Git repository is also available for
use

Qunitgitjs

qunit-gitcss

Learn More

Check out the AP documentation o the Cookhook to learm how to use QUnit
To see more examples, check out the unit tests of jQuery. [Query Ul or the
Queny Validanon Plgin

For custom assertions, reporters and themes, check out official and third-party
plugins

http://qunitjs.com
http://qunitjs.com
http://qunitjs.com

298 Partvi: The Part of Tens

o . Y =y [e
L _ underscorejs <\

« C f [underscorejs.org

e | UNDERSCORE,JS

» Underseore-comtsi

Introduction
Underscore is a JavaScript library that provides a wholg mess of useful functional
Collections programming nelpers winout exending arty bult-in objects. s the answer ta the
weach quEstion: *If | sit down in ot of 2 blank HTML page, and wank o start being productive
e immediately, what do | need2* .. and the tie to go along with jQuery's tux and
s .
e Backbone's suspenders.
-fud
e Underscore provides over 100 functions that support beth your favorite workaday
R functional helpers: map, filter, invoke — as well s more specialized goodies: function
- e
Tt e binding. javascript templating, creating quick INdexes, deep equality t2stng, and 50 on
s
~some A complets Test Sute is included for your perusal
cartin
:‘m:f‘ You may also read through the znnolated source code
- i Enjaying Underscore, and want to tum it wa o 147 Try Underscore-contrig
soriBy
“;’“”g; The praject is hosted on GitHub. Yiou c2n repart bugs and discuss featurss on the
comiBy ssues pzge, o on Freenade in the #dacunentelous channel
rangle Undlerseore s an 0pen-sourte componeni of CocumentGioud,
toliany
partition
Downloads ight-ciics, anduse * save As')
Arrays
Bt Development Version (1.70) 46kb, U with Plertitul Corments
instia]
I nat Production Version (1 701 & 2k, Minified! and Ginped (inuree Mar)
et
Figure 19-7: ot Ecge version Unveleased] cument master | USE ot your own risk
ht tp . / / Installation
under o= + Nodejs pn fnstats underscere
. - ohject -
scorejs. B o Requirejs requirs(("uncerscore’], ...
latlndeOF o BOWer bower install underscore
com. - somtedlndes
- g o Compeonent component install Jashkenasfunderscore
| Funetinne L -

Examples of Underscore helpers include sortBy (for sorting lists), groupBy
(for grouping a collection into sets), contains (returns true if a list contains

a specified value), shuffle (returns a shuffled copy of a list), and around 100
other functions — many of which should have been built into JavaScript from
the beginning.

Who uses it? dropbox.com, lifehacker.com, theverge.com, att.com, and
gawker.com.

Modernizy

Modernizr, shown in Figure 19-8, is a JavaScript library for detecting the fea-
tures of a web browser in which it’s running. It’s most often used as a very
simple and handy way to check whether a user’s browser can run a particu-
lar bit of JavaScript or make use of an API prior to attempting to use that fea-
ture. Modernizr is often used in conjunction with tools called Polyfills, which
provide alternative ways to accomplish cutting-edge features of modern
browsers in less-capable devices and browsers.

http://underscorejs.com
http://underscorejs.com
http://underscorejs.com
http://underscorejs.com

Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 2 9 9

[) A vodemizr: the festure = |

<« C # [1 modernizr.com

Modernizr is a JavaScript ibrary
that detects HTMLS and CSS3

featuresin the user's browser.

‘Why use Modernizr?

Taking advartage of ¢ool new web technologies
is greet fun, unul you have to support browsers
thatIag behind. Modernizs mekes it easy for you
10 write conditional JevaScript o €

hondle each siuation. whether
supports o feature ar ot It's perfect far doing
progressive enhancement easily

How it works

Madernizr runs quickly on page losd to detect
femwres: it then creates o JavaScript object with
the resulis. 2nd adds classes to the html
element for you to key your CS5 on. Madernizr
supports dozens of tests, and optionally
includes Yephope js for conditians! loading of
external Js and .css resources

Check out the full lis1 of features that Modernizr

detects. or learn more shor

esource loading with Moder

——
Figure 19-8:
http://
modernizr.
com.
——

useD BY &

Google Microsoft :

“An indispensable tool.”
— Briice Bowman, &, produdt mangger, Edg€ Tools & Services

4% DEVELOPMENT
P

o PROCUCTION |

nto the Production build tool
eed!

Get started with Modernizr

While Modermizr gives you finer cantrol over the experience through JavaScript-
driven feature detection, it is impertant to continue to use best practices
throughout your development process. Use progressive enhancement
wherever you can, and don't sacrfice accessibiliy for convenience or
performance

» Taking Advaniage of HTMLS and CSS3 with Modernizr, Fasuk Ateg

« How Inoyail de Leén

Alsa check out our Resou

Tip: chieck our Modernizr 165 suile 10 quickly Lest your current brawser's
fealras.

HTML

s Abaut.com

Alex Sexton
Developer

Fallow us on Twiter
Contribute on GitHub
Subscribe with RSS

Donate to Modernize

Latest news
Ape 20, 2013

Modernize 3, Stickers & Diversity
News on v.3. stickers, and o
message from the 1eom.

PREVIOUS

Janusry 7. 2013

Modernize Policy on Browser Bugs
ans Feature Datects

September dih, 2012

Modernizr 2.6.2 releazes

Juy 19en, 3012

Modernize 2.6 released

Who uses it? go.com, about.com, hostgator.com, addthis.com, and

usatoday.com.

Handlebars.js

Handlebars, shown in Figure 19-9, is a client-side JavaScript templating
engine. It makes it possible for programmers to insert templates into HTML
pages that will be parsed using live data that is passed to the Handlebars.js

function.

Who uses it? meetup.com, mashable.com, flickr.com, wired.com, and

overstock.com.

http://modernizr.com
http://modernizr.com
http://modernizr.com

300 partvi: The Part of Tens

[prre— R

€ - C #f [Jhandebarsjscom & =

handlebars

Handlebars provides the power necessary to let you build semantic templates
effectively with no frustration.

Handlebars is largely compatible with P In mest cases it is possible to
swap out Mustache with Handlebars and continue using your current templates.
Complete details can be found here.

Download: 2.0.0

Download: mintime-2.0.0

Getting Started

Handlebars templates look like regular HTML, with embedded handlebars expressions.

I
. " Ahanglebars expression Is a [{{ . some contents, followed by a [1}
Figure 19-9:

http://
hand

lebarsjs.
com.

You can deliver a template 1o the browser by including itina Kscript> tag.

jQuery

JQuery (see Figure 19-10) is the “Write Less, Do More” JavaScript library.
Used by over 60 percent of the most popular sites on the web, it has become
an indispensable tool for most JavaScript programmers. Just a few of the
things that jQuery makes easier include document manipulation, event han-
dling, animation, and Ajax.

In addition, jQuery has a plug-in architecture that allows other developers to
build upon the core jQuery functionality in order to create new libraries and
frameworks.

Some of the most popular jQuery plugins include jQuery Ul, jQuery
Mobile, numerous effects, data pickers, image manipulation tools, and
image sliders. You can find a complete list of available jQuery plugins at
http://plugins.jquery.com.

Who uses it? WordPress.com, Pinterest, Amazon, Microsoft.com, Etsy, and
many, many more.

http://plugins.jquery.com
http://handlebarsjs.com
http://handlebarsjs.com
http://handlebarsjs.com
http://handlebarsjs.com

Chapter 19: Ten JavaScript Frameworks and Libraries to Learn Next 30 ’

900 /&iouery x Chris
< C A [jquery.com

" - DOWNLOAD FREE VIRTUAL MACHINES
(& J ue{ it e

write less, do more. | modern.IE

Download APIDocumentation Blog Plugins Browser Support

. ' _Download
@ jQuery

viil.2 orv2.1.3

Lightweight €SS3 Compliant

Cross-Browser
Footprint S 2

i Resources
— What is jQuery?
jQuery Core API
Figure 19_10 jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML Documentation
R document traversal and manipulation, event handling, animation, and Ajax much simpler Q L ina Cant
http : / / with an easy-to-use API that works across a multitude of browsers. With a combination of S o —
j query versatility and extensibility, jQuery has changed the way that millions of people write JQuery Blog
° JavaScript. Contribute to jQuery
com About the jQuery Foundation
— Corporate Members

o PR o

http://jquery.com

302 Partvi: The Part of Tens

Chapter 20

Ten Common JavaScript Bugs
and How to Avoid Them

In This Chapter
Catching mismatched brackets
Steering clear of incorrect punctuation
Fixing errors

Adjusting bad variable names

“Have no fear of perfection — you’ll never reach it”

— Salvador Dali

Even the best JavaScript programmers make mistakes. Sometimes, these
mistakes cause your program to not produce the results that you wanted,
and sometimes they cause the program to not run at all. Any problem

that causes a program not to run or not to run as expected is called a bug.
Throughout this book, we give you tips and tools for finding and correcting
bugs as they come up.

Part of becoming a better programmer is to be able to identify potential
sources of bugs and stomp them out faster and earlier. Eventually, you'll
start noticing that you make fewer and fewer mistakes and that beautiful bug-
free code flows from your fingertips on a regular basis. When this happens,
you’re well on your way to becoming a JavaScript ninja.

In this chapter, we point out ten common mistakes that JavaScript programmers
at all levels often make. We also give you pointers on how to prevent them.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

304 partvi The Part of Tens
Equality Confusion

Does x equal y? Is x true? The questions of equality are central to JavaScript
and can seem quite confusing. They revolve around three areas in JavaScript:
namely conditional statements and operators (if, &&, and so on), the equals
operator (==), and the strict equals operator (===).

To complicate our lives even more, the assignment operator (=) looks
suspiciously like what most of us call an equals sign. Don’t be fooled! Here’s a
quick rundown, with examples, of when each of =, ==, and === are appropriate
and useful.

Avoiding misuse of assignment

The assignment operator assigns the operand on the right to the operand on
the left. For example:

var a = 3;
This statement gives the new variable, named a, the value of 3.

An operand is anything in a program. Think of it as similar to a noun in
language, whereas operators (+, -, *, / and so on) are like verbs.

Assignment operators may also have expressions (sometimes quite
complicated expressions) on the right side, which are evaluated and then
assigned to the variable on the left.

A common mistake that beginners to the language make is to mistake
assignment for comparison — for example:

if (a=4){.. .}

This code won’t run as expected if what you expected is to compare the
value of a to the number 4.

