
www.allitebooks.com

http://www.allitebooks.org

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Effective MySQL
Replication Techniques in Depth

®

00-FM.indd 1 9/6/12 6:20 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

About the Authors
Ronald Bradford has worked in the relational database industry for over
20 years. His professional background began in 1989 with Ingres and Oracle
RDBMS. His expertise includes a vast experience with database architec-
ture, performance tuning, and management of large enterprise systems.
Ronald has, for the past 13 years, worked primarily with MySQL, the world’s
most popular open source database. His previous employment has includ-
ed Oracle Corporation (1996–1999) as an Oracle Consultant and MySQL,
Inc. (2006–2008) as a senior MySQL Consultant.

His contributions to the MySQL community have included recognition
as the all-time top individual MySQL blog contributor at Planet MySQL
(2010), an Oracle ACE Director (2010), and MySQL Community Member of
the Year (2009).

Ronald combines his extensive consulting expertise with a passion to
share the knowledge and benefits of using MySQL. He is the author of four
books on MySQL, and his many public speaking engagements have in-
cluded presentations at conferences in over 25 countries. The Effective
MySQL series of books and presentations aim to provide practical educa-
tion for DBAs, developers, and architects in MySQL performance, scalabil-
ity, and business continuity.

Chris Schneider is a long-time open source advocate and MySQL evange-
list, administrator, and architect. Over the past decade Chris has devoted
his professional career to open source technologies, with his primary focus
being MySQL at scale. His previous employment has included GoDaddy,
Facebook, and Ning.com, along with his own MySQL consulting company.

He has designed, implemented, and maintained small to large MySQL
installations while training and mentoring teams of DBAs. This includes
building architecture from the ground up and improving on those that are
currently in place while emphasizing scalability, performance, and ease
of use.

Chris has also shared his experiences and knowledge through the many
speaking engagements he does, such as Oracle Open World, MySQL Con-
nect, Percona Live, and the former O’Reilly MySQL Conference. Chris is
also the technical editor of the second book in the Effective MySQL series,
Effective MySQL: Backup and Recovery.

00-FM.indd 2 9/6/12 6:20 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

About the Technical Editors
Nelson Calero has been working with Oracle technology since 1996, and
with MySQL since 2005, specializing in architecture, administration, and
performance for very large databases (VLDBs) and highly available (HA)
environments. His previous experience included being a teacher and re-
searcher in the Computer Science Institute (InCo) of the Engineering Uni-
versity (UdelaR) in Uruguay. Nelson now focuses on providing industry
consulting to both the private and public sectors throughout Latin Ameri-
ca, from Argentina to Mexico.

In the past few years, Nelson has become a frequent speaker at user
community events in the Americas, including Oracle Open World Latin
America and Collaborate. Currently he is an independent consultant, an
Oracle University instructor, and president of the Oracle User Group of
Uruguay (UYOUG).

Giuseppe Maxia works as QA Director with Continuent, Inc. He is an ac-
tive member of the MySQL community and long-time open source enthu-
siast. During the past decades he has worked in various IT related fields,
with focus on databases, object oriented programming, and system admin-
istration. He is fluent in Italian, English, Perl, Python, SQL, Lua, C, and
Bash, and a good speaker of C, French, Spanish, and Java. He works in cy-
berspace with a virtual team and a blog (http://datacharmer.blogspot
.com). Giuseppe has twice been the recipient of the MySQL Community
Award (2006 and 2011) and recognized as an Oracle ACE Director (2012).

Sheeri K. Cabral has a master’s degree in computer science specializing in
databases from Brandeis University and a background in systems adminis-
tration. Unstoppable as a volunteer and activist since age 14, Cabral found-
ed and organizes the Boston, Massachusetts, MySQL User Group and is the
creator and co-host of OurSQLCast: The MySQL Database Community
Podcast, available on iTunes. She was the first MySQL Oracle ACE Director,
and is the founder (and current treasurer) of Technocation, Inc., a not-for-
profit organization providing resources and educational grants for IT pro-
fessionals. She wrote the MySQL Administrator’s Bible (Wiley and Sons, 2009)
and has been a technical editor for high-profile O’Reilly books such as High
Performance MySQL, 2nd Edition (2012) and C.J. Date’s SQL and Relational
Theory (2009).

00-FM.indd 3 9/6/12 6:20 PM

www.allitebooks.com

http://datacharmer.blogspot.com
http://datacharmer.blogspot.com
http://www.allitebooks.org

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Hans Forbrich has been working with computers since the early 1970s, in
particular with entity-relationship and relational databases, starting in
1979 using an engine on IBM mainframes called GERM (General Entity
Relationship Model). Since that time, Hans has been a DBA, an operations
architect for a number of organizations, and an Oracle University instruc-
tor but always heavily involved in high availability and recoverability.

As a fellow ACE Director, Hans is pleased and honored to have been a
technical reviewer for this book. This topic is an important area of MySQL,
and Ronald’s expertise and experience in this area shine through.

Darren Cassar is a senior MySQL Database Administrator at Lithium Tech-
nologies. He holds a computer and communications engineering degree
from the University of Malta and started his career doing systems admin-
istration in Malta, later moving on to database administration in Malta,
London, New York, and San Francisco. Darren is the author of Securich, an
open source security plugin for MySQL, a subject that he has presented at
several conferences in both the United States and Europe.

00-FM.indd 4 9/6/12 6:20 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Effective MySQL
Replication Techniques in Depth

Ronald Bradford
Chris Schneider

New York  Chicago  San Francisco
Lisbon  London  Madrid  Mexico City

Milan  New Delhi  San Juan
Seoul  Singapore  Sydney  Toronto

00-FM.indd 5 9/6/12 6:20 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Copyright © 2013 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-179187-8

MHID: 0-07-179187-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-179186-1,

MHID:  0-07-179186-8.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property
of their respective owners, and McGraw-Hill makes no claim of ownership by the mention of products that
contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of
Oracle Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness
of any information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright
Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 186-8 cr_pg.indd 1 9/10/12 5:33 PM

mailto:bulksales@mcgraw-hill.com

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

For MySQL culture, past, present, and future.
To those I know in the Oracle/MySQL community:

you are more than colleagues; you are, and
always will remain, great friends.