Dodging the equals pitfalls
The equals operator (==) and its evil twin the not equals operator (! =) can
be quite flexible, but also quite dangerous. We recommend that you use it as

little as possible, if at all. Here’s why:

0 == '0"

Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 305

Everyone who'’s spent any time programming knows that a number inside of
quotes isn’t really a number. But the == operator considers them to be the
same, because it will make the two values the same type prior to comparing.
This can lead to all sorts of problems that are difficult to track down.

If you do want to compare a string with a number and get a result of true if
they appear the same, it’s much safer to do this explicitly as follows:

parselnt (0) === parselInt ("0")
This statement also evaluates to true, but there is no voodoo magic
involved. This brings us to our friends, the strict equals (===) and the strict

not equals (! ==). These guys will do exactly what you would expect. What
would you think would be the result of the following statement?

Correct! The two operands are clearly different types, and the result is false.

Mismatched Brackets

As a program becomes more complicated, and especially when you’re
working with JavaScript objects, the brackets start to pile up. You start to
see weird behaviors or cryptic errors in your JavaScript console.

Here’s a JavaScript object with mismatched brackets:

{

"status": "OK",

"results": [{
TiglPg 12,
"title": "Coding JavaScript For Dummies",
"author": "Chris Minnick and Eva Holland",

"publication date": "",
"summary short": "",

"link":
"type": "review",
Ilurl n . nn ,
"link text": "Read the New York Times Review
of Coding JavaScript For Dummies"
"awards": [{
"type": "Nobel Prize",
Ilurl n . nn ,

1]

306 Part VI: The Part of Tens

Can you see the problems here? It may take some counting and matching,
and if you don’t find it, you have a serious bug! When this happens, a good
code editor can be invaluable! Sublime Text has a feature that will show you
a brackets match (or at least what Sublime Text believes to be the match)
when you place your cursor next to either a starting or ending bracket, as
shown in Figure 20-1.

Figure 20-1:
Highlighting
matching
brackets

in Sublime
Text.
I Spaces: 4 JavaScript |

Mismatched Quotes

JavaScript allows you to use either single quotes or double quotes to define
strings. However, JavaScript is not at all flexible with the rule that you must
end your string with the same type of quote you started with. Also, look out
for quotes and apostrophes in strings that are the same characters as the
quotes surrounding the string! For example:

var movieName = "Popeye'; // error!
var welcomeMessage = 'Thank you, ' + firstName + ', let's
learn JavaScript!' // error!

Missing Parentheses

This error most often crops up in conditional statements, especially those in
which there are multiple conditions. Consider this example:

if (x > y) && (y < 1000)

Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 30 7

What we want to do here is check that both of the conditions are true.
However, there are actually three conditions at work here, and they all need
parentheses. What’s missing in the preceding example is the parentheses
around the big && condition, which says that both of the other conditions
must be true in order to proceed with the code between the brackets.

In order to be correct, this statement should read as follows:

if ((x > y) && (y < 1000)) {

Missing Semicolon

JavaScript statements should always end with a semicolon. However, if you
put each statement on its own line and leave off the semicolons, the code
will still run as if the semicolons are there. Even though the code still runs,
leaving off the semicolon can lead to problems when you rearrange code or
when two statements end up on the same line somehow.

The best way to avoid this error is to always use a semi-colon at the end of a
statement.

Capitalization Errors

JavaScript is case-sensitive. This means that the variables you create need
to be capitalized exactly the same every time you use them. It also means
that functions (including built-in JavaScript functions) need to be capitalized
correctly in order to work.

One of the most common places to see this error happen is with the
getElementByld method of the Document object. You would think that
it would be spelled getElementBy1D because that would make more
grammatical sense, but it isn’t correct!

Referencing Code Before It's Loaded

JavaScript code (that isn’t functions) normally loads and runs in the order
that it appears in a document. This can create problems if you reference
HTML that’s positioned later in the document from a script that’s in the head

308 Partvi: The Part of Tens

of the document. For example, Listing 20-1 shows a script that the author
intended to change the HTML between the start and end tags of an element
within the HTML document, and Figure 20-2 shows how this script results in
an error when previewed.

Listing 20-1: Watch Out for Referencing Code or Markup
Before It's Loaded

\<html>
<head>
<scripts>
document .getElementById ("myDiv") .innerHTML = "This div
is MY div";
</scripts>
</head>
<body>
<div id = "myDiv">This div is your div.</div>
</body>
</html>

This code will result in an error because at the time the JavaScript runs, the
browser doesn’t yet know about the div with the id = "myDiv" that comes
later in the web page.

ece | listing20-1.htmi %

< c N file:///Users/chris/Google%20Drive/WatzThis/Ceding%20JavaScript% 20F or%20Dummies/Chapter... 5.7 a A Q=

This div is your div

Q [Elements Network Sources Timeline Profiles Resources Audits | Console | o1 = O, x

®© ¥ <topframe> v [Preserve log

I | © > Uncaught TypeError: Cannot set property ‘innerHTML' of null WM289 1isting2e-1.htpl:d
>

Figure 20-2:
Referencing
HTML
before it

is loaded
resultsin an
error.
|

Figure 20-3:
Wait until
the HTML

is loaded
before
running the
script.
|

Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 309

In order to avoid this issue, you have a couple of options:

v Place your JavaScript at the bottom of your HTML file, right before
</body>.

v Put your JavaScript code into a function. Then you can call the function
using an onload event attribute in the starting body tag.

In Listing 20-2, we resolved the problem shown in Listing 20-1 using the
second method. Figure 20-3 shows the result when previewed in a web
browser.

Listing 20-2: Waiting Until the Page Is Finished Loading Before
Running the Script

<html>
<head>

<scripts>

function nameMyDiv () {

document .getElementById ("myDiv") .innerHTML = "This div

is MY div'";

}

</scripts>
</head>
<body onload = "nameMyDiv () ;">

<div id = "myDiv">This div is your div</div>
</body>
</html>
o0 e listing20-2.ntmi

C fN file://fUsers/chris/Google% 20Drive/WatzThis/Coding%20JavaScript%20For%20Dummies/Chapter... .7 a L Q=

This div is MY div

Q [] Elements Network Sources Timeline Profiles Resources Audits | Console | > f# O, x

© W <topframe> v [Preserve log

370 Partvi: The Part of Tens

Bad Variable Names

The rules of variable naming in JavaScript are covered in detail in Chapter 3.
One particularly hard-to-track-down rule is the prohibition against using
reserved words as variable names.

Interestingly, JavaScript has over 60 reserved words and many others that
you just shouldn’t use as variable names. Rather than memorizing all of
the reserved words, the best way to avoid these types of naming errors is
to simply come up with a more descriptive naming scheme that is highly
unlikely to ever cross paths with a reserved word.

For example, the word name is one of JavaScript’s reserved words. If you
get into the habit of being specific with what you’re naming, you’ll name
variables for storing things, such as firstName, lastName, dogName, and
nameOfTheWind; thus totally avoiding conflicts with reserved words.

Scope Errors

JavaScript has function scope and global scope. If you declare a variable
without using the var keyword, that variable will have global scope and will
be usable anywhere in your program. As we demonstrate in Chapter 3, the
results can be detrimental to your program. In order to avoid scope errors,
make sure to always use the var keyword to create new variables.

Missing Parameters in Function Calls

Whenever you create a function, you declare the number of parameters that
should be passed to that function when it’s called. Calling the wrong number
of functions won’t always result in an error in JavaScript, but it can produce
unexpected results if the code within the function requires parameters that
aren’t present.

Make sure to give your parameters descriptive names when you create a
function and double-check every time that a function is called in order to
make sure that the right number of parameters is passed.

Chapter 20: Ten Common JavaScript Bugs and How to Avoid Them 3 ’ ’

Counting Errors: Forgetting That
JavaScript Counts from 0

If you count to 10 in a JavaScript array, you’ll actually have 11 items
(see Figure 20-4). Never forget that the first item in an array has an index of 0.

var myArray = new Array () ;
myArray[10] = "List of 10 Common Mistakes";

myArray.length; // produces 11!

@[] Elements Network Sources Timeline Profiles Resources Audits | Censole |
® ¥ <topframe> v Preserve log

var myArray = new Array()

18] = “List of 18 Common Mistakes";
Common Mistakes"
ength;

Figure 20-4:
Forgetting
that
JavaScript
counts

from 0 can
lead to
unexpected
results.
|

31712 Partvi: The Part of Tens

Chapter 21

Ten Online Tools to Help You
Write Better JavaScript

In This Chapter
Cleaning up with JSLint
Playing with JSFiddle
Making it pretty with JSbeautifier

Making your JavaScript files smaller

“Never underestimate the power of a simple tool.”

— Craig Bruce

avaScript has more libraries, resources, and helpful tools for working
with it than for any other programming language. This chapter introduces
ten of the best resources for helping you write more and better JavaScript.

Don’t forget to visit the website to check out the online exercises relevant to
this chapter!

JSLint

JSLint, created by JavaScript super-genius Douglas Crockford, is a code
checker that is designed to tell you where your code has problems — and not
just the kind of problems that would generate errors.

JSLint, shown in Figure 21-1, will tell you about things that thousands of
JavaScript programmers do all the time, but that are problematic for one
reason or another. If your code passes JSLint’s tests, it’s probably some
pretty good code.

374 Partvi:The Part of Tens

The JavaScript Code Quality Tool
Edition 2014-07-08

JSLint)
|
. N, s options |
Figure 21-1: | | e o T e
JSLi L s (el assignment expressions || ““/" uniiteragtor in defun
it J " Coucnoa bitwise operatars J ncapitalized constructors.
shows you] consateaen,... contnue | dangieg _indeners
] Neteds dedugger statements] ++and
whereyour || =, e g
code has W s ntetonr e T s parametrs
problems. .
Maximum line length
| Mo boc ot

JSFiddle.net

JSFiddle, shown in Figure 21-2, is an online program for running web applica-
tions in a test environment. When you go to JSFiddle.net, the first thing you

see is a grid with four panes:

v One for HTML

v One for CSS

v One for JavaScript
» One for Results

Enter the appropriate type of code into any of the first three boxes and press
the Run button, and the results will be displayed in the Results pane.

Chapter 21: Ten Online Tools to Help You Write Better JavaScript 3 ’5

® 0@ et anowtiddie- JsF x | Chris

« C A (] jsfiddlenet i —

@ JSFIDDLE o > Run # Save <« TidyUp « JSHint & Collaboration Login/Sign up L
Frameworks & Extensions

No-Library (pure JS)

onLoad
Fiddle Options
External Resources
Languages

Ajax Requests

Legal, Credits and Links

Figure 21-2:
JSFiddle.
netisa
complete
JavaScript
playground.
|

3

With JSFiddle, you can even save your fiddles and email the urls to other
people to check out.

ISBin

JSBin (see Figure 21-3) is a code-sharing site that allows you to write code
while other people watch you. Whether you have exhibitionist tendencies,
you're teaching a junior developer, or you're collaborating with other
programmers on a project, the functionality in JSBin can be very helpful for
working out bugs, getting feedback, and sharing code.

3 ’ 6 Part VI: The Part of Tens

Figure 21-3:
Collaborate
with JSBin.

5

File ~ Add library

in</titler

® O ® /®sain- Cotaborative Jav X

€« Cfn jsbin.com/?html.output

rset="utf-g">

Pro features Blo

HTML

CSS JavaScript Console Output

Output

Recently on Twitter
“Additional linters for HTML, CSS &
CoffeeScript, changing output
permission for anon users & SSL for
pro users!” — @)s |

Login or Register Blog = Help

Run with JS Auto-run JS

javascriptcompressor.com

The smaller your JavaScript files are, the faster they’ll load. JavaScript
Compressor.com, shown in Figure 21-4, has a window where you can drop
your JavaScript. When you press Compress, a new version that’s function-
ally the same as your original code, but compressed, shows up in the lower
window. Not only does the compressed code take up less disk space and
bandwidth, it’s also obfuscated, to hide its inner secrets from prying eyes.

Chapter 21: Ten Online Tools to Help You Write Better JavaScript 3 ’ 7

® O ® [javascript Gomprassor Chris
S C' fi [} javascriptcompressor.com jrd =
-~ R
Javascript
compressor
Compress JavaScript Forums
Q
Onlir avascript compressc
Forums
avascript simpre
How can i quickly add semi-colons in
Paste your code: Howtouses Munction declarations
javascript disabled
With huge javascript files the
compressor's output.
Decode the javascript
Compressor does not work with Google
Chrome
View all discussions
Compress) { Clear Base62 encode () Shrink variables
SEQ Course
|
Flgure it ﬂ
Javascript-
compressor. Version 3.0, Algorithm author: Dean Edwards
com makes
files smaller.
©2004-2010 Javascript Compressor - Version 2.0
|

jsbeautifier.org

JSBeautifier (see Figure 21-5) is an online tool that takes your sloppy
JavaScript and makes it pretty. Some of the techniques that it uses to
beautify code include

v Inserting new lines

v Breaking lines of chained code

v Inserting spaces before conditional statements

v Making indentations standard throughout the script

318 Partvi: The Part of Tens

Figure 21-5:
Make

your code
pretty with
http://
jsbeau
tifier
.org.
|

® O ® /5 onine Javascript beawtine x

€« C fi [} jsbeautifierorg

Beautify, unpack or deobfuscate JavaScript and HTML, make JSONIJSONP readable, etc.
All of the source coda is complately fras and open, available
and we have a command-line version, python library and a r

Indent with 4 spaces

Allow 5 newlines batwesn tokans

Da not wrap lines

Braces with control statement
HTML <style>, <script= formatting:

‘Add one indent lavel

End script and siyle with newline?
Detect packers and obfuscators?

Keep anay indentation?

Break lines on chained methods?
Space before conditional: if(x)" 1 " (x)"

github under MIT licance
kage as well

Unescape printable chars encoded as NN or WNNNN?
Use JSLint-happy formaiting tweaks?

Use a simple textarea for code input?

o oooa

Beautify JavaScript or HTML

r real code (javaseript or HIML) here

}idelse(var a=b?(cudjsel£];}

Beautity JavaScript or HTML
Browser extensions and other uses Aatr

* A bookmarklet (drag it to your bookmarks) by Ichiro Hiroshi to see all scripts used on the page,

by Tom Rix
iot by Will McSweeney.

« Chrome: jsheaulify-for-chro

£ by T Micke!

pdoithys blog)

JavaScript RegEx generator

JavaScript Lab’s JavaScript RegEx Generator (www.jslab.dk/tools.
regex.php), shown in Figure 21-6, is a user-friendly form for pointing and
clicking your way to writing regular expressions. Simply click some buttons,
enter text to match, set some options, and your regular expression shows up
at the bottom.

http://www.jslab.dk/tools.regex.php
http://www.jslab.dk/tools.regex.php
http://jsbeautifier.org
http://jsbeautifier.org
http://jsbeautifier.org
http://jsbeautifier.org

Figure 21-6:
Point and
click regular
expressions.
|

Chapter 21: Ten Online Tools to Help You Write Better JavaScript

®
5

JavaScrip

Tools

Minify 15
Regex Generator
Plot Tool
1SON Formatter

Resources

t Lab
al sandbox]

® ' savascrpt Lan - Toots

C N www.jslab.dk/tools.regex.php

JavaScript Regex Generator (bc(2)

First attempt at making a user-friendly regex generator. A little buggy in IE. Currently Iimited to 7
groups and no support for negating character classes.

This seript runs on top of JDC 1,0.3 in Internet Bxplorer which is why it is executed siightly faster in
Firefox, Opera and Safari

For more info on regular expressions see Introduction to Reqular Expressions using JavaScript, Also
see the Table of Regexes from the article Validating Commen Form Input.

Group 1| add group

Mateh a string which contains B

Field 1 -
Free text K| Add field

©Exactly| 1 time(s)
1 or more times
Between 0 and 1 times
Any number of times (greedy)
Any number of times until next group (non-greedy)

Apply quantfier to ertire group
Group fields
Capture group

Global modifiers
Case-insensitive
Match across newlines (multiling)
Find all matches

Generated regular expression

Textual meaning of regular expression
Match 2 stiing which contains

SEO
Course

Achieve
Top
Search
Engine
Positions -
Still Time
to Join
January
Group!

Chris

319

JSONformatter

The JSON formatter and validator (http://jsonformatter.curious
concept . com), shown in Figure 21-7, allows you to paste in unformatted
JSON code, such as the code you would get from copying from the Chrome
Developer Tools. It then makes the code pretty and makes sure that it’s valid.

http://jsonformatter.curiousconcept.com
http://jsonformatter.curiousconcept.com

320 Partvi: The Part of Tens
® O @ /7 s0n Formatter & vallgar % | Chris
€« C i [} jsonformatter.curiousconcept.com W E

About Learn Bookmarklet Changelog Support Contact

FORMATTER -

JSO & VALIDATOR

JSON Data/URL
JSON Template
3 Space Tab

Validate JSON

Paste in JSON or a

URL and away you
go.

Process

|
Figure 21-7:
The JSON
formatter
validates and VIELL QIVEYOU" ST
arranges A NEW LIFE FmaNCIG AALABLE 5 |
JSON data.
|

jshint.com

JShint (see Figure 21-8) is a tool that helps you detect errors and potential
problems in your JavaScript. In addition, it will give you useful information

about your JavaScript code as you write it.

SCHICK(I?SHADEL

Chapter 21: Ten Online Tools to Help You Write Better JavaScript

ece JSHint, a JavaSeript Cod: X Chiis

C A [} jshint.com 7

Figure 21-8:
JShint
detects
problems
with your
code as you
write it.
|

Mozilla Developer Network

The Mozilla Developer Network’s JavaScript section (https://developer.
mozilla.org/en-US/docs/Web/JavaScript) is an essential resource

for information about everything having to do with JavaScript. Its JavaScript
resources, shown in Figure 21-9, include reference material, tutorials, articles,
and demos for programmers at every level.

321

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

322 Partvi: The Part of Tens

Figure 21-9:
Mozilla
Developer
Network

is one of

the best
JavaScript
references.
|

® 0 ® pyiavascrpt| Mon

x

JavaScript

« HIDE SIDEBAR
SEE ALSO

Javaseript

Tutarials:

¥ Intermediate

¥ Advanced
References:
¥ Builtin objects

¥ Expressions & operators

s & declarations

¥ New in JavaSeript

https://

€« C' A |£ Mozila Corporation [US]| https://developer.moxzilla.org/en-US/docs/Web/JavaScript
ant to help developers like you. Please give us 6 minutes to tell us what developer services you use: http:/mzl la/mdn-survey-services-2015g
v
=0 mozilla
MDN i
NETWORK ZONES = WEB PLATFORM + TOOLS DEMOS CONNECT Q
WMON > W avascript
bl LANGUAGES @ EDIT & &

Javascript® (often shortened to)S) Is a lightweight, interpreted, object-oriented language with = first-class functions,
most known as the scripting language for Web pages, but 2 used in many non-browser environments as well such as
node.js or = Apache CouchDB. It is a = prototype-based, multi-paradigm scripting language that is dynamic, and supports
object-oriented, imperative, and functional programming styles. Read more about JavaScript.

The Javascript standard is ECMASCript. As of 2012, all modern browsers fully support ECMASEript 5.1. Older browsers support at
least ECMAScript 3. A 6th major revision of the standard is in the works

This section of the site is dedicated to the JavaScript language itself, the parts that are not specific to Web pages, or other host
environments. For information about APIs specific to Web pages, please see Web APIs and DOM

JavaScript is not to be confused with the - Java programming |
U.S. and other countries.

ava is a trademark or registered trademark of Oracle in the

Tutorials

Learn how to program with JavaScript

Reference

Browse the complete JS reference documentation

Introductory

Standard objects

Fon.U

Douglas Crockford

Douglas Crockford is a hero to many JavaScript programmers. His website
(http://javascript.crockford. com), shown in Figure 21-10, has a great
collection of free videos on every aspect of JavaScript. These videos are
essential to a programmer who is looking to move past beginner and into the
more advanced levels of JavaScript expertise.

http://javascript.crockford.com

Chapter 21: Ten Online Tools to Help You Write Better JavaScript 323

® O ® /[pougias Crockiora's sava x chris

€« = C M [} javascript.crockford.com

—| JavaScr Et

Actual JavaScript Engine Performance

JavaScript: The Wrrrld's Most Misunderstood Programming Language (Chinese Crech French German ltalian Japanese Korean Portuguese Russian Serbian Spanish Turkish)
The World's Most Misunderstood Programming Language Has Become the World's Most Popular Programming Language (Chinese Spanish)
A Survey of the JavaScript Programming Language (Chinese Korean)

Code Conventions for the JavaScript Programming Language (Belorussian Chinese Russian)
The Little JavaScripter (ltalian)

Private Members in JavaScript (Chinese Hebrew Japanese Korean)

Profotypal Inheritance in JavaScript (Blorussian Spanish)

JavaScript and HTML Seript Tags (Chinese)

IScript Memory Leaks

Top Down Operator Precedence

The Elements of JavaScript Style, Parts One (Chinese) and TWO (Chinese)

Yahoo! User Interface Blog

Minification v. Obfuscation

Synchronous v. Asynchronous

with Statement Considered Harmful

Global Domination

Global Domination, Part Two

for in Intrigue

JavaScript, We Hardly new Ya

JSON and Browser Security

I'd Rather switch Than Fight!