00-FM.indd 7 9/6/12 6:20 PM

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

ix

CONTENTS

Acknowledgments . 	 xv

Introduction . 	 xvii

	 1	 The Five Minute DBA . 	 1
The 2 a.m. Alert Notification . 	 2

SHOW SLAVE STATUS . 	 2

Identifying the Problem . 	 4

SHOW CREATE TABLE . 	 4

Rectifying the Problem . 	 6

SQL_SLAVE_SKIP_COUNTER . 	 6

Addressing the Underlying Cause . 	 8

Rectifying the Problem Correctly . 	 9

Understanding Replication Issues . 	 10

User Security . 	 10

Configuration Options and Variables 	 10

Conclusion . 	 11

	 2	 Diagnosing Common Replication Problems 	 13
MySQL Replication Architecture Review 	 14

Interpreting Replication Information . 	 15

Binary Logs . 	 16

Relay Logs . 	 25

Replication Consistency . 	 27

Identifying Data Inconsistencies . 	 28

Identifying Schema Inconsistencies 	 28

Causes of Data Inconsistency . 	 32

Common Replication Errors . 	 33

MySQL Server ID . 	 33

Missing Schema Objects . 	 33

Ignoring Duplicate Rows . 	 34

Understanding Replication Lag . 	 35

Primary Causes of Lag . 	 36

00-FM.indd 9 9/6/12 6:20 PM

x 	 Contents

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The MySQL Error Log . 	 37

Simple Techniques to Improve and Minimize Lag 	 37

Advanced Techniques to Improve and Minimize Lag 	 39

Monitoring Replication . 	 41

Conclusion . 	 42

	 3	 Improving Standard Replication Features 	 43
Extending Asynchronous Behavior . 	 44

Semisynchronous Replication . 	 44

Synchronous Replication . 	 49

Securing Replication with SSL . 	 50

Making MySQL SSL Ready . 	 50

New Replication Features . 	 58

New and Improved Data Integrity . 	 58

New Performance Improvements for Replication 	 63

New Replication Management Features 	 68

Balancing Read and Write Load . 	 76

Conclusion . 	 77

	 4	 Using Multi-Master Replication . 	 79
MySQL Replication Failover Capabilities 	 80

Active/Passive Multi-Master Replication 	 80

Required Multi-Master Configuration Settings 	 81

Optional Multi-Master Configuration Settings 	 81

Other Configuration Variables to Consider 	 82

Example Configuration . 	 82

Replication Setup . 	 83

Multi-Master Replication Verification 	 86

Manual Failover Process . 	 88

Real World Usage Complications . 	 93

Additional Slave Servers . 	 94

Read and Write Load Balancing . 	 100

Circular Replication . 	 100

Other Replication Topologies . 	 101

Automating High Availability Failovers 	 102

Conclusion . 	 103

00-FM.indd 10 9/6/12 6:20 PM

	 Contents	 xi

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

	 5	 MySQL Replication Tools . 	 105
Various MySQL Toolkits . 	 106

Openark Kit . 	 106

Percona Toolkit . 	 109

MySQL Workbench Utilities . 	 116

Replication Failover Managers . 	 132

MySQL MHA . 	 133

MMM . 	 146

Flipper . 	 147

Cluster Control . 	 147

Cluster Management . 	 147

Percona Replication Manager (PRM) 	 148

Replication Prefetch . 	 149

MySQL Patches and Variants . 	 151

Independent Community Users . 	 151

Commercial Organizations . 	 152

Conclusion . 	 153

	 6	 Extending Replication for Practical Needs 	 155
Highly Requested Replication Features 	 156

MySQL Cluster . 	 156

Galera Cluster for MySQL . 	 157

Current Limitations . 	 158

References . 	 158

Installation . 	 159

Percona XtraDB Cluster . 	 175

MariaDB Galera Cluster . 	 176

Galera Wrap-Up . 	 176

Tungsten Replicator . 	 176

Features . 	 177

References . 	 177

Prerequisites . 	 178

Installation with Tungsten Sandbox .	 178

Manual Tungsten Installation . 	 186

Alternative Tungsten Deployments . 	 196

Unique Characteristics . 	 201

00-FM.indd 11 9/6/12 6:20 PM

xii 	 Contents

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Continuent Tungsten . 	 202

Continuent Wrap-Up . 	 202

SchoonerSQL . 	 203

MySQL Replication Listener . 	 203

MySQL in the Cloud . 	 203

Amazon RDS for MySQL .	 204

Google Cloud SQL . 	 204

Other Offerings . 	 204

Conclusion . 	 205

	 7	 MySQL Configuration Options . 	 207
About MySQL System Variables . 	 208

Binary Logging . 	 208

MySQL Replication . 	 212

Semisynchronous Replication . 	 215

Security . 	 216

MySQL Server Variables . 	 217

InnoDB variables . 	 218

MySQL 5.6 Features . 	 219

Universally Unique Identifier (UUID) 	 219

Crash-Safe Slaves . 	 219

Replication Checksums . 	 220

Multi-Threaded Slaves . 	 220

Global Transaction Identifier (GTID) 	 220

User Privileges . 	 221

SQL Commands and Functions . 	 221

Binary Log Statements . 	 222

Replication Statements . 	 222

Replication Related Functions . 	 223

Conclusion . 	 223

	 8	 Monitoring Replication . 	 225
Types of Monitoring . 	 226

MySQL Configuration . 	 226

Monitoring Granularity . 	 228

Important MySQL Information . 	 228

00-FM.indd 12 9/6/12 6:20 PM

	 Contents	 xiii

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

MySQL Error Log . 	 228

SHOW MASTER STATUS . . 	 229

SHOW SLAVE STATUS . 	 229

SHOW GLOBAL STATUS . 	 230

Meta Files . 	 231

Meta Tables . 	 233

Monitoring Products . 	 234

Dedicated Monitoring Products . 	 235

System Monitoring Products . 	 235

The Implementation of Monitoring 	 236

MySQL Enterprise Monitor . 	 236

Cacti . 	 238

MySQL Performance Monitor (MPM) 	 240

Poor Man’s Replication Monitor . 	 240

Troubleshooting Replication Incidents 	 241

Conclusion . 	 242

	 A	 A MySQL Replication Test Environment 	 243
Manual Steps to Configure MySQL Replication 	 244

Using MySQL Sandbox . . 	 245

MySQL Sandbox Installation . 	 245

MySQL Software Releases . 	 246

Replication Setup with MySQL Sandbox 	 247

References . 	 248

Using Virtual Servers . 	 249

VirtualBox Installation . 	 249

Testing and Verifying MySQL Replication 	 255

Conclusion . 	 258

		 Index . 	 259

00-FM.indd 13 9/7/12 2:55 PM

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

xv

ACKNOWLEDGMENTS

This book is the third of the Effective MySQL series published for the
Oracle Press label. Without the commitment of the team at McGraw-Hill,
this publication would not be available today.

Significant time, effort, and support are needed to create a book. This
result would not be possible without the support of my wife, Cindy.

To Chris Schneider, thank you for your contributions as a co-author for
this title. My technical editors, Sheeri, Giuseppe, Nelson, Hans, and Darren,
have made this book a companion in quality and detail to the first two books
of the series. This does not become a published book without the help, input,
clarification, and discussion of these trusted and respected senior technical
advisors and friends.

Several others have also contributed to making this a great reference.
Thanks to Alexey Yurchenko and Seppo Jaakola from Codership for their
assistance in explaining and triage of issues and reviewing information on
Galera. Also to Shlomi Noach, Yoshinori Matsunobu, and Chuck Bell for
the review of their respective companion products.

Several others in the Oracle/MySQL team have helped with answers
during the writing of the book. Thank you, Rohit Kalhans, Lars Thalmann,
Luis Soares, and Mats Kindahl for your time and input. Finally, to Keith
Larson and Dave Stokes from the Oracle/MySQL community team, who
have helped in the support, feedback, and evangelism for this Effective
MySQL series, keep up the good work.

—Ronald Bradford

First and foremost I would like to thank my family for all of the support
they gave me while writing this book. Keri, my wife, has been very under-
standing and encouraging during this whole process. Luke, my son, has
been able to balance me out by inviting me to clear my mind and play soccer
in the back yard. And Sadie, my daughter, has given me an endless amount
of “I love yous” and hugs exactly when I need them the most.

00-FM.indd 15 9/6/12 6:20 PM

xvi 	 Acknowledgments

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

To Ronald, thank you for this great opportunity to co-author. This has
been a significant challenge, and I have learned a lot from the experience
overall. My technical editors, Sheeri, Giuseppe, Nelson, Hans, and Darren,
have done a fantastic job in ensuring that this book will be well received by
the MySQL and Oracle communities. I would also like to thank each one of
you for sharing your enormous amount of experience in MySQL and how
to be a better author myself.

—Chris Schneider

00-FM.indd 16 9/6/12 6:20 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

xvii

INTRODUCTION

MySQL powers many of the largest high traffic websites on the Internet.
All of these installations use MySQL replication extensively to provide a
scalable and highly available database solution. This book is designed for the
architect and DBA to help with understanding the foundation, features, and
options for creating a successful and scalable MySQL solution.

This book describes the native MySQL asynchronous replication that is
commonly used, detailing the relative strengths and limitations that can
affect more advanced operations. There are many options available for im-
proving native MySQL replication, including new features in MySQL 5.5
and MySQL 5.6 that are described in Chapter 3. The MySQL ecosystem has
a large number of utilities and tools to support, manage, and enhance
MySQL replication and help with data integrity. These include OpenArk,
Percona Toolkit, MySQL Workbench Utilities, and MySQL HA, which are
discussed in Chapter 5. Each is important to evaluate for the administra-
tion of the various approaches for creating a complex MySQL topology.

Also covered are details for understanding and using multi-master rep-
lication correctly and safely, and implementing MySQL semisynchronous
replication. Additional products and add-ons are now available to support
MySQL synchronous replication, automated failover, and more complex
topologies. A detailed discussion and examples of Galera replication for
MySQL and Continuent Tungsten Replicator are included in Chapter 6.

A working knowledge of MySQL replication is a primary skill for the
MySQL DBA. Detailed in the appendix are the MySQL Sandbox and a vir-
tualized environment using VirtualBox for running MySQL replication. This
is an ideal and recommended approach for testing and evaluating the vari-
ous options, features, and products that comprise a total MySQL solution.

In recent years there has been great advancement with MySQL replica-
tion, and this book aims to cover the leading products and features. While
every attempt has been made to provide the most accurate information,
commands, options, and operation, some software described is under

00-FM.indd 17 9/6/12 6:20 PM

xviii 	 Introduction

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

development and should be carefully considered before use in a produc-
tion environment.

Conventions
All code in this book is shown in a proportional font. For example:

mysql> SHOW MASTER STATUS\G
 File: log-bin.000006
 Position: 348043830
 Binlog_Do_DB:
Binlog_Ignore_DB:
1 row in set (0.01 sec)

SQL statements in code examples are prefixed with mysql> to indicate
execution with the mysql command line client. This program is included
with a full MySQL distribution. When using multiple servers with MySQL
replication examples, the prefixes master> and slave> are used accord-
ingly for clarification. For example:

master> SHOW MASTER STATUS;
slave> SLAVE START;

All SQL statements listed with these prefixes can generally be performed
in any alternative MySQL client graphical user interface (GUI) tool; however,
the \G syntax for vertical display output is a mysql command line client-
specific directive.

All SQL syntax within text or code examples is in uppercase. For exam-
ple, the SHOW SLAVE STATUS statement provides important information
on the state of replication on a slave. This SQL syntax is provided in the
standard paragraph font. SQL statements in MySQL are case insensitive.
This syntax is used only to easily distinguish SQL keywords from other
database objects or variables in statements and is not required when using
MySQL.

A specific syntax or value from a code example that is described in gen-
eral text is provided in a monofont, for example, the Seconds_Behind_
Master value.

For any Unix/Linux command, this is prefixed with a $ to indicate a shell
prompt. For example:

$ mysqladmin extended-status

00-FM.indd 18 9/6/12 6:20 PM

	 Introduction	 xix

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

While this book does not describe the use of MySQL for Microsoft operat-
ing systems, MySQL is supported on this platform, and many of the stan-
dard MySQL commands detailed will also operate on Microsoft systems.
The majority of scripts, utilities, and tools used to support MySQL replica-
tion that are described in this book will not operate natively with Microsoft;
however, most administration can be performed remotely on a Linux/Unix
client connecting to a MySQL instance on a Microsoft operating system.

About MySQL
The MySQL database server is an open source product released under the
GPL V2 license. More information about this license can be found at http://
www.mysql.com/about/legal/licensing/index.html. The copyright owner
of MySQL at the time of this publication is Oracle Corporation. Oracle
Corporation provides product development, commercial licenses for OEM
providers, and comprehensive subscription services that includes com-
mercial support and additional product features.

More information about MySQL can be found at the official MySQL
website at http://mysql.com and the MySQL developer zone at http://dev
.mysql.com.

The current generally available (GA) version of MySQL is version 5.5. This
book is written to support MySQL versions 5.0 and later, with specific ver-
sion differences noted when applicable. The current development milestone
release (DMR) and next version of MySQL is version 5.6. Documented in
this book are many new MySQL replication features that are in this current
5.6 development version. These are subject to the Oracle Safe Harbor state-
ment that is included here for reference.

Oracle Safe Harbor Statement for MySQL 5.6 Features
The following is intended to outline our general product direction. It is in-
tended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or func-
tionality, and should not be relied upon in making purchasing decisions.
The development, release, and timing of any features or functionality de-
scribed for Oracle’s products remains at the sole discretion of Oracle.

00-FM.indd 19 9/6/12 6:20 PM

http://www.mysql.com/about/legal/licensing/index.html
http://www.mysql.com/about/legal/licensing/index.html
http://mysql.com
http://dev.mysql.com
http://dev.mysql.com

xx 	 Introduction

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Open Source Licenses
Products detailed in this book are covered under various different open
source licenses and may have different conditions for use. These include
the following:

•	GPL  The GNU General Public License (GPL) may be version 2 or
version 3. More information can be found at http://www.gnu.org/
copyleft/gpl.html.

•	LGPL  The GNU Lesser General Public License (LGPL) can be
found at http://www.gnu.org/copyleft/lesser.html.

•	BSD  Information on the Berkeley Software Distribution (BSD)
license can be found at http://www.linfo.org/bsdlicense.html. The
New BSD License/Modified BSD license and the Simplified BSD
License/Free BSD License are variants of this license.

•	Creative Commons (CC)  Details of the various different CC
licenses can be found at http://creativecommons.org/.

More information about various open source licenses can be found at
the Open Source Initiative website at http://www.opensource.org/. A de-
tailed list of the various licenses can also be found at http://www.gnu.org/
licenses/license-list.html.

Common Technical Abbreviations
It is expected that the reader of this book have a basic understanding of
SQL and relational databases. The following commonly used abbrevia-
tions are important and familiar terms when using MySQL and develop-
ing software with MySQL.

Relational Database Terms

RDBMS - Relational Database Management System
SQL - Structured Query Language
DBA - Database Administrator
DDL - Data Definition Language
DML - Data Manipulation Language
ACID - Atomicity, Consistency, Isolation, Durability

00-FM.indd 20 9/6/12 6:20 PM

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lesser.html
http://www.linfo.org/bsdlicense.html
http://creativecommons.org/
http://www.opensource.org/
http://www.gnu.org/licenses/license-list.html
http://www.gnu.org/licenses/license-list.html

	 Introduction	 xxi

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Hardware Terms

CPU - Central Processing Unit
RAID - Random Array of Independent Disks
SSD - Solid State Drive
I/O - Input/Output

Software Terms
SSL - Secure Sockets Layer
SSH - Secure Shell
IP - Internet Protocol
DNS - Domain Name Services
GNU - GNU’s Not Unix!
BSD - Berkeley Software Distribution
GPL - GNU Public License

Common MySQL Terms
GA - Generally Available
RC - Release Candidate
DMR - Development Milestone Release

Additional terms that the reader may not be familiar with are described
at the appropriate time.

Code Examples
All examples detailed in this book are available for download from the Effec-
tive MySQL site at http://effectivemysql.com/book/replication-techniques/.
Code, scripts, and sample data are also available on GitHub at https://github
.com/effectiveMySQL/ReplicationTechniques.

A separate text document of all URLs used is also included on the
website to enable quick access to these references.

References
The MySQL Reference Manual at the MySQL developer zone is an invalu-
able resource. This can be found at http://dev.mysql.com/doc/refman/5.5/
en/index.html. Access to manuals for both older and newer MySQL versions
can be found at http://dev.mysql.com/doc.

00-FM.indd 21 9/6/12 6:20 PM

http://effectivemysql.com/book/replication-techniques/
https://github.com/effectiveMySQL/ReplicationTechniques
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://dev.mysql.com/doc
https://github.com/effectiveMySQL/ReplicationTechniques

xxii 	 Introduction

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The Planet MySQL website at http://planet.mysql.com provides an
aggregation of thousands of MySQL bloggers detailing everything about
MySQL. This is excellent resource for information on MySQL replication
examples, experiences, and use cases.

00-FM.indd 22 9/6/12 6:20 PM

http://planet.mysql.com

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

1

1
The Five Minute DBA

MySQL replication has stopped on a slave server with an error message.
What is the impact of this error on your application users, your scale-out
architecture, and your backup and recovery strategy? You have to make a
choice between skipping the SQL statement and correcting your informa-
tion to enable the SQL statement to succeed successfully. What is the impact
on data consistency for each choice? What could the downstream effects be?

As a DBA, you need to use the information from various tools to deter-
mine if a problem exists, find exactly what has gone wrong, and then fix the
underlying issue in order to ensure this does not happen again.

01-ch01.indd 1 9/6/12 2:18 PM

2 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we will be discussing:

•	Essential information to diagnose a replication issue

•	Options for correcting stopped replication

•	Understanding causes of replication problems

The 2 a.m. Alert Notification
You receive an alert that MySQL replication has stopped on your produc-
tion slave server that is running MySQL 5.5. This rarely happens during
work hours or at an appropriate time.

SHOW SLAVE STATUS
The first action is to look at the current replication status on the applicable
server. You achieve this with the following SQL statement:

slave> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 10.0.0.48
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.001220
 Read_Master_Log_Pos: 3453586
 Relay_Log_File: relay-log.003586
 Relay_Log_Pos: 3452185
 Relay_Master_Log_File: mysql-bin.001220
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 1062
 Last_Error: Error 'Duplicate entry '42-2011-04-16 00:00:00'
for key 'user_id'' on query. Default database: 'book'. Query: 'INSERT INTO
product_comment(product_id,user_id,comment_dt,comment) VALUES
(20,42,'2011-04-16 00:00:00','I found this very useful with product Y')'
 Skip_Counter: 0
 Exec_Master_Log_Pos: 3452040
 Relay_Log_Space: 3453930
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0

01-ch01.indd 2 9/6/12 2:18 PM

	 The Five Minute DBA	 3

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: NULL
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 1062
 Last_SQL_Error: Error 'Duplicate entry '42-2011-04-16 00:00:00'
for key 'user_id'' on query. Default database: 'book'. Query: 'INSERT INTO
product_comment(product_id,user_id,comment_dt,comment) VALUES
(20,42,'2011-04-16 00:00:00','I found this very useful with product Y')'
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1

There are several indicators of a replication problem with this output.

•	The SQL thread is not running, as indicated by
Slave_SQL_Running=No

•	Replication lag is unknown, indicated by
Seconds_Behind_Master=NULL

•	Error information identified in Last_Errno and Last_Error

At 2 a.m. in the morning, determining what caused this may not be as
important as rectifying the problem to ensure your data is up to date for
your application to use the slave server that has the reported error.

NOTE  Columns in this output have not been ordered by importance. The
convention of the MySQL product has been to add new columns to the end
of the list—for example, Replicate_Ignore_Server_ids and
Master_Server_Id are new columns for MySQL 5.5. In MySQL 5.1,
individual error numbers and descriptions were added for the I/O and SQL
threads at the end of the list rather than with existing error columns.

TIP  Many alerting systems use rules to determine an error condition. In this
example, an alert was triggered by the rule Seconds_Behind_Master =
NULL OR Seconds_Behind_Master > 30. Incorporating the output of
the SHOW SLAVE STATUS command in the email alert is one further step
toward improving the diagnosis. This saves time, and could enable some form
of action without having to initially connect to the server.

01-ch01.indd 3 9/6/12 2:18 PM

4 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Identifying the Problem
Instead of automatically correcting the problem, it is important to first un-
derstand why MySQL replication is not running. Was this due to an error,
or was replication stopped for some other purpose—for example, a backup
process or software upgrade? The Slave_SQL_Running=No indicator is
not solely the result of an unexpected error. The STOP SLAVE SQL_
THREAD statement produces the same situation. This is one reason why
an alert on this condition is not always accurate. An alert should be in place
for Slave_SQL_Running=No; however, you do not want to be alerted ev-
ery morning when the backup process stops replication intentionally, but
only when the backup process fails and replication is not restarted in an
appropriate amount of time. MySQL replication includes two threads, as
shown in the earlier SHOW SLAVE STATUS output, and the I/O thread is
still running with SLAVE_IO_Running=Yes. It is important to monitor
both thread states.

SHOW CREATE TABLE
The actual error message from the SHOW SLAVE STATUS output in the
Last_Error column shows a duplicate key error occurred. This can be
confirmed with a review of the structure of the underlying database table,
and then looking at the current data:

slave> SHOW CREATE TABLE product_comment\G
*************************** 1. row ***************************
 Table: product_comment
Create Table: CREATE TABLE `product_comment` (
 `comment_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `product_id` int(10) unsigned NOT NULL,
 `user_id` int(10) unsigned NOT NULL,
 `comment_dt` datetime NOT NULL,
 `comment` varchar(1000) NOT NULL,
 PRIMARY KEY (`comment_id`),
 UNIQUE KEY `user_id` (`user_id`,`comment_dt`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=latin1

As you can see, there is a UNIQUE KEY called user_id on the user_
id and comment_dt columns, which corresponds with the index name in
the error message. MySQL can only produce a duplicate entry message for
a UNIQUE KEY or the PRIMARY KEY. The value from the Last_Error
column can be used to determine the actual values that were being

01-ch01.indd 4 9/6/12 2:18 PM

	 The Five Minute DBA	 5

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

inserted. The following SQL statement can be constructed to verify the
data causing the error:

slave> SELECT * FROM product_comment
 -> WHERE user_id = 42
 -> AND comment_dt = '2011-04-16 00:00:00'\G
*************************** 1. row ***************************
comment_id: 1
product_id: 10
 user_id: 42
comment_dt: 2011-04-16 00:00:00
 comment: The packaging does not state this requires X
(1 row in set (0.01 sec)

Indeed, the SQL statement reported by MySQL replication that caused
the duplicate key violation was correct. Now what? Is this statement some-
how invalid? Should we ignore it? Is the data that exists in the table incor-
rect? Should it be deleted? The product_id and comment values are actu-
ally different, indicating this statement is not an identical statement, only
the unique key constraint columns of user_id and comment_dt are dupli-
cated.