The Only Thing We Have To Fear Is Premature Standardization

‘When You Can’t Count On Your Numbers
Strict Mode Is Coming To Town

Figure 21-10:
Douglas
Crockford's
Javascrlpt Jstint: The JavaScript Verifier (Documentation)
videos. 3sMin: The JavaScript Minifier
|

32/ Partvi: The Part of Tens

Index

o Symbols ®

- - (decrement) operator, 73
! (Not) logical operator, 77
! = (inequality) operator, 73
! = (not equals operator), 304-305
! == (strict inequality) operator, 73
% (modulus) operator, 73
& (Bitwise AND) operator, 76
&& (And) logical operator, 77
* (multiplication) operator, 73
/ (division) operator, 73
* (Bitwise XOR) operator, 76
| (Bitwise OR) operator, 76
| | (Or) logical operator, 77
~ (Bitwise NOT) operator, 76
+ (addition) operator, 73
++ (increment) operator, 73
< (less than) operator, 73
<< (left shift) bitwise operator, 76
<= (less than or equal to) operator, 73
= (assignment operator)
combining with other operators, 80
defined, 42
misuse of, 304
overview, 72
== (equals) operator, 73, 304-305
=== (strict equality) operator, 73, 305
> (greater than) operator, 73
>= (greater than or equal to) operator, 73
>> (sign-propagating right shift) bitwise
operator, 76
>>> (zero-fill right shift) bitwise
operator, 76

o/ o

abort event, 170
accept-charset attribute, form
element, 183

acceptCharset property, Form object, 187

accessing
array elements
looping, 63
methods, 64-66
overview, 62-63
properties, 63-64
audio and video with WebRTC API,
266-270
form elements, 190-191
accessKey property, Element object, 156
action attribute, form element, 182
action property, Form object, 187
addEventListener () method
Document object, 154
Element object, 158
handling events with, 174-178
addition (+) operator, 73
adoptNode () method, Document
object, 154
after () method, jQuery, 278
afterprint event, 171
AJAX (Asynchronous JavaScript + XML)
Cross-Origin Resource Sharing, 247-248
examples, 238-240
jQuery
ajax () method, 285-287
shorthand methods, 287
overview, 237-238
same-origin policy, 245-247
viewing in action, 240-243
XMLHt tpRequest object, 243-245
alert () method, Window object, 145
alt property, Image object, 204
anchors property, Document object, 153
And (&&) logical operator, 77
Angular JS framework, 291-292
animation property, Style object, 208
animationDelay property, Style
object, 208
animationDirection property, Style
object, 208

326

Coding with JavaScript For Dummies

animationDuaration property, Style
object, 208
animationFillMode property, Style
object, 208
animationlterationCount property, Style
object, 208
animationName property, Style object,
208
animationPlayState property, Style
object, 208
animations, jQuery, 283, 284-285
animationTimingFunction property,
Style object, 208
anonymous functions, 111-113, 227-230
defined, 111-112
versus named functions, 112
self-executing, 112-113
APIs, HTML5
accessing audio and video, 266-270
checking browser support, 256-257
Geolocation
in browser, 260
combining with Google Maps AP,
263-266
geolocation object, 259
getCurrentPosition method,
261-263
overview, 255-256, 257-259
appCodeName property, Navigator
object, 138
append () method, jQuery, 278
appendChild() method, Element
object, 158
applets property, Document object, 153
appName property, Navigator object, 138
appVersion property, Navigator
object, 138
Aptana code editor, 21
arguments
Arguments object, 110-111
calling function with more argument than
parameters, 110
calling function without, 109
overview, 100
passing, 106-107
passing by reference, 109
passing by value, 107-108

passing callback functions as, 226
setting default parameter values, 109-110
Arguments object, 110-111
arithmetic operators, 73-75
array literal method of notation, 59
arrays
array elements
defined, 57
looping, 63
methods, 64-66
overview, 62-63
properties, 63-64
creating with array literal method of
notation, 59
creating with new keyword method, 59
index numbers, 57
looping through, 86-87
making lists, 55-57
multidimensional, 60-62
populating, 60
storing data, 58
zero-based numbering, 57-58
assignment operator (=)
combining with other operators, 80
defined, 42
misuse of, 304
overview, 72
associativity, 71, 72
Asynchronous JavaScript + XML (AJAX)
Cross-Origin Resource Sharing, 247-248
examples, 238-240
jQuery
ajax () method, 285-287
shorthand methods, 287
overview, 237-238
same-origin policy, 245-247
viewing in action, 240-243
XMLHt tpRequest object, 243-245
atob () method, Window object, 145
attibutes property, Element object, 156
attr () method, jQuery, 276
attribute node, DOM, 149
Attribute object, 165-167
attributes. See also names of specific
attributes
HTMLS5, 16, 161
jQuery, 276

Index 32 7

autocomplete attribute, form element,
183, 188
autocomplete property, Form object, 187

ol e

Backbone.js library, 293
backgroundColor property, Style
object, 196
base case, recursive function, 113
baseURI property, Document object, 153
basic effects, jQuery, 282
Battery Status API, 255-256, 258
BBEdit code editor, 22
before () method, jQuery, 278
beforeprint event, 171
beforeunload event, 171
Beginning HTML5 and CSS3 For Dummies
(Tittel and Minnick), 17
Berners-Lee, Tim, 237
binary numbers, 75-76
bitwise operators
Bitwise AND, 76
Bitwise NOT, 76
Bitwise OR, 76
Bitwise XOR, 76
in Chrome JavaScript console, 77
defined, 75
Left shift, 76
signed integers, 76
sign-propagating right shift, 76
twos complement, 76
zero-fill right shift, 76
Blanchot, Maurice, 117
blur event, 170
blur() method
Element object, 158
Window object, 145
body property, Document object, 153
BOM (Browser Object Model)
browser and, 137
defined, 133
Boole, George, 52
Boolean data type, 52-53
borderWidth property, Style object, 196
Bowen, Elizabeth, 147

brackets
brackets match feature, 306
mismatched, 305-306
square bracket notation
regular expressions, 218
retrieving and setting object properties
with, 121-122
branching statements
if ... else statement, 82-84
operators, 81-82
switch statement, 84-85
break statement, loops, 91-93
browser
browser detection, 139
BOM and, 137
checking browser support for HTML5
APIs, 256-257
Geolocation API in, 260
HTML parsing, 136
JavaScript in, 15
JavaScript parsing, 136
layout, 137
loader, 134-136
Navigator object, 137-139
rendering, 137
running JavaScript in browser window
in HTML event attribute, 30-31
including external files, 33-36
JavaScript Console, 36-38
overview, 29-30
in script element, 31-33
user interface, 134
Window object
creating Back button, 144-145
determining size of browser window,
142-144
methods, 145-146
opening web page with
window.location property, 141
properties, 140-141
browser chrome (user interface), 134
Browser Object Model (BOM)
browser and, 137
defined, 133
Bruce, Craig, 313
bubble up method, event handling, 177

328 Coding with JavaScript For Dummies

bugs, programming
capitalization errors, 307
counting errors, 311
equality errors
equals operators, 304-305
misuse of assignment operator, 304
mismatched brackets, 305-306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306-307
missing semicolon, 307
overview, 303
referencing code before loaded, 307-309
scope errors, 310
variable naming, 310
Bukowski, Charles, 97
Burroughs, William S., 255
button element, 186
button value, input element’s type
attribute, 184

oo

callbacks
defined, 225
passing functions as arguments, 226
using named callback functions, 227-230
writing functions with, 226-227
calling functions
defined, 100
with more argument than parameters, 110
without arguments, 109
capitalization, 29, 44, 127, 307
capture method, event handling, 177
Cascading Style Sheets 3 (CSS3)
determining size of browser window, 142
JavaScript and, 16
jQuery, 276-277
Style object
animating elements with, 200-203
animation properties, 207-210
getting current style of element,
196-199
overview, 195-196
setting properties, 199-200
case insensitive (1) modifier, regular
expressions, 221

case sensitivity, 29, 44, 127, 307
CDN (content delivery network), 272
chaining, jQuery, 273-274
change event, 170
charAt () function, 51
checkbox value, input element’s type
attribute, 184
childElementCount property, Element
object, 156
childNodes property, Element
object, 156
children, DOM node relationships, 149
children property, Element object, 156
Chrome
downloading and installing, 20-21
JavaScript Console, 36-38
classList property, Element object, 156
className property, Element object, 156
clearInterval () method, Window
object, 145
clearTimeout (
object, 145
click event, 170
click () method, Element object, 158
clientHeight property, Element
object, 156
clientLeft property, Element object,
156
client-side JavaScript, 15
clientTop property, Element object, 156
clientWidth property, Element
object, 156
Clipboard API, 258

) method, Window

cloneNode () method, Element object,
158
close () method

Document object, 154

Window object, 145
closed property, Window object, 140
closures, 230-235
Coda code editor, 21
code editors

Aptana, 21

BBEdit, 22

Coda, 21

Dreamweaver, 22

Eclipse, 22

Index 329

EMacs, 22
Komodo Edit, 21
Netbeans, 22
Notepad++, 22
overview, 21-22
Sublime Text
brackets match feature, 306
setting up, 22-25
shortcuts, 27-28
syntax color scheme, 25-27
TextMate, 22
TextPad, 22
vim, 22
coding
preventing code execution with
comments, 38
referencing code before loaded, 307-309
with regular expressions, 221-224
color value, input element’s type
attribute, 184
combining operators, 80
comma operator, 78
comment nodes, DOM, 149
commenting
multi-line comments, 38
preventing code execution, 38
single-line comments, 37-38
common misconceptions, JavaScript, 10
common programming errors
capitalization errors, 307
counting errors, 311
equality errors, 304-35
equals operators, 304-305
misuse of assignment operator, 304
mismatched brackets, 305-306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306-307
missing semicolon, 307
overview, 303
referencing code before loaded, 307-309
scope errors, 310
variable naming, 310
common uses of JavaScript, 12-13
compareDocumentPosition() method,
Element object, 158

comparison operators

equals, 73

greater than, 73

greater than or equal to, 73

inequality, 73

less than, 73

less than or equal to, 73

strict equality, 73, 305

strict inequality, 73
compiled programming languages, 11
compilers, 11
complete argument, jQuery animation

methods, 283

complete property, Image object, 204
computer programs, 11
concat () function

arrays, 65

defined, 51
concatenation operator, number data

type, 49

condition expression, for loops, 86
conditional operator (ternary operator), 78
confirm() method, Window object, 145
const keyword, variables, 46
constants, 46
constructor functions, 127-128
constructor property, arrays, 64
contains helper function, Underscore

library, 298
contains () method, Element object,
158

content delivery network (CDN), 272
contentEditable property, Element
object, 156
continue statement, loops, 91-93
control statements
branching statements
if ... else statement, 82-84
operators, 81-82
switch statement, 84-85
loops
arrays and, 63
break statement, 91-93
continue statement, 91-93
do ... while loops, 91
for ... inloops, 88-90

330

Coding with JavaScript For Dummies

control statements (continued)
for loops, 86-87
overview, 85
while loops, 90-91
cookie property, Document object, 153
cookieEnabled property, Navigator
object, 138
CORS (Cross-Origin Resource Sharing),
247-248
counting errors, 311

createAttribute () method,
Document object, 154
createComment () method, Document

object, 154
createDocumentFragment (
Document object, 155

) method,

createElement () method, Document
object, 155

createPopup () method, Window
object, 145

createTextNode () method, Document
object, 155

Crockford, Douglas, 313, 322-323
Cross-Origin Resource Sharing (CORS),
247-248
CSS3 (Cascading Style Sheets 3)
determining size of browser window, 142
JavaScript and, 16
jQuery, 276-277
Style object
animating elements with, 200-203
animation properties, 207-210
getting current style of element, 196-199
overview, 195-196
setting properties, 199-200
custom effects, jQuery, 283-284

o e

Dali, Salvador, 303
data types
storing in arrays, 58
variables
Boolean data type, 52-53
NaN data type, 53
number data type, 47-49

overview, 46-47
string data type, 49-52
undefined data type, 53
date value, input element’s type
attribute, 184
datetime value, input element’s type
attribute, 184
datetime-local value, input element’s
type attribute, 185
dbclick event, 170
declaring variables (initialization), 41-42
decrement (-) operator, 73
defaultStatus property, Window object,
140
deferred loading, 137
delete operator, 78
development environment
downloading and installing Chrome,
20-21
downloading and installing code editor,
21-28
overview, 19-20
DHTML (Dynamic HTML), 9
dir property, Element object, 156
Disney, Roy, 81
division (/) operator, 73
doctype property, Document
object, 153
document node, DOM, 149
Document object
for ... inloops, 88-90
methods, 154-155
properties, 153-154
Document Object Model (DOM)
Attribute object’s properties, 165-167
Document object’s properties and
methods, 153-155
element contents, 159-161
Element object’s properties and
methods, 155-159
getElementBy methods
getElementById method, 161-162
getElementsByClassName method,
163-164
getElementsByTagName method,
162-163

Index 33 7

manipulating elements within, 277-278
node relationships, 149-153
overview, 147-149
document property, Window object, 140
document ready, jQuery, 274
documentElement property, Document
object, 153
documentMode property, Document
object, 153
documents. See also DOM
documentURI property, Document object,
154
DOM (Document Object Model)
Attribute object’s properties, 165-167
Document object’s properties and
methods, 153-155
element contents, 159-161
Element object’s properties and
methods, 155-159
getElementBy methods
getElementById method, 161-162
getElementsByClassName method,
163-164
getElementsByTagName method,
162-163
manipulating elements within, 277-278
node relationships, 149-153
overview, 147-149
domain property, Document object, 154
dot notation
accessing array properties with, 63-64
retrieving and setting object properties
with, 120-121
Douglas Crockford website, 322-323
do ... while loops, 91
Drag and Drop API, 258
Dreamweaver code editor, 22
duration argument, jQuery animation
methods, 283
Dynamic HTML (DHTML), 9
dynamic scripting language
compiled programming languages, 11
interpreted programming languages,
11-12
overview, 10-11

oF o

easing argument, jQuery animation
methods, 283
easter eggs, 204
Eclipse code editor, 22
ECMAScript, 9
ECMAScript 6, 109-110
effects
JavaScript, 9
jQuery
animations, 284-285
basic, 282
custom, 283-284
fading, 282
setting arguments for animation
methods, 283
sliding, 283
Magic Zoom effects, 13
Eich, Brandon, 8
element node, DOM, 149
Element object
methods, 158-159
properties, 156-157
elements
array
looping, 63
methods, 64-66
overview, 62-63
properties, 63-64
defined, 57
DOM
innerHTML property, 160
setting HTML attributes, 161
form
accessing, 190-191
values, 190-191
HTML5
creating and appending, 165-166
events supported by, 170
removing, 166-167
rendering web pages, 16
EMacs code editor, 22
email value, input element’s type
attribute, 185

332

Coding with JavaScript For Dummies

embedding JavaScript into element, 31-33
embeds property, Document object, 154
Ember.js framework, 294
empty () method, jQuery, 278
encoding property, Form object, 187
enctype attribute, form element, 183
enctype property, Form object, 187
ending tag, HTML5, 15
equality errors
equals operators, 304-305
misuse of assignment operator, 304
equals (==) operator, 73
equals operator (==), 304-305
error argument, getCurrentPosition
method, 261
error event, 170
errors, programming
capitalization errors, 307
counting errors, 311
equality errors
equals operators, 304-305
misuse of assignment operator, 304
mismatched brackets, 305-306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306-307
missing semicolon, 307
overview, 303
referencing code before loaded, 307-309
scope errors, 310
variable naming, 310
escaping quotes, string data type, 50
event handler attribute, DOM, 164
event handling
defined, 171
inline event handlers, 172
stopping propagation, 179
using addEventListener (
174-178
using element properties, 173-174
events
event handling
defined, 171
inline event handlers, 172
stopping propagation, 179
using addEventListener ()
method, 174-178

) method,

using element properties, 173-174
jQuery
binding to events that don’t exist, 281
off () method, 280
on() method, 278-280
shortcut event methods, 281
supported by all HTML elements, 170
supported by every element except
<body> and <frameset>
elements, 170
supported by Wwindow object, 171
every () method, arrays, 65
exec method, regular expressions, 221
expressions, 68. See also operators; regular
expressions
external JavaScript files
creating, 33-34
organizing, 34-36

ofFe

fadeIn() method, jQuery, 282

fadeout () method, jQuery, 282

fadeTo () method, jQuery, 282

fadeToggle () method, jQuery, 282

fading effects, jQuery, 282

Famo.us framework, 295

File API, 258

file value, input element’s type
attribute, 185

filter () method, arrays, 65

final expression, for loops, 86

firstChild property, Element
object, 156

firstchild property, HTML DOM,
151-152

firstElementChild property, Element
object, 156

focus event, 170

focus () method

Element object, 158
Window object, 145

fontFamily property, Style object, 196

for attribute, 1abel element, 183

for loops, 86-87

forEach() method, arrays, 65

for ... inloops, 88-90

Index 333

form element, 181-183
Form object
accessing elements, 190-191
element values, 191-192
methods, 188-190
properties, 187-188
validating user input, 192-194
Forms API, 258
forms collection, 188
forms property, Document object, 154
frameElement property, Window
object, 140
frames property, Window object, 140
frameworks, JavaScript
Angular JS, 291-292
Ember.js, 294
Famo.us, 295
Knockout, 296
QUnit, 297
function (local) variables, 42, 44
function body, 99-100
function factory, 233-235
function head, 99
function scope, 111
functions
anonymous
defined, 111-112
versus named functions, 112
self-executing, 112-113
arguments
Arguments object, 110-111
calling function with more argument
than parameters, 110
calling function without, 109
passing, 106-107
passing by reference, 109
passing by value, 107-108
setting default parameter values,
109-110
benefits of, 101-102, 104
calling, 100
defined, 99
function body, 99-100
function head, 99
function scope, 111
functions within functions, 114-115

overview, 97-98

parameters, 100

recursion, 113-114

returning values, 100, 105-106
writing, 104-105

writing with callbacks, 226-227

o(Go

g (global) modifier, regular expressions,
221
Garret, Jesse James, 237
Geolocation API, 258
in browser, 260
combining with Google Maps API, 263-266
geolocation object, 259
getCurrentPosition method, 261-263
geolocation object, 259
geolocation property, Navigator
object, 138
.get () method, AJAX, 287
getAttribute () method, Element
object, 158
getAttributeNode () method,
Element object, 158
getCurrentPosition method,
Geolocation API, 261-263
getElementBy methods
getElementById() method, 155,
161-162
getElementsByClassName () method,
155, 158, 163-164
getElementsByTagName () method,
155, 158, 162-163
getElementById() method, 155,
161-162
getElementByName () method, 155
getElementsByClassName () method,
155, 158, 163-164
getElementsByTagName () method,
155, 158, 162-163
getFeature () method, Element object,
158
.getJSON () method, AJAX, 287
.getScript () method, AJAX, 287
getUserMedia navigator, 266-270

334

Coding with JavaScript For Dummies

getUserMedia/Stream API, 258
global (g) modifier, regular expressions,
221
global variables, 42, 44
Google Chrome
downloading and installing, 20-21
JavaScript Console, 36-38
Google Maps API, 263-266
graphics, 203-207
greater than (>) operator, 73
greater than or equal to (>=) operator, 73
groupBy helper function, Underscore
library, 298

o/ o

Handlebars.js library, 299-300
hasAttribute () method, Element
object, 158
hasAttributes () method, Element
object, 158
hasChildNodes () method, Element
object, 158
hashchange event, 171
head property, Document object, 154
height property, Image object, 203, 204
hidden value, input element’s type
attribute, 185
hide () method, jQuery, 282
history property, Window object, 140
Horton, Douglas, 39
HTML event attributes
onblur attribute, 30
onchange attribute, 30
onclick attribute, 31
ondrag attribute, 31
ondrop attribute, 31
onfocus attribute, 30
onkeydown attribute, 31
onkeyup attribute, 31
onload attribute, 30
onmouseover attribute, 31
onselect attribute, 31
onsubmit attribute, 31
HTML forms
button element, 186
form element, 181-183