At this time there is insufficient information to make an informed deci-
sion. One option is to review the master MySQL database to look at the
data for verification:

master> SELECT * FROM product_comment
 -> WHERE user_id = 42
 -> AND comment_dt = '2011-04-16 00:00:00'\G
*************************** 1. row ***************************
comment_id: 1
product_id: 10
 user_id: 42
comment_dt: 2011-04-16 00:00:00
 comment: The packaging does not state this requires X
*************************** 2. row ***************************
comment_id: 2
product_id: 20
 user_id: 42
comment_dt: 2011-04-16 00:00:00
 comment: I found this very useful when used with product Y
(2 rows in set (0.01 sec)

We find there is a discrepancy in the master and slave data. That was
unexpected because this violates the defined unique key constraint. Verify-
ing the table structure on the master database gives us:

master> SHOW CREATE TABLE product_comment\G
*************************** 1. row ***************************
 Table: product_comment

01-ch01.indd 5 9/6/12 2:18 PM

6 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Create Table: CREATE TABLE `product_comment` (
 `comment_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `product_id` int(10) unsigned NOT NULL,
 `user_id` int(10) unsigned NOT NULL,
 `comment_dt` datetime NOT NULL,
 `comment` varchar(1000) NOT NULL,
 PRIMARY KEY (`comment_id`),
 KEY `user_id` (`user_id`,`comment_dt`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=latin1

A key exists for the user_id and comment_dt columns; however, closer
inspection shows this is no longer a unique constraint. As the MySQL slave is
a copy of the master, you may ask how this happened. In MySQL, it is possi-
ble for a slave to have a different table structure and still operate normally. In
this example, the difference has subsequently caused an error. There are sev-
eral techniques and utilities for comparing database objects between MySQL
instances to identify differences. These are discussed in Chapters 2 and 5.

Rectifying the Problem
We can see that the underlying data on the master is different from the
data on the slave, and that the SQL statement would seem to bring the data
toward a more consistent state. One option is to simply start the slave and
see if some bizarre unexplained situation caused MySQL replication to
stop unexpectedly, and now it will magically work. In this case, because we
have reviewed the underlying table structure and table constraints, this is
not going to result in a successful outcome.

SQL_SLAVE_SKIP_COUNTER
A common, although normally discouraged, approach is to simply skip over
the SQL statement and move onto the next statement in the replication
stream. This would be achieved by running the following SQL statements:

slave> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = 1;
slave> START SLAVE SQL_THREAD;

Further verification of the replication status with SHOW SLAVE STA-
TUS confirms that error has been skipped:

slave> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
...
 Slave_IO_Running: Yes

01-ch01.indd 6 9/6/12 2:18 PM

	 The Five Minute DBA	 7

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Slave_SQL_Running: Yes
...
 Last_Errno: 0
 Last_Error:
...
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1

CAUTION  It is important that you understand why a SQL statement failed
before executing SQL_SLAVE_SKIP_COUNTER. This may only result in one
error being ignored, and the following SQL statements may cause MySQL
replication to stop again. How many SQL statements do you skip before
considering if this was a good idea?

As you can see, the error is now gone, MySQL replication is running,
and you can return to sleep. This, however, is not the appropriate solution
to this problem. What has happened is that you have now caused an incon-
sistency between the data in the master database table and the slave data-
base table. For example:

master> SELECT COUNT(*) FROM product_comment WHERE user_id=42;
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
slave> SELECT COUNT(*) FROM product_comment WHERE user_id=42;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

MySQL replication is an asynchronous process and does not perform a
consistency checksum of the underlying data in the table. As long as a SQL
statement completes without error, replication will report success regard-
less of the number of rows affected. In Chapter 2 we will discuss these de-
sign characteristics and the related issues in more detail.

01-ch01.indd 7 9/6/12 2:18 PM

8 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

When working with multiple MySQL instances in a large topology, you
can change the default MySQL prompt as described in the previous
examples. This was achieved in the mysql client with:

mysql> PROMPT slave>

TIP  For more complex topologies, it is advisable to use additional attributes,
including the host, schema, and user, in the prompt for the MySQL command
line client.

Addressing the Underlying Cause
There are many reasons why MySQL replication may stop with an error. In
Chapter 2 we will discuss the most common causes and respective solu-
tions. In this situation, we discovered that the table schema was different
with both servers. How did this happen?

We can determine that the table was changed on the master, but not on
the slave. There is insufficient auditing history to determine who or what
performed this operation. This issue occurred because a software upgrade
of the application schema objects on all MySQL databases was not com-
pleted correctly. The following statements were found to have occurred on
the master database by reviewing the upgrade procedure:

master> SET SQL_LOG_BIN=0;
master> ALTER TABLE product_comment
 -> DROP INDEX user_id,
 -> ADD INDEX (user_id, comment_dt);
master> SET SQL_LOG_BIN=1;

Analysis to determine the cause of this problem required more work than
reviewing MySQL schema and data. It was not possible to determine this
precise syntax from any MySQL logs. It was necessary to review the busi-
ness process that occurred and supporting system logs. This confirmed that
an application upgrade with schema modifications was performed recently.

From this SQL, the underlying table structure of the product_comment
table was modified to remove the uniqueness constraint for the user_id,
comment_dt index. The reason why this was not applied on the slave data-
base table is the SET SQL_LOG_BIN=0 statement. This statement disables

01-ch01.indd 8 9/6/12 2:18 PM

	 The Five Minute DBA	 9

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

the MySQL binary log for the ALTER statement. The binary log is the com-
munication channel used for replication events to a slave.

There is a perfectly valid reason for this syntax when executing an AL-
TER TABLE statement in a large replication environment. To maximize
uptime of MySQL servers and to not block the MySQL slave SQL thread,
which is a single thread, running ALTER TABLE commands manually on
each server provides a means to bypass the MySQL replication single-
thread limitation.

The management process for this software upgrade process has failed.
First, not all servers have this modification, and second, slave servers
should generally be upgraded first. Third, and more importantly, you as the
on-call DBA may have not been notified of a software upgrade process
occurring. It is also possible you were notified and this occurred some time
ago, and only now an error situation has occurred.

Rectifying the Problem Correctly
The correct resolution for this problem is to find out why the table struc-
tures are different. In this situation, that is, applying the software upgrade
to the slave server before restarting MySQL replication. You could have
chosen to modify the structure of this table to be consistent with the mas-
ter; however, understanding that a change happened does not inform you
of other changes that may have occurred at the same time. This could be a
process that involves a lot of work and significant downtime, depending on
the time to execute schema changes.

The outcome of this problem highlights that having additional checks
for schema object consistency is needed. MySQL tables, columns, triggers,
and stored procedures can all have an effect on replication, as shown in
this example. As described in Effective MySQL: Backup and Recovery (Mc-
Graw-Hill, 2012), it is important that your regular backup strategy collect
metadata on objects and checks with previous versions for any detectable
differences. In Chapter 5 we will discuss a number of tools that can help in
determining and correcting problems, including this example.

TIP  It is always important to keep a copy of your database objects for backup
purposes. This process can also be used to perform additional validation checks
between servers in your replication topology for any inconsistencies.

01-ch01.indd 9 9/6/12 2:18 PM

10 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Understanding Replication Issues
MySQL replication is an asynchronous operation that works by processing
completed DDL and DML statements on the master that are recorded in
the binary log. A MySQL slave can only have one MySQL master server.
This limitation is subject to change in future MySQL versions, and is
already possible when using Tungsten Replicator. The processing of binary
log statements on individual slaves is via a pull process. In most situations,
MySQL replication works just fine and without incident.

Some features of MySQL can complicate replication—for example, tem-
porary table processing. While data on a MySQL slave can be identical to a
MySQL master, there are also ways the data may differ. You may choose to
use different storage engines, and these could result in the same data, or
with the BLACKHOLE storage engine, different data. Different configura-
tion options for replication can include or exclude specific tables, or act
differently when handling SQL errors. Chapter 7 will discuss configura-
tion options in more detail.

It is important to understand how replication works and how to use rep-
lication effectively in your environment for your business needs.

User Security
As seen by this example, a software upgrade was able to modify the ex-
pected results of the replication stream with a SQL command. Alterna-
tively, does your application have sufficient permissions to do the same?
The classic GRANT ALL ON *.* privilege for an application user is cause
for great alarm in a number of situations, including the ability to disable
binary logging as shown here, bypass slave read-only capabilities, and
modify global system variables that can affect durability and consistency.
Chapters 2 and 7 will discuss the SUPER privilege in more detail.

Configuration Options and Variables
The MySQL reference manual provides a good introduction and back-
ground on configuration and implementation options at http://dev.mysql
.com/doc/refman/5.5/en/replication.html.

01-ch01.indd 10 9/6/12 2:18 PM

http://dev.mysql.com/doc/refman/5.5/en/replication.html
http://dev.mysql.com/doc/refman/5.5/en/replication.html

	 The Five Minute DBA	 11

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

There are several important configuration variables that can directly af-
fect replication operation. The change of slave_exec_mode variable from
the default value of STRICT to IDEPOTENT would alter the result of the
error reported in this chapter example. In addition to disabling the replica-
tion stream, rules on the master or the slave can change what SQL state-
ments are executed. Chapter 7 will provide full details of important MySQL
configuration options.