Form object
accessing elements, 190-191
element values, 191-192
methods, 188-190
properties, 187-188
validating user input, 192-194
input element, 184-185
label element, 183
select element, 185-186
textarea element, 186
html () method, jQuery, 278
HTML page, 135
HTML5 (Hypertext Markup Language 5).
See also DOM
APIs
accessing audio and video, 266-270
checking browser support, 256-257
Geolocation, 259-266
overview, 255-256, 257-259
JavaScript and, 15-16
parsing, 136

o] e

i (case insensitive) modifier, regular
expressions, 221
id property, Element object, 156
if ... else statement, 82-84
Image object
mouseover effects, 205-206
properties, 203
rollover buttons, 203-205
slideshows, 206-207
image value, input element’s type
attribute, 185
images property, Document object, 154
implementation property, Document
object, 154
importNode () method, Document
object, 155
in operator, 78-79
increment (++) operator, 73
index numbers, arrays, 57
Indexed database API, 258
indexOf () function, 51
indexOf () method, arrays, 65
inequality (!=) operator, 73

Index

infinite loops, 38
initialization (declaring variables), 41-42
initialization expression, for loops, 86
inline event handlers, 172
innerHeight property, Window
object, 140
innerHTML property
DOM elements, 160
Element object, 156
innerwWidth property, Window
object, 140
input
button element, 186
form element, 181-183
Form object
accessing elements, 190-191
element values, 191-192
methods, 188-190
properties, 187-188
validating user input, 192-194
input element, 184-185
label element, 183
select element, 185-186
textarea element, 186
input element, 184-185
input event, 170
insertBefore (
object, 158
instanceof operator, 79
interactivity, client-side JavaScript, 15
Internationalization API, 258
interpreted programming languages, 11-12
isContentEditable property, Element
object, 156
isDefaultNamespace (
Element object, 158
isEqualNode () method, Element
object, 158
isId property, Attribute object, 165
isMap property, Image object, 204

) method, Element

) method,

isSameNode () method, Element
object, 159

isSupported() method, Element
object, 159

item() method, Element object, 159

o]o

JavaScript
Brandon Eich, 8
common misconceptions, 10
common uses for, 12-13
CSS3 and, 16
defined, 8
demand for, 18
development of, 9
documenting with JSDoc language,
102-103
dynamic scripting language
compiled programming languages, 11
interpreted programming languages,
11-12
overview, 10-11
effects, 9
HTMLS5 and, 15-16
parsing, 136
previous names for, 9
speed, 18
usability, 13-14
in web browser, 15
JavaScript Console
commenting
multi-line comments, 38
preventing code execution, 38
single-line comments, 37-38
overview, 36-37
JavaScript Object Notation (JSON)
formatter, 319-320
general discussion, 248-251
javascriptcompressor.com, 316-317
join() method, arrays, 65
jQuery
AJAX
ajax () method, 285-287
shorthand methods, 287
changing CSS, 276-277
document ready, 274
effects
animations, 284-285
basic, 282
custom, 283-284

335

336 Coding with JavaScript For Dummies

jQuery (continued)
fading, 282
setting arguments for animation
methods, 283
sliding, 283
events
binding to events that don’t exist, 281
off () method, 280
on() method, 278-280
shortcut event methods, 281
getting and setting attributes, 276
jQuery object, 273-274
manipulating elements within DOM,
277-278
overview, 271-273
selectors, 274-275
JQuery library, 300-301
jQuery object, 273-274
jsbeautifier.org, 317-318
JSBin website, 315-316
JSDoc language, 102-103
JSFiddle.net, 314-315
jshint.com, 320-321
JSLint code checker, 313-314
JSON (JavaScript Object Notation)
formatter, 319-320
general discussion, 248-251

oo

keydown event, 170

keyup event, 170
Kierkegaard, Sgren, 7

King, Stephen, 271
Knockout framework, 296
Komodo Edit code editor, 21

o/ o

label element, 183
lang property, Element object, 156
language property, Navigator
object, 138
lastChild property
Element object, 156
HTML DOM, 151-152

lastElementChild property, Element
object, 156
lastIndexOf () method, arrays, 65
lastModified property, Document
object, 154
layout, browser, 137
left shift (<<) bitwise operator, 76
length property
arrays, 64
Element object, 157
Form object, 187
Window object, 140
less than (<) operator, 73
less than or equal to (<=) operator, 73
libraries, JavaScript
Backbone.js, 293
Handlebars.js, 299-300
JQuery, 300-301
Modernizr, 298-299
underscore.js, 297-298
lineHeight property, Style
object, 196
links property, Document object, 154
lists, making with arrays, 55-57
literals, regular expression, 217-218
live-data applications, 245
LiveScript, 9
load event, 170
loader, browser, 134-136
loading, deferred, 137
local (function) variables, 42, 44
location property, Window object, 140
logical operators, 77
loops
arrays and, 63
break statement, 91-93
continue statement, 91-93
do ... while loops, 91
for ... inloops, 88-90
for loops, 86-87
overview, 85
while loops, 90-91
loosely typed language, 46
Lugosi, Bela, 133

Index

ol o

m (multiline) modifier, regular expressions,
221
Magic Zoom effects, 13
Mabhler, Gustav, 291
map () method, arrays, 65
match function, regular expressions, 222
method attribute, form element, 183
method property, Form object, 187
methods. See also names of specific
methods
array, 64-66
Document object, 154-155
Element object, 158-159
Form object, 188-190
objects
overview, 123-124
this keyword, 124-125
Window object, 145-146
Minnick, Chris, 17
misconceptions, JavaScript, 10
mismatched brackets, 305-306
mismatched quotes, 306
mistakes, programming
capitalization errors, 307
counting errors, 311
equality errors
equals operators, 304-305
misuse of assignment operator, 304
mismatched brackets, 305-306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306-307
missing semicolon, 307
overview, 303
referencing code before loaded, 307-309
scope errors, 310
variable naming, 310
Mocha, 9
Modernizr library, 298-299
modifiers, regular expressions, 220-221
modulus (%) operator, 73
month value, input element’s type
attribute, 185
mousedown event, 170
mouseenter event, 170

mouseleave event, 170

mousemove event, 170

mouseout event, 170

mouseover effects, Image object, 205-206

mouseover event, 170

mouseup event, 170

mousewheel event, 170

moveBy () method, Window object, 145

moveTo () method, Window object, 145

Mozilla Developer Network, 321-322

multidimensional arrays, 60-62

multiline (m) modifier, regular
expressions, 221

multi-line comments, 38

multiplication (*) operator, 73

o\ o

name attribute, form element, 182
name property
Attribute object, 165
Form object, 187
Window object, 140
named functions
versus anonymous functions, 112
callback functions, 227-230
namespaceURI property, Element object,
156
name/value pairs, HTML5, 16
naming variables, 44-45
NaN data type, 53
naturalHeight property, Image object,
204
naturalWidth property, Image object,
204
Navigator object, 137-139
navigator property, Window object, 140
Netbeans code editor, 22
Netscape, 9
new keyword method, 59
new operator, 79
nextElementSibling property,
Element object, 157
nextSibling property
Element object, 156
HTML DOM, 151-152
node relationships, DOM, 149-153

338

Coding with JavaScript For Dummies

nodeName property, Element object, 157
nodes, DOM, 149
nodeType property, Element object, 157
nodeValue property, Element object, 157
normalize () method

Document object, 155

Element object, 159
Not (!) logical operator, 77
not equals operator (I=), 304-305
Notepad++ code editor, 22
novalidate attribute, form element, 183
noValidate property, Form object, 187
number data type

concatenation operator, 49

Number functions, 48

overview, 47

parseFloat () function, 48

parselInt () function, 48
Number functions, number data type, 48
number value, input element’s type

attribute, 185

o () o

object contructors, 120
object literals, 119-120
Object.create method, 129-130
objects. See also names of specific objects
capitalization, 127
creating
with constructor functions, 127-128
modifying object type, 129
with object contructors, 120
with object literals, 119-120
with Object .create method, 129-130
overview, 125-127
deleting properties, 123
methods
overview, 123-124
this keyword, 124-125
modifying object type, 129
overview, 117-118
retrieving and setting properties
with dot notation, 120-121
with square bracket notation, 121-122
off () method, jQuery, 280
offsetHeight property, Element
object, 157

offsetLeft property, Element
object, 157
offsetParent property, Element
object, 157
of fsetTop property, Element object, 157
offsetWidth property, Element
object, 157
on () method, jQuery, 278-280
On the Web icon, 3
onblur attribute, HTML, 30
onchange attribute, HTML, 30
onclick attribute, HTML, 31
onclick event handler attribute, 172
ondrag attribute, HTML, 31
ondrop attribute, HTML, 31
onfocus attribute, HTML, 30
onkeydown attribute, HTML, 31
onkeyup attribute, HTML, 31
online content, 4
online content property, Navigator
object, 138
online tools
Douglas Crockford, 322-323
javascriptcompressor.com, 316-317
jsbeautifier.org, 317-318
JSBin, 315-316
JSFiddle.net, 314-315
jshint.com, 320-321
JSLint, 313-314
JSON formatter, 319-320
Mozilla Developer Network, 321-322
RegEx generator, 318-319
onmouseover attribute, HTML, 31
onreset event, 170
onselect attribute, HTML, 31
onsubmit attribute, HTML, 31
open () method
Document object, 155
Window object, 145
opener property, Window object, 140
operands, 68
operator precedence, 68-72
operators
arithmetic, 73-75
assignment, 72
bitwise, 75-77
branching statements, 81-82
combining, 80

Index 339

comparison, 73
defined, 68
logical, 77
operator precedence, 68-72
special
comma operator, 78
conditional operator (ternary
operator), 78
delete operator, 78
instanceof operator, 79
new operator, 79
in operator, 78-79
this operator, 79
typeof operator, 79
void operator, 79
string, 75
options argument,
getCurrentPosition method, 261
or (| |) logical operator, 77
outerHeight property, Window
object, 140
ownerDocument property, Element
object, 157

opPe

pagehide event, 171
pageshow event, 171
pageXOffset property, Window
object, 140
pageYOf fset property, Window
object, 140
parameters
functions, 100
missing in function calls, 310
setting default values, 109-110
parent, DOM node relationships, 149
parent property, Window object, 140
parentElement property, Element
object, 157
parentheses
missing, 306-307
operator precedence, 71-72
parentNode property, Element
object, 157
parseFloat () function, number data
type, 48

parselInt () function, number data
type, 48
passing arguments
defined, 100
overview, 106-107
by reference, 109
by value, 107-108
password value, input element’s type
attribute, 185
platform property, Navigator
object, 138
Polyfills tools, 267, 298
pop () method, arrays, 65
popstate event, 171
populating arrays, 60
Position.coords property, Position
object, 261
Position.timestamp property,
Position object, 261
.post () method, AJAX, 287
prepend () method, jQuery, 278
previousElementSibling property,
Element object, 157
previousSibling property
Element object, 157
HTML DOM, 151-152
print () method, Window object, 145
product property, Navigator object, 138
programming errors
capitalization errors, 307
counting errors, 311
equality errors
equals operators, 304-305
misuse of assignment operator, 304
mismatched brackets, 305-306
mismatched quotes, 306
missing parameters in function calls, 310
missing parentheses, 306-307
missing semicolon, 307
overview, 303
referencing code before loaded, 307-309
scope errors, 310
variable naming, 310
programming interface, 187
prompt () method, Window object, 145
propagation, stopping, 179