Conclusion
MySQL replication is the backbone of any production MySQL infrastruc-
ture. Replication can be used for read scalability, a failover strategy, a backup
strategy, geographical support, software testing, and many other purposes.
The flexibility in these choices show that MySQL replication is a technology
feature that should be carefully understood, managed, and monitored.

MySQL replication is not without issues in more complicated situations.
This chapter has indicated one potential issue. In Chapter 2 we will discuss
more common replication problems, and in further chapters will show
how to use replication effectively and what additional features, configura-
tion, and third-party products can be used in providing advanced replica-
tion techniques to support any complex MySQL topology.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

01-ch01.indd 11 9/6/12 2:18 PM

http://EffectiveMySQL.com/book/replication-techniques

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

13

2
Diagnosing Common
Replication Problems

MySQL replication has detected an error condition and has stopped.
While correction is necessary, why did this SQL statement failure occur?
How would you avoid this situation in the future? What are the implications
on your data consistency? Understanding replication conditions can help in
designing preventive measures and monitoring for problem detection and
management.

02-ch02.indd 13 9/6/12 2:22 PM

14 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we will be discussing:

•	Detecting replication errors

•	Managing consistency issues

•	Addressing replication lag

•	 Ideal monitoring guidelines

MySQL Replication Architecture Review
To understand the features and limitations of MySQL replication, it is impor-
tant to understand the basic mechanics between a MySQL master and slave.

As outlined in Figure 2-1, the following are the key steps in the successful
execution of a transaction in a standard asynchronous MySQL replication
environment. This is not an exhaustive list of all data, memory, and file I/O
operations performed, rather a high level representation of important steps.

1.	 A MySQL transaction is initiated on the master (Point 1).

2.	 One or more SQL statements are applied on the master (Point 2).
The true implementation of the physical result depends on the
storage engine used. Generally, regardless of storage engine, the
data change operation is first recorded within the applicable
memory buffer. For InnoDB, the statement is recorded in the
InnoDB transaction logs (note that InnoDB data is written to disk by
a separate background thread). For MyISAM, the operation is
written directly to the applicable table data file.

3.	 At the completion of the transaction, the master binary log records
the result of the DML or DDL statement(s) applied (Point 3).
MySQL supports varying modes that may record the statement(s)
or the actual data changes.

4.	 A success indicator is returned to the calling client program to
indicate the completion of the transaction (Point 4).

5.	 The slave server detects a change has occurred in the master
binary log position (Point 5).

6.	 The changes are received (i.e., a pull process) by the slave server
and written to the slave relay log by the slave I/O thread (Point 6).

02-ch02.indd 14 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 15

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

7.	 The slave SQL thread reads the new events from relay log (Point 7)
and applies all statements in the transaction (Point 8). These
changes may be recorded as a statement to be executed, or as
a physical row modification.

8.	 A success indicator is returned to the slave replication
management when the transaction completes.

In summary, SQL transactions are recorded in the master binary log,
and the change of this log is used as a triggering event for the slave to pull
the change. Throughout this book we will discuss different features that
affect and can alter this default asynchronous behavior.

Interpreting Replication Information
Knowing what and where to look for replication information is a key com-
ponent in the toolbox of a DBA; however, interpreting replication informa-
tion can sometimes be challenging. Understanding the moving parts, how
they act together, and how to view the state of replication are essential
steps to administer MySQL. In the following sections we will outline the
components of replication and how to use various commands and tools to
make informed decisions about your replicated environment.

Figure 2-1  MySQL replication workflow

Client Process

MySQL Kernel

Master

Binary
Log

1

4

2
3

InnoDB
Trans
LogData Data

MySQL Kernel

IO Thread SQL Thread

Slave

Relay
Log

6

5

7 8

InnoDB
Trans
Log

02-ch02.indd 15 9/6/12 2:22 PM

16 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Binary Logs
Replicating data with MySQL default replication requires you to enable
the binary log. This is specified with the --log-bin=[base_name] op-
tion when starting mysqld or with the MySQL configuration file (e.g.,
my.cnf). The default value for the base_name for the binary log is the
hostname of the server where MySQL is running. Changing the base_
name of the binary logs from the default can help you avoid confusion if
the hostname of the server changes in the future. The actual binary logs
will include the base name and a sequenced extension.

MySQL will also create a binary log index file. This will default to the
location and base_name of the binary logs, and with an .index extension.
The log-bin-index configuration option can be used to change this. The
following code snippet lists these files based on a defined value in the con-
figuration file that includes a full directory.

$ MYCNF="/etc/my.cnf"
$ BINLOG=`grep log-bin ${MYCNF} | cut -d'=' -f2`
$ echo ${BINLOG}
$ DIR=`dirname ${BINLOG}`
$ cd ${DIR}
$ ls -lh *
$ cat *.index
/opt/mysql/binlog/mysql-bin
-rw-rw---- 1 mysql mysql 49M Apr 30 2011 mysql-bin.000001
-rw-rw---- 1 mysql mysql 1.1G May 16 06:28 mysql-bin.000002
-rw-rw---- 1 mysql mysql 772M May 29 21:50 mysql-bin.000003
-rw-rw---- 1 mysql mysql 400M Jun 5 17:29 mysql-bin.000004
-rw-rw---- 1 mysql mysql 140 May 29 21:52 log-bin.index
/opt/mysql/binlog/mysql-bin.000001
/opt/mysql/binlog/mysql-bin.000002
/opt/mysql/binlog/mysql-bin.000003
/opt/mysql/binlog/mysql-bin.000004

TIP  It is recommended that you always specify the base_name for log-bin.
The general recommendation is to provide a generic name without including
details of the specific host.

The binary log contains all write activity applied to the MySQL server,
such as INSERT, UPDATE, DELETE, REPLACE, CREATE, ALTER, and
DROP statements. Read activity is not recorded in the binary log. If you
want to record all read and write activity, you can enable the general log
using the general_log and general_log_file options.

NOTE  Historically, the general log was enabled with --log. This variable is
deprecated as of MySQL 5.1.

02-ch02.indd 16 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 17

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

CAUTION  While the general log provides details of all SQL statements
executed, it is not recommended to enable this in a production environment due
to the performance impact of logging a large number of statements.

Binary Log Analysis
The binary log, as the name suggests, is an internal format. Using the
mysqlbinlog client utility, you can view statements that are recorded in
binary logs—for example:

NOTE  The mysqlbinlog utility is the recommended tool for reading
binary logs.

$ mysqlbinlog `pwd`/mysql-bin.000001
at 107
#111030 19:32:04 server id 1 end_log_pos 242 Query thread_id=4
exec_time=0 error_code=0
USE book3/*!*/;
SET TIMESTAMP=1320003124/*!*/;
SET @@session.pseudo_thread_id=4/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0,
@@session.unique_checks=1, @@session.autocommit=1/*!*/;
SET @@session.sql_mode=0/*!*/;
SET @@session.auto_increment_increment=1, @@session.auto_increment_offset=1/*!*/;
/*!\C utf8 *//*!*/;
SET @@session.character_set_client=33,@@session.collation_connection=33,
@@session.collation_server=33/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
CREATE TABLE repl_test (ts INT, dt DATETIME)
/*!*/;
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;
…

An alternative way to gather all SQL information on a MySQL server is
to use the slow query log and set the long_query_time to 0. Using the
slow query log in this manner has the added benefit of being easier to
parse with utilities, including pt-query-digest and mysqldumpslow.

TIP  It is possible to record the slow query information into the mysql.slow_log
table using the log_format configuration option. This can be of benefit if
enabled for a few seconds to record all SQL statements, which then can be mined
for additional information, including the read/write ratio and breakdown on a
per-table basis.

02-ch02.indd 17 9/6/12 2:22 PM

18 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The two primary uses for the binary log are for replication and data
recovery—more specifically, point in time recovery. These uses can be
combined to assist in creating a clone of a production server with minimal
downtime. Like other files in MySQL, the position of the file referenced in
many SHOW commands represents the byte offset of the file itself. For
example, the filesize can be found with the system tool stat:

$ stat mysql-bin.000001
 File: 'mysql-bin.000001'
 Size: 1052302 Blocks: 2064 IO Block: 4096 regular file
...

NOTE  The command line tool stat has a different output depending on its
origin. The code listing here is partial output from GNU stat, while the BSD
stat looks more like a ls -l output.

Alternatively, you could run the following:

$ ls -l mysql-bin.000001
-rw-rw---- 1 mysql mysql 1052302 Oct 30 18:47 mysql-bin.000001

The information about the binary log in MySQL can be found with the
SHOW MASTER STATUS command:

$ mysql -uroot –p -e "SHOW MASTER STATUS\G"
 File: mysql-bin.000001
 Position: 1052302
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:

The file size in bytes for the mysql-bin.000001 file is 1052302. The
position, shown in SHOW MASTER STATUS, is also 1052302. In a production
system, the binary log can be changing constantly. The information here is
shown on an idle server to demonstrate the verification steps.

As shown, the binary log names follow a base_name.nnnnnn conven-
tion, where nnnnnn represents a sequential file number. This number is
incremented when the individual binary log reaches the size as specified
by max_binlog_size, the server is restarted, or the FLUSH [BINARY]
LOGS statement is issued.

While mysqlbinlog is the most common approach to review binary log
files, several other options exist.

•	The SHOW BINLOG EVENTS IN 'file' command can read the
binary log events using an SQL interface.