34 0 Coding with JavaScript For Dummies

properties
array, 63-64
Attribute object, 165-167
Document object, 153-154
element, 173-174
Element object, 156-157
Form object, 187-188
Image object, 203
Navigator object, 138
object
deleting, 123
retrieving and setting, 120-122
Style object, 199-200, 207-210
Window object, 140-141
property accessors, 121
prototype property, arrays, 64
push () method, arrays, 65

OQQ

querySelector () method
Document object, 155
Element object, 159
querySelectorAll (
Document object, 155
Element object, 159
QUnit framework, 297
quotes
escaping, 50
mismatched, 306

o R o

radio value, input element’s type
attribute, 185

range value, input element’s type
attribute, 185

Rather, Dan, 169

reading code, 29

readyState property, Document
object, 154

recursion, 113-114

reduce () method, arrays, 65

reduceRight () method, arrays, 65

references, passing arguments by, 109

referrer property, Document object, 154

RegEx generator, 318-319

RegExp object, 216-217

) method

regular expressions
coding, 221-224
defined, 193
modifiers, 220-221
overview, 213-215
simple pattern, 218
writing
literals, 217-218
RegExp object, 216-217
special characters in, 219-220
testing, 219
Remember icon, 3
remove () method, jQuery, 278
removeAttribute () method, Element
object, 159
removeAttributeNode (
Element object, 159
removeChild() method, Element
object, 159
removeEventListener (
Document object, 155
Element object, 159
renameNode () method, Document
object, 155
rendering, browser, 137
replace function, regular expressions,
222
replaceChild (
object, 159
reserved words, JavaScript, 29
reset () method, Form object, 189
reset value, input element’s type
attribute, 185
resize event, 170
resizeBy () method, Window object, 145
resources, web page, 135-136
return statement, 105
returning values, functions, 100, 105-106
reverse () method, arrays, 65
Rollins, Henry, 213
rollover buttons, Image object, 203-205
root element node, DOM, 149
running JavaScript in browser window
in HTML event attribute, 30-31
including external files, 33-36
JavaScript Console, 36-38
overview, 29-30
in script element, 31-33

) method,

) method

) method, Element

Index

oS e

same-origin policy, AJAX, 245-247
scope errors, 310
Screen Orientation API, 258
screen property, Window object, 140
screenLeft property, Window object, 141
screenTop property, Window object, 141
screenX property, Window object, 141
screenY property, Window object, 141
script element, 31-33
scripts property, Document object, 154
scroll event, 170
scrollBy () method, Window object, 145
scrollHeight property, Element
object, 157
scrollLeft property, Element
object, 157
scrollTo() method, Window object, 145
scrollTop property, Element object, 157
scrollWidth property, Element
object, 157
search function, regular expressions, 222
search value, input element’s type
attribute, 185
select element, 185-186
select event, 170
Selection API, 258
selectors
CSS, 17
jQuery, 274-275
self property, Window object, 141
self-executing anonymous functions,
112-113
semicolons
JavaScript, 29
missing, 307
Server-sent events API, 258
setAttribute () method, Element
object, 159
setAttributeNode () method,
Element object, 159

setInterval () method, Window
object, 146
setTimeout () method, Window object,

146, 201

Shakespeare, William, 225
shift () method, arrays, 65
short-circuiting, 83
shortcut event methods, jQuery, 281
shortcuts
if ... else statement, 83
Sublime Text code editor, 27-28
show () method, jQuery, 282
shuffle helper function, Underscore
library, 298
siblings, DOM node relationships, 149
signed integers, 76
sign-propagating right shift (>>) bitwise
operator, 76
simple pattern, 218
single-line comments, 37-38
slice () method, arrays, 65
slideDown () method, jQuery, 283
slideshows, 206-207
slideToggle () method, jQuery, 283
slideUp () method, jQuery, 283
sliding effects, jQuery, 283
some () method, arrays, 65
sort () method, arrays, 65
sortBy helper function, Underscore
library, 298
source code editors
Aptana, 21
BBEdit, 22
Coda, 21
Dreamweaver, 22
Eclipse, 22
EMacs, 22
Komodo Edit, 21
Netbeans, 22
Notepad++, 22
overview, 21-22
Sublime Text
brackets match feature, 306
setting up, 22-25
shortcuts, 27-28
syntax color scheme, 25-27
TextMate, 22
TextPad, 22
vim, 22

341

34 2 Coding with JavaScript For Dummies

special characters
in regular expressions, 219-220
string data type, 50
special operators
comma operator, 78
conditional operator (ternary operator),
78
delete operator, 78
instanceof operator, 79
new operator, 79
in operator, 78-79
this operator, 79
typeof operator, 79
void operator, 79
specified property, Attribute
object, 165
speed, JavaScript, 18

splice () method, arrays, 65
split () function
defined, 51

regular expressions, 222
square bracket notation

regular expressions, 218

retrieving and setting object properties

with, 121-122

src attribute, HTML, 33
src property, Image object, 203, 204
stop () method, Window object, 146
stopping propagation, 179
strict equality (===) operator, 73, 305
strict inequality (==) operator, 73
string data type

escaping quotes, 50

overview, 49-50

special characters, 50

string functions

charAt () function, 51
concat () function, 51
indexOf () function, 51

split () function, 51
substr () function, 51
substring() function, 51
toLowerCase () function, 52
toUpperCase () function, 52
string functions
charAt () function, 51
concat () function, 51

indexOf () function, 51
regular expressions that use, 222
split () function, 51
substr () function, 51
substring() function, 51
toLowerCase () function, 52
toUpperCase () function, 52
string operators, 75
Style object
animating elements with, 200-203
animation properties, 207-210
getting current style of element,
196-199
overview, 195-196
setting properties, 199-200
style property, Element object, 157
Sublime Text code editor
brackets match feature, 306
setting up, 22-25
shortcuts, 27-28
syntax color scheme, 25-27
submit event, 170
submit () method, Form object,
189-190
submit value, input element’s type
attribute, 185
substr () function, 51
substring() function, 51
subtraction (-) operator, 73
success argument,
getCurrentPosition method, 261
switch statement, 84-85
syntax
color scheme, Sublime Text code editor,
25-27
defined, 14
if ... else statement, 82-84

oJ e

tabIndex property, Element object, 157
tagName property, Element object, 157
tags

HTML5, 15

JSDoc language, 103
target attribute, form element, 183
target property, Form object, 187

Index

Technical Stuff icon, 3
tel value, input element’s type
attribute, 185
ternary operator (conditional operator), 78
test method, regular expressions, 221
testing regular expressions, 219
text () method, jQuery, 277
text node, DOM, 149
text value, input element’s type
attribute, 185
textAlign property, Style object, 196
textarea element, 186
textContent property, Element
object, 157
TextMate code editor, 22
TextPad code editor, 22
this keyword, 124-125
this operator, 79
time value, input element’s type
attribute, 185
Tip icon, 3
title property
Document object, 154
Element object, 157
Tittel, Ed, 17
toggle () method, jQuery, 282
toLowerCase () function, 52
tools
online
Douglas Crockford, 322-323
javascriptcompressor.com, 316-317
jsbeautifier.org, 317-318
JSBin, 315-316
JSFiddle.net, 314-315
jshint.com, 320-321
JSLint, 313-314
JSON formatter, 319-320
Mozilla Developer Network, 321-322
RegEx generator, 318-319
Polyfills, 267, 298
top property, Window object, 141
toString() method
arrays, 65
Element object, 159
toUpperCase () function, 52
Twain, Mark, 19

twos complement, 76
typeof operator, 79

olf o

undefined data type, 53

underscore.js library, 297-298

unload event, 171

unShift () method, arrays, 65

URL property, Document object, 154

url value, input element’s type
attribute, 185

usability, JavaScript, 13-14

useMap property, Image object, 204

user interface (browser chrome), 134

User Timing API, 258

userAgent property, Navigator
object, 138

o/ e

val () method, jQuery, 278
value property, Attribute object, 165
values
passing arguments by, 107-108
setting default values for parameters,
109-110
var keyword, 43
variables
const keyword, 46
data types
Boolean data type, 52-53
NaN data type, 53
number data type, 47-49
overview, 46-47
string data type, 49-52
undefined data type, 53
declaring, 41-42
global and local scope, 42, 44
naming, 44-45
overview, 3941
var keyword, 43
variable naming errors, 310
Vibration API, 258
vim code editor, 22
void operator, 79

343

344

Coding with JavaScript For Dummies

o[/ o

Warning icon, 3
Web Audio API, 258
web browser
browser detection, 139
BOM and, 137
checking browser support for HTML5
APIs, 256-257
Geolocation API in, 260
HTML parsing, 136
JavaScript in, 15
JavaScript parsing, 136
layout, 137
loader, 134-136
Navigator object, 137-139
rendering, 137
running JavaScript in browser window
in HTML event attribute, 30-31
including external files, 33-36
JavaScript Console, 36-38
overview, 29-30
in script element, 31-33
user interface, 134
Window object
creating Back button, 144-145
determining size of browser window,
142-144
methods, 145-146
opening web page with
window. location property, 141
properties, 140-141
Web Real Time Communications
(WebRTC(), 266-270
Web sockets API, 258
Web Speech API, 258
Web storage API, 258
Web workers API, 259
WebRTC (Web Real Time
Communications), 266-270
week value, input element’s type
attribute, 185
while loops, 90-91
White, E. B., 195
white space, 29
Whitman, Walt, 55

width property, Image object, 203, 204
Window object
creating Back button, 144-145
determining size of browser window,
142-144
events supported by, 171
methods, 145-146
opening web page with
window. location property, 141
properties, 140-141
word boundary, regular expressions, 222

write () method, Document object, 155
writeIn() method, Document object,
155

writing functions, 104-105
writing JavaScript
reading code, 29
running JavaScript in browser window
including external files, 33-36
JavaScript Console, 36-38
overview, 29-30
using in HTML event attribute, 30-31
using in script element, 31-33
setting up development environment
downloading and installing Chrome,
20-21
downloading and installing code editor,
21-28
overview, 19-20
writing regular expressions
literals, 217-218
RegExp object, 216-217
special characters in, 219-220
testing, 219

o X o
XMLHTTPRequest 2 API, 259

XMLHt tpRequest object, AJAX, 237,
243-245

o/ o

zero-based numbering, arrays, 57-58
zero-fill right shift (>>>) bitwise
operator, 76

About the Authors

Chris Minnick is an accomplished author, trainer, and web developer.