02-ch02.indd 18 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 19

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	The MySQL replication listener includes the MySQL Binlog
API. This can be used to read and process events in the MySQL
binary log. This is discussed in Chapters 5 and 6.

•	The various replication pre-fetch tools read and process the binary
log. These tools can be used and modified to identify information.
These tools are discussed in Chapter 5.

•	Tungsten Replicator supports many different replication topologies.
This product first reads and processes the MySQL binary log. This
open source product can be used and modified appropriately to
analyze binary logs. This is discussed in Chapter 6.

The binary log contains a wealth of data that can be mined to provide
interesting information. The following command analyzes a binary log and
provides DML statistics broken down by individual table. You can use this
approach with various mysqlbinlog arguments to also determine statis-
tics for any time duration. For example:

$ mysqlbinlog /path/to/mysql-bin.000999 | \
 grep -i -e "^update" -e "^insert" -e "^delete" -e "^replace" -e "^alter" | \
 cut -c1-100 | tr '[A-Z]' '[a-z]' | \
 sed -e "s/\t/ /g;s/\`//g;s/(.*$//;s/ set .*$//;s/ as .*$//" | \
 sed -e "s/ where .*$//" | sort | uniq -c | sort -nr

 33389 update e_acc
 17680 insert into r_b
 17680 insert into e_rec
 14332 insert into rcv_c
 13543 update e_rec
 10805 update loc
 3339 insert into r_att
 2781 insert into o_att
...

More information about this simple command can be found at http://
ronaldbradford.com/blog/mysql-dml-stats-per-table-2009-09-09/.

Binary Log Management
By default, MySQL does not remove old inactive binary logs; however, you
can enable automatic binary log removal with the expire_logs_days sys-
tem variable. The default for expire_logs_days is 0, which means no au-
tomatic removal of binary logs. As the system variable suggests, assigning a
value larger than 0 will remove binary logs older than the value specified,
where “value” is measured in days.

02-ch02.indd 19 9/6/12 2:22 PM

http://ronaldbradford.com/blog/mysql-dml-stats-per-table-2009-09-09/
http://ronaldbradford.com/blog/mysql-dml-stats-per-table-2009-09-09/

20 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Use caution with expire_logs_days, as MySQL will remove binary
logs indiscriminately that are older than expire_logs_days. There are
checks to ensure that all of the connected slaves are up to date; however, if
a slave is broken or not connected to the master, the purge will occur any-
way. For more information pertaining to binary log options, see Chapter 7.

Running the PURGE [BINARY|MASTER] LOGS command is a manual
method to remove binary logs. In a production environment, removing bi-
nary logs is easy to automate based on your requirements as an alternative
to using expire_logs_days. One reason you may need to automate the
removal of binary logs yourself would be to coincide the purge with a point
in time backup. There are two variations in which you can purge binary
logs: by specifying the actual log to purge to, or by specifying a DATETIME
using a BEFORE variant. The following are two examples for purging binary
logs.

Example 1 (Purge to a specified file):

mysql> PURGE BINARY LOGS TO 'mysql-bin.000005';

Here, all of the binary logs prior to mysql-bin.000005 on the server
would be removed, not including mysql-bin.000005 itself.

Example 2 (Purge to a specified date and time):

mysql> PURGE BINARY LOGS BEFORE '2011-10-31 09:00:00';

Here, all binary logs that were closed before the specified date would be
removed.

NOTE  PURGE MASTER LOGS and PURGE BINARY LOGS are
synonymous variants.

TIP  Effective MySQL: Backup and Recovery (McGraw-Hill, 2012) covers
the various options for managing binary logs in a production environment to
ensure adequate redundancy for a disaster recovery situation.

SHOW MASTER LOGS
The SHOW [MASTER|BINARY] LOGS command is used to see all of the
binary logs and their respective file sizes on the server’s host. Again, the
terms MASTER and BINARY are synonymous variants.

In the following example you will notice that there are six files with dif-
ferent sequential log numbers and file sizes:

02-ch02.indd 20 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 21

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

master> SHOW MASTER LOGS;
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
mysql-bin.000009	150
mysql-bin.000010	400567
mysql-bin.000011	72534
mysql-bin.000012	506830
mysql-bin.000013	615407
mysql-bin.000014	723937
+------------------+-----------+

It is important to mention that in the event a binary log is moved or re-
moved from the file system directly, MySQL will still show a pointer to that
file with a zero byte File_size even though the file no longer exists on
the file system. Moving or removing binary logs from the file system di-
rectly is not a recommended technique. The following example highlights
the impact of removing files physically:

$ rm –f mysql-bin.000009 mysql-bin.000010 mysql-bin.000011
master> SHOW MASTER LOGS;
+------------------+-----------+
| Log_name | File_size |
+------------------+-----------+
mysql-bin.000009	0
mysql-bin.000010	0
mysql-bin.000011	0
mysql-bin.000012	506830
mysql-bin.000013	615407
mysql-bin.000014	723937
+------------------+-----------+

You will see the file sizes for physical binary logs that can no longer be
found are zero bytes. When you run a subsequent PURGE MASTER LOGS
command you will see the following warnings:

master> PURGE MASTER LOGS TO 'mysql-bin.000012';
Query OK, 0 rows affected, 3 warnings (0.01 sec)
master> SHOW WARNINGS\G
*********************** 1. row ***********************
 Level: Warning
 Code: 1612
Message: Being purged log ./mysql-bin.000009 was not found
*********************** 2. row ***********************
 Level: Warning
 Code: 1612
Message: Being purged log ./mysql-bin.000010 was not found
*********************** 3. row ***********************
 Level: Warning
 Code: 1612
Message: Being purged log ./mysql-bin.000011 was not found
3 rows in set (0.00 sec)

02-ch02.indd 21 9/6/12 2:22 PM

22 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SHOW MASTER STATUS
As referenced earlier, you can use the SHOW MASTER STATUS command
to view information about the current binary log. A user running SHOW
MASTER STATUS needs the SUPER privilege. The current binary log is
displayed as File: mysql-bin.000001, as in the following example,
along with the Position: 107, which is a representation of the byte off-
set in the corresponding binary log:

master> SHOW MASTER STATUS\G
 File: mysql-bin.000001
 Position: 107
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:

There are three other pieces of information shown when running SHOW
MASTER STATUS.

•	Binlog_Do_DB is populated by listing databases in the system
variable --binlog-do-db=[database name(s)].

•	Binlog_Ignore_DB is populated by the system variable
--binlog-ignore-db=[database names]. If no value exists in
either setting, all write activity for all databases is being inserted into
the binary log.

•	Executed_Gtid_Set, new to MySQL 5.6.5, is used to show the set
of Global Transaction Identifiers (GTIDs) executed on the master.

SHOW SLAVE STATUS
MySQL provides a view of all information pertaining to the status of repli-
cation with SHOW SLAVE STATUS.

NOTE  The \G statement terminator for this statement is important for
readability; \G will display the output of any SQL statement vertically in the
mysql client.

The following is an example of the SHOW SLAVE STATUS output from
MySQL 5.5, the current GA version:

slave> SHOW SLAVE STATUS\G
 Slave_IO_State: Waiting for master to send event
 Master_Host: 10.0.0.1
 Master_User: repl
 Master_Port: 3306

02-ch02.indd 22 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 23

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Connect_Retry: 10
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 525
 Relay_Log_File: mysqld-relay-bin.000002
 Relay_Log_Pos: 671
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 525
 Relay_Log_Space: 828
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1

SHOW SLAVE STATUS displays information about all aspects of repli-
cation for the given slave host. Reading the output earlier, you will be able
to see what master server the slave is replicating from.

The most important components shown in SHOW SLAVE STATUS per-
tain to files and positions, along with the SQL and I/O slave thread. These
two threads perform the physical work of writing and reading the relay log
(the I/O thread) and applying the new events on the slave (the SQL thread).

•	Master_Log_File  The name of the current binary log the slave
I/O thread is currently reading from.

•	Read_Master_Log_Pos  The position in the current master binary
log the slave I/O thread has read up to.

02-ch02.indd 23 9/6/12 2:22 PM

24 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	Relay_Log_File  The name of the current relay log where the
slave SQL thread is reading from.

•	Relay_Log_Position  The position of the current relay log read
and executed by the slave SQL thread.

•	Relay_Master_Log_File  The binary log where the most recently
executed event by the slave SQL thread resides.

•	Slave_IO_Running  States if the slave server has connected to the
master host. There are three values: Yes, No, and Connecting (since
version 5.1.46). Checking the corresponding value of Slave_
running, a system status variable, can also help you determine if the
slave is connected to the master.

•	Slave_SQL_Running  States if the SQL thread is running.

There can be, and probably will be, times when your slave host falls
behind the master given the asynchronous nature of MySQL replication.
Innovations in MySQL 5.5, including semisynchronous replication and
features in the 5.6 version of MySQL, have led to many replication im-
provements. Multithreaded slaves, checksums, and crash-safe slaves are
just a few of these new features that will continue to be enhanced in future
releases. These are discussed in detail in Chapter 3.

Refer to the MySQL documentation at http://dev.mysql.com/doc/refman
/5.5/en/show-slave-status.html for a full listing of SHOW SLAVE STATUS
output. It is important you view the documentation for the specific version
of MySQL in use.

New MySQL 5.1 Information  The following new columns were added in
MySQL 5.1:

•	Master_SSL_Verify_Server_Cert

•	Last_IO_Errno

•	Last_IO_Error

•	Last_SQL_Errno

•	Last_SQL_Error

02-ch02.indd 24 9/6/12 2:22 PM

http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-slave-status.html

	 Diagnosing Common Replication Problems	 25

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

New MySQL 5.5 Information  The following new columns were added in
MySQL 5.5:

•	Replicate_Ignore_Server_Ids

•	Master_Server_Id

New MySQL 5.6 Information  The following are new columns in
MySQL 5.6.5 at the time of this publication and are subject to possible
change before general availability:

•	Master_Info_File

•	SQL_Delay

•	SQL_Remaining_Delay

•	Slave_SQL_Running_State

•	Master_Retry_Count

•	Master_Bind

•	Last_IO_Error_Timestamp

•	Last_SQL_Error_Timestamp

•	Master_SSL_Crl

•	Master_SSL_Crlpath

•	Retrieved_Gtid_Set

•	Executed_Gtid_Set

Relay Logs
MySQL uses a numbered set of files on the slave, called relay logs, to hold
replicated database changes before the SQL thread applies them to the
slave. The relay log files are numbered in sequence, starting from 000001,
and are accompanied by what is referred to as the relay index file, which
contains the names of all relay files currently available. Relay log files are
in the same format as MySQL binary logs, making them easy to read using
the mysqlbinlog client utility.

NOTE  The mysqlbinlog utility is the recommended tool for reading the
relay logs.

02-ch02.indd 25 9/6/12 2:22 PM

26 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Like the binary log, a relay log position is a representation of a byte off-
set in the file, so if the Relay_Log_Pos is 671 and the Relay_Log_File is
mysqld-relay-bin.000002, then MySQL has read up to 671 bytes of
the corresponding file. The naming conventions for the relay log file can
be altered with the relay-log=[file_name] and the relay log index
with relay-log-index=[file_name] options in the my.cnf file. If
either of the preceding is absent in the my.cnf file, the relay logs will take
their naming convention from the pid-file option if specified.

For example, when the pid-file option is specified in the my.cnf and
the relay-log and relay-log-index are omitted, the relay logs will be
mysql_3306-relay-bin.index and mysql_3306-relay-bin.000001.
If relay-log, relay-log-index, and pid-file are not specified, the
relay logs will default to host_name-relay-bin.nnnnnn and host_
name-relay-bin.index, where host_name is the server host and nnnnnn
represents the sequential file numbering.

All events are recorded in the relay log files from the slave I/O thread.
The slave SQL thread will read these events and execute them on the slave
host. For example, to examine the relay log using the mysqlbinlog client
utility:

$ mysqlbinlog mysqld-relay-bin.000005
#111030 19:32:04 server id 1 end_log_pos 242 Query
 thread_id=4 exec_time=0 error_code=0
USE book3/*!*/;
SET TIMESTAMP=1320003124/*!*/;
SET @@session.pseudo_thread_id=4/*!*/;
SET @@session.foreign_key_checks=1, @@session.sql_auto_is_null=0,
@@session.unique_checks=1,
@@session.autocommit=1/*!*/;
SET @@session.sql_mode=0/*!*/;
SET @@session.auto_increment_increment=1,
@@session.auto_increment_offset=1/*!*/;
/*!\C utf8 *//*!*/;
SET @@session.character_set_client=33,@@session.
collation_connection=33,@@session.collation_server=33/*!*/;
SET @@session.lc_time_names=0/*!*/;
SET @@session.collation_database=DEFAULT/*!*/;
CREATE TABLE repl_test (ts INT, dt DATETIME)
/*!*/;
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

02-ch02.indd 26 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 27

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Shown in this output is the CREATE TABLE statement that was run
and described in the output of the master binary log.

Replication Consistency
MySQL replication has improved over the years; however, there are still
issues with data and schema consistency. One of the major concerns with
replication is the lack of checksums from the master to the slave. There are
two built-in types of binary logging configurable inside of MySQL. State-
ment-based replication (SBR) has been a feature of MySQL since 3.23 and
logs SQL statements to the binary log. Row-based replication (RBR) is rela-
tively new, implemented in version 5.1, and logs blocks of data instead of
the statement itself to the binary log. You can manipulate this format with
the configuration setting binlog_format={ROW|STATEMENT|MIXED}.
You can also change the binary log format at run-time by using SET
GLOBAL|SESSION binlog_format={ROW|STATEMENT|MIXED}. There
are three settings for binlog_format:

•	ROW  Causes logging to be row based.

•	STATEMENT  Causes logging to be statement based.

•	MIXED  Causes logging to be both row and statement based. In
some cases, statements are logged in statement format and in others,
row format. For more information on what statements cause
statement logging versus row logging, please refer to http://dev.mysql
.com/doc/refman/5.5/en/binary-log-mixed.html.

NOTE  When changing the binary log format at run-time you will need to
ensure that any slave host connected to the master has the proper binlog_
format enabled before you change the master host.

NOTE  The binlog_format for the mysqlbinlog example in the previous
section was set to STATEMENT.

In this section we will cover how to identify data integrity issues and
some examples of their cause.

02-ch02.indd 27 9/6/12 2:22 PM

http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.5/en/binary-log-mixed.html

28 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Identifying Data Inconsistencies
The most effective way to identify data inconsistencies caused by replica-
tion is to look at your data. There are three types of data inconsistencies
that need to be identified and fixed:

•	 Incorrect data on the slave.

•	The slave is missing a row.

•	The slave has an extra row.

When using SBR, a slave can easily become out of sync with its master.
In many cases data inconsistencies are caused by a crash of the mysqld
process and/or by using nontransactional storage engines, including My-
ISAM. Given that replication prior to MySQL 5.6 lacked checksum capa-
bilities, an administrator may never know about inconsistent data from
master to slave unless they use a third-party tool to check.

It can be difficult to identify when a slave server has become inconsistent
with the master. There are, however, tools to aid MySQL database adminis-
trators in identifying such problems. The widely used Percona Toolkit, origi-
nally Maatkit, created by Baron Schwartz and now maintained by Percona,
enables DBAs to identify and fix consistency issues within any given dataset.
Refer to Chapter 5 for more information about Percona Toolkit.

Identifying Schema Inconsistencies
Identifying schema inconsistencies and detecting when schema changes oc-
cur can be accomplished in a few ways depending on your business needs
and requirements.

MySQL has built-in status variables responsible for tracking if an
ALTER statement was run. The Com_alter_% status variables are counters
that could be tracked and recorded on a specified timetable for each server
in a MySQL replication topology. As you can see in the following, there has
been one ALTER TABLE statement issued on this host, given the value of
Com_alter_table:

NOTE  The global Com_alter_% status variables are reset when mysqld is
restarted or when FLUSH STATUS is issued.

02-ch02.indd 28 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 29

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

master> SHOW GLOBAL STATUS LIKE 'Com_alter%';
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
Com_alter_db	0
Com_alter_db_upgrade	0
Com_alter_event	0
Com_alter_function	0
Com_alter_procedure	0
Com_alter_server	0
Com_alter_table	1
Com_alter_tablespace	0
Com_change_master	0
Com_show_master_status	3
+------------------------+-------+

NOTE  All global status variables are reset after a server restart. Including the
Uptime value with all output can help determine if the variables have been
reset.

Schemasync is an open source tool that will identify schema differences
and create the SQL statements needed to bring a schema up to date. This
tool can also create the SQL for an undo script just in case you need to re-
vert the changes. For more information on schemasync, its capabilities,
and limitations please visit http://schemasync.org.

 MySQL Workbench is a graphical user interface (GUI) tool provided by
Oracle. One of the features of this tool is schema synchronization. Anyone
with the proper access and/or a SQL file can run schema diffs from server
to server or compare a SQL file to a running MySQL server. An adminis-
trator would also be able to automatically update a workbench model or
SQL file in either direction; furthermore, workbench models and running
MySQL servers can automatically update each other in either direction.

The mysqldump client utility can also be used when comparing schemas
on different hosts. When mysqldump is used in conjunction with the --no-
data option, a diff can be used with the output files. An extension of this
technique is incorporating md5sum to quickly determine any schema dif-
ferences between a master and slave(s). For example:

$ mysqldump -uuser –ppasswd –h[master] --no-data \
--skip-dump-date --databases [db]| md5sum
45fa52599346a4fab39634b69774301f -

02-ch02.indd 29 9/6/12 2:22 PM

http://schemasync.org

30 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$ mysqldump –uuser -ppasswd –h[slave] --no-data \
--skip-dump-date --databases [db] | md5sum
45fa52599346a4fab39634b69774301f -

NOTE  The options --no-data and --skip-dump-date are essential in
using this mysqldump technique to compare database schemas.