Prior to cofounding WatzThis?, Chris was CEO of Minnick Web Services for
18 years, where he managed and worked on hundreds of web and mobile
projects for customers ranging from small businesses to some of the world’s
largest companies.

Other books he’s authored or coauthored include Beginning HTML5 and CSS3
For Dummies, Webkit For Dummies, CIW eCommerce Certification Bible, and
XHTML. Since 2001, Chris has trained thousands of students in HTML,
JavaScript, CSS, and mobile development.

Chris is an enthusiastic amateur winemaker, fiction writer, swimmer, and
musician.

Eva Holland is an experienced writer, trainer, and cofounder of WatzThis?.
She excels in presenting complicated subjects in easy-to-understand language
for beginners of all levels.

Eva has written, designed, and taught online, in-person, and video courses.
She has created curriculum for web development, mobile web development,
and search engine optimization (SEO). Prior to founding WatzThis?, Eva
served as COO of MWS, where she provided astute leadership, management,
and vision that guided the company to its goals.

Eva is an outdoor enthusiast, songstress, tennis player, and lover of life.

Dedication

"A child of five would understand this. Send someone to fetch a
child of five.”

— Groucho Marx

http://www.brainyquote.com/quotes/authors/g/groucho_marx.html

Authors’ Acknowledgments

Chris Minnick and Eva Holland:

This book was really fun to write. Throughout the writing process, we worked
hard to think about topics from a beginner’s perspective and to present the
most modern and up-to-date introduction to JavaScript and web program-
ming possible. We’re proud of the result and would love to hear what you
think of it and answer any questions you have.

This book is the result of a team effort, not only by your humble authors, but
also by a talented crew of editors and other publishing professionals who are
credited on the next page and who we’d like to personally thank for their
great efforts.

Thank you to everyone at Wiley, including executive editor Steve Hayes, our
project editor Kelly Ewing, and our technical editor Todd Shelton.

Thank you also to our agent, Carole Jelen.
Eva Holland: Thank you to my coauthor, business partner and friend, Chris
Minnick, for the opportunity to work on this book and for his continued

support and his inspiring expanse of vision.

Chris Minnick: Thanks to my coauthor, esteemed colleague, and friend Eva
Holland for simplicity, clarity, and inspired addition by subtraction.

Publisher’s Acknowledgments

Executive Editor: Steve Hayes Production Editor: Siddique Shaik

Project Editor: Kelly Ewing Cover Image: ©Getty Images/Alwyn Cooper
Copy Editor: Kelly Ewing

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used In This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with JavaScript
	Chapter 1 The World’s Most Misunderstood Programming Language
	What Is JavaScript?
	The Eich‐man cometh
	Mocha‐licious
	We need more effects!
	JavaScript grows up
	Dynamic scripting language

	What Does JavaScript Do?
	Why JavaScript?
	JavaScript is easy to learn
	Where is JavaScript? JavaScript is everywhere!
	JavaScript is powerful!
	JavaScript is in demand

	Chapter 2 Writing Your First JavaScript Program
	Setting Up Your Development Environment
	Downloading and installing Chrome
	Downloading and installing a code editor

	Reading JavaScript Code
	Running JavaScript in the Browser Window
	Using JavaScript in an HTML event attribute
	Using JavaScript in a script element
	Including external JavaScript files

	Using the JavaScript Developer Console
	Commenting your code

	Chapter 3 Working with Variables
	Understanding Variables
	Declaring Variables
	Understanding Global and Local Scope
	Naming Variables
	Creating Constants Using the const Keyword
	Working with Data Types
	Number data type
	String data type
	Boolean data type
	NaN data type
	undefined data type

	Chapter 4 Understanding Arrays
	Making a List
	Array Fundamentals
	Arrays are zero indexed
	Arrays can store any type of data

	Creating Arrays
	Using the new keyword method
	Array literal

	Populating Arrays
	Understanding Multidimensional Arrays
	Accessing Array Elements
	Looping through arrays
	Array properties
	Array methods
	Using array methods

	Chapter 5 Working with Operators, Expressions, and Statements
	Express Yourself
	Hello, Operator
	Operator precedence

	Types of Operators
	Assignment operators
	Comparison operators
	Arithmetic operators
	String operator
	Bitwise operators
	Logical operators
	Special operators
	Combining operators

	Chapter 6 Getting into the Flow with Loops and Branches
	Branching Out
	if . . . else
	Switch

	Here We Go: Loop De Loop
	for
	for . . . in
	while loops
	do. . . while
	break and continue

	Part II Organizing Your JavaScript
	Chapter 7 Getting Functional
	Understanding the Function of Functions
	Using Function Terminology
	Define a function
	Function head
	Function body
	Call a function
	Defining parameters and passing arguments
	Return a value

	The Benefits of Using Functions
	Writing Functions
	Returning Values
	Passing and Using Arguments
	Passing arguments by value
	Passing arguments by reference
	Calling a function without all the arguments
	Setting default parameter values
	Calling a function with more argument than parameters
	Getting into arguments with the arguments object

	Function Scope
	Anonymous Function
	Knowing the differences between anonymous and named functions
	Self-executing anonymous functions

	Do it Again with Recursion
	Functions within Functions

	Chapter 8 Making and Using Objects
	Object of My Desire
	Creating Objects
	Defining objects with object literals
	Defining objects with an Object constructor

	Retrieving and Setting Object Properties
	Dot notation
	Square bracket notation

	Deleting Properties
	Working with Methods
	Using this

	An Object-Oriented Way to Become Wealthy: Inheritance
	Constructing Objects with constructor functions
	Modifying an object type
	Creating Objects with Object.create

	Part III JavaScript on the Web
	Chapter 9 Controlling the Browser with the Window Object
	Understanding the Browser Environment
	The user interface
	Loader
	HTML parsing
	CSS parsing
	JavaScript parsing
	Layout and rendering
	Igniting the BOM
	The Navigator object
	The Window object
	Using the Window object’s methods

	Chapter 10 Manipulating Documents with the DOM
	Understanding the DOM
	Node Relationships
	Using the Document Object’s Properties and Methods
	Using the Element Object’s Properties and Methods
	Working with the Contents of Elements
	innerHTML
	Setting attributes

	Getting Elements by ID, Tag Name, or Class
	getElementById
	getElementsByTagName
	getElementsByClassName

	Using the Attribute Object’s Properties
	Creating and appending elements
	Removing elements

	Chapter 11 Using Events in JavaScript
	Knowing Your Events
	Handling Events
	Using inline event handlers
	Event handling using element properties
	Event handling using addEventListener
	Stopping propagation

	Chapter 12 Integrating Input and Output
	Understanding HTML Forms
	The form element
	The label element
	The input element
	The select element
	The textarea element
	The button element

	Working with the Form Object
	Using Form properties
	Using the Form object’s methods
	Accessing form elements
	Getting and setting form element values
	Validating user input

	Chapter 13 Working with CSS and Graphics
	Using the Style Object
	Getting the current style of an element
	Setting style properties

	Animating Elements with the Style Object
	Working with Images
	Using the Image object
	Creating rollover buttons
	Grow images on mouseover
	Creating an image slideshow

	Using the Style Object’s Animation Properties

	Part IV Beyond the Basics
	Chapter 14 Searching with Regular Expressions
	Finding It Out with Regular Expressions
	Writing Regular Expressions
	Using the RegExp object
	Regular expression literals
	Testing regular expressions
	Special characters in regular expressions

	Using Modifiers
	Coding with Regular Expressions

	Chapter 15 Understanding Callbacks and Closures
	What Are Callbacks?
	Passing functions as arguments
	Writing functions with callbacks
	Using named callback functions

	Understanding Closures
	Using Closures

	Chapter 16 Embracing AJAX and JSON
	Working Behind the Scenes with AJAX
	AJAX examples
	Viewing AJAX in action
	Using the XMLHttpRequest object
	Working with the same-origin policy
	Using CORS, the silver bullet for AJAX requests

	Putting Objects in Motion with JSON

	Part V JavaScript and HTML5
	Chapter 17 HTML5 APIs
	Understanding How APIs Work
	Checking HTML5 API browser support
	Getting to know HTML5’s APIs

	Using Geolocation
	What does geolocation do?
	How does geolocation work?
	How do you use geolocation
	Combining geolocation with Google maps

	Accessing Audio and Video

	Chapter 18 jQuery
	Writing More and Doing Less
	Getting Started with jQuery
	The jQuery Object
	Is Your Document Ready?
	Using jQuery Selectors
	Changing Things with jQuery
	Getting and setting attributes
	Changing CSS
	Manipulating elements in the DOM

	Events
	Using on() to attach events
	Detaching with off()
	Binding to events that don’t exist yet
	Other event methods

	Effects
	Basic effects
	Fading effects
	Sliding effects
	Setting arguments for animation methods
	Custom effects with animate()
	Playing with jQuery animations

	AJAX
	Using the ajax() method
	Shorthand AJAX methods

	Part VI The Part of Tens
	Chapter 19 Ten JavaScript Frameworks and Libraries to Learn Next
	Angular JS
	Backbone.js
	Ember.js
	Famo.us
	Knockout
	QUnit
	underscore.js
	Modernizr
	Handlebars.js
	jQuery

	Chapter 20 Ten Common JavaScript Bugs and How to Avoid Them
	Equality Confusion
	Avoiding misuse of assignment
	Dodging the equals pitfalls

	Mismatched Brackets
	Mismatched Quotes
	Missing Parentheses
	Missing Semicolon
	Capitalization Errors
	Referencing Code Before It’s Loaded
	Bad Variable Names
	Scope Errors
	Missing Parameters in Function Calls
	Counting Errors: Forgetting That JavaScript Counts from 0

	Chapter 21 Ten Online Tools to Help You Write Better JavaScript
	JSLint
	JSFiddle.net
	JSBin
	javascriptcompressor.com
	jsbeautifier.org
	JavaScript RegEx generator
	JSONformatter
	jshint.com
	Mozilla Developer Network
	Douglas Crockford

	Index
	Back Matter
	EULA