The problem with the example here is the definition of any primary key
columns that are auto increment. For an active environment these values
will change over time. You can address this data change by removing the
specific syntax from CREATE TABLE statements. Here is an example:

$ mysqldump -uuser –ppasswd –h[hostname] --no-data \
--skip-dump-date --databases [db] | sed -e \
"s/AUTO_INCREMENT=[0-9]* //" | md5sum

In the event of a difference in md5sum values you can drill down further
and check individual tables. The following script performs a more detailed
table check:

$ cat pertablemd5.sh
#!/bin/sh
SCRIPT_NAME=`basename $0`
AUTH="-uroot -ppasswd"
OPTIONS="--no-data --skip-lock-tables --skip-dump-date --skip-comments"
[$# -ne 3] && echo "USAGE: ${SCRIPT_NAME} <master> <slave> <schema>" \
 && exit 1
MASTER=$1
SLAVE=$2
DATABASE=$3

[-z "${TMPDIR}"] && TMPDIR="/tmp"
mkdir -p ${TMPDIR}

[-z `which mysql 2>/dev/null`] && echo "ERROR: mysql not found in the PATH" \

 && exit 1

HAVE_DIFF="FALSE"
for TABLE in `mysql ${AUTH} -h${MASTER} -e \
 "SELECT table_name FROM information_schema.tables WHERE table_schema " \

 " = '${DATABASE}'" |grep -vi "^TABLE_NAME" |uniq`
do
mysqldump ${AUTH} -h${MASTER} ${OPTIONS} --database ${DATABASE} --table $TABLE \
 --result-file=${TMPDIR}/master.${DATABASE}.${TABLE}.sql
MASTER_MD5=`cat ${TMPDIR}/master.${DATABASE}.${TABLE}.sql | md5sum`
mysqldump ${AUTH} -h${SLAVE} ${OPTIONS} --database ${DATABASE} --table $TABLE \
 --result-file=${TMPDIR}/slave.${DATABASE}.${TABLE}.sql

02-ch02.indd 30 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 31

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SLAVE_MD5=`cat ${TMPDIR}/slave.${DATABASE}.${TABLE}.sql | md5sum`
["${MASTER_MD5}" != "${SLAVE_MD5}"] && \
 echo "${DATABASE}.${TABLE} is different" && HAVE_DIFF="TRUE"
done
["${HAVE_DIFF}" = "TRUE"] && \
 echo "You can view individual differences with " \

 "$ diff ${TMPDIR}/*.DATABASE.TABLE.sql"
exit 0

This output includes lines that have been modified for display purposes.
A copy of the script can be obtained from http://EffectiveMySQL.com/
book/replication-techniques.

SBR Schema Validation
When using SBR, MySQL does not validate a schema difference between
master and slave. Columns can be out of order and have different type
characteristics, which can be beneficial, in some temporary cases, but can
also lead to issues within the database or application itself. In RBR you can
append columns to the end of a table on a slave; however, column ordinal
position and datatype validation are enforced. For example:

master> SET SESSION binlog_format=ROW;
master> CREATE SCHEMA IF NOT EXISTS book3;
master> USE book3
master> CREATE TABLE rbr_test(
 -> id INT UNSIGNED NOT NULL,
 -> val CHAR(3) NOT NULL,
 -> comment VARCHAR(55) DEFAULT NULL,
 -> PRIMARY KEY(id)
 ->) ENGINE=InnoDB;
master> INSERT INTO rbr_test (id,val,comment)
 -> VALUES (1,'aaa','hello test');

Now we modify the table on the slave:

slave> USE book3
slave> ALTER TABLE rbr_test MODIFY comment TEXT;

Now executing an INSERT on the master:

master> SET SESSION binlog_format=ROW;
master> USE book3
master> INSERT INTO rbr_test (id,val,comment)
 -> VALUES (3,'ccc','hello test');

02-ch02.indd 31 9/6/12 2:22 PM

http://EffectiveMySQL.com/book/replication-techniques
http://EffectiveMySQL.com/book/replication-techniques

32 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

And finally, on the slave, replication has failed with the following error:

slave> SHOW SLAVE STATUS\G
...
Last_Errno: 1677
Last_Error: Column 2 of table 'book3.rbr_test' cannot be
 converted from type 'varchar(55)' to type 'text'
...

Causes of Data Inconsistency
Data inconsistency can be caused by a number of factors. The most com-
mon reason is human intervention. Other common reasons for inconsis-
tent data can be attributed to configuration settings, a bug, feature, or crash
within mysqld itself.

Deactivating the binary log within a session can be extremely useful but
potentially dangerous. Changing the session variable SQL_LOG_BIN with
SET SESSION SQL_LOG_BIN = 0 may precede an ALTER table statement
in a planned schema change; however, if not reenabled within the same
session, all future statements are not replicated. Automation is the key to
avoiding a human error event like the one described earlier. The only time
an administrator should use this technique is when a schema change
would take too long for a normal maintenance window.

Setting the system variable, read_only, to 1 or ON is highly recommend-
ed to ensure no data modification can occur on a slave. Unfortunately, if a
user has been granted the SUPER privilege (which is also enabled with
GRANT ALL ON *.*), this user can bypass the read_only setting on the
slave. This is an avoidable problem that is solved by using discretion when
creating application user privileges.

Running replication while skipping databases and/or tables with
--replicate-ignore-db or --replicate-ignore-table can also
prove to be a problem. Session data, for example, stored in a database does
not generally require replication in most cases; however, if you are ignoring
the database or table and need to fail over or rebuild a node, you introduce
additional complications. RBR has improved replicated data consistency
issues and will be covered in detail in Chapter 3.

02-ch02.indd 32 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 33

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Common Replication Errors
There are many common replication errors that occur on slave servers.

MySQL Server ID
If, for instance, an administrator set up a new slave manually, the following
1593 error may occur:

slave> SHOW SLAVE STATUS\G
...
Slave_IO_Running: No
Slave_SQL_Running: Yes
...
 Last_IO_Errno: 1593
 Last_IO_Error: Fatal error: The slave I/O thread stops
 because master and slave have equal MySQL server ids; these ids must be
different for replication to work (or the --replicate-same-server-id option
must be used on slave but this does not always make sense; please check the
manual before using it).
...

A 1593 error is when both the master and slave have equal MySQL serv-
er IDs, and is easy to run into without proper automation and provisioning.
Fortunately, this is also a very easy problem to fix by simply changing the
server_id system variable on the slave server to be unique within the
cluster. Notice that this error stops the I/O thread from connecting to the
master server.

Missing Schema Objects
When running into schema differences, you may notice the 1146 replica-
tion error. Regardless of how the schema became different, there is a sim-
ple fix for the example shown here:

slave> SHOW SLAVE STATUS\G
...
 Slave_IO_State: Waiting for master to send event
 Slave_IO_Running: Yes
Slave_SQL_Running: No
...
 Last_Errno: 1146
 Last_Error: Error 'Table 'book3.no_tbl_on_slave' doesn't
 exist' on query. Default database: 'book3'. Query: 'INSERT INTO
 no_tbl_on_slave(id) VALUES(1)'
...
 Last_SQL_Errno: 1146

02-ch02.indd 33 9/6/12 2:22 PM

34 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Last_SQL_Error: Error 'Table 'book3.no_tbl_on_slave' doesn't
exist' on query. Default database: 'book3'. Query: 'INSERT INTO
no_tbl_on_slave(id) VALUES(1)'
...

Fixing this error is as simple as creating the table on the slave host and
starting the slave. Keep in mind that although the specified fix works, there
could be records in the table that may not be present on the slave by simply
adding the table. An additional check of the number of rows on the master
is more complex, as there may be subsequent SQL statements that create
this data. In the event of this error steps should be undertaken to under-
stand why this occurred.

Ignoring Duplicate Rows
An observed practice that is not recommended is to skip duplicate key errors
by default when setting up a slave using the --slave-skip-errors=1062
configuration variable. In a production system this can lead to data drift
from master to slave. In this example you will see the impact of enabling the
skipping of duplicate replication errors:

master> USE book3
master> CREATE TABLE uniq_test (
 id INT UNSIGNED NOT NULL
) ENGINE=InnoDB;

On the slave we modify the table structure:

slave> USE book3
slave> ALTER TABLE uniq_test ADD UNIQUE KEY (id);

Insert data on the master:

master> USE book3
master> INSERT INTO uniq_test(id) VALUES(1);
master> INSERT INTO uniq_test(id) VALUES(1),(2),(3);
master> SELECT * FROM uniq_test;
+-----------+
| id |
+-----------+
| 1 |
| 1 |
| 2 |
| 3 |
+-----------+
4 rows in set (0.00 sec)

02-ch02.indd 34 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 35

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Review data and replication status on the slave:

slave> SELECT * FROM uniq_test;
+-----------+
| id |
+-----------+
| 1 |
+-----------+
1 row in set (0.00 sec)
slave> SHOW SLAVE STATUS\G
...
Slave_IO_Running: Yes
Slave_SQL_Running: No

While there is no replication error, the data is now inconsistent. This
represents a silent replication failure leading to an inconsistent slave host.

Under normal operations, without the --slave-skip-errors=1062
option, the following replication error would occur:

slave> SHOW SLAVE STATUS\G
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
...
 Last_Errno: 1062
 Last_Error: Error 'Duplicate entry '1' for key
'id' on query. Default database: 'book3'. Query: 'INSERT
INTO uniq_test(id) VALUES(1),(2),(3)'
...
Seconds_Behind_Master: NULL
...
 Last_SQL_Errno: 1062
 Last_SQL_Error: Error 'Duplicate entry '1' for key
 'id' on query. Default database: 'book3'. Query: 'INSERT
 INTO uniq_test(id) VALUES(1),(2),(3)'

In this section we covered just three of the most common replication er-
rors. There are many more errors and scenarios where replication may
produce an error. There are some very specific replication errors that can
occur when using RBR. RBR will be covered in greater detail in Chapter 3.

Understanding Replication Lag
Replication lag can occur for many different reasons in many different sce-
narios. Finding the root cause may not always be apparent; however, in this
section we will cover the primary reasons for replication lag along with
other system aspects to check when diagnosing lag.

02-ch02.indd 35 9/6/12 2:22 PM

36 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Primary Causes of Lag
Replication lag primarily occurs due to the asynchronous design and sin-
gle-threaded application of replication events. Starting in MySQL 5.5, the
implementation of semisynchronous replication is one step toward more
replication capabilities. Replication lag has been further improved in
MySQL 5.6 with multithreaded slave capabilities using the slave_
parallel_workers configuration option. More information can be found at
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave
.html#sysvar_slave_parallel_workers.

Running a backup or an upgrade is another reason to stop replication,
which will also cause replication lag. To obtain a consistent mysqldump
backup on a slave instance, a DBA will typically run STOP SLAVE SQL_
THREAD before running mysqldump in order to obtain the correct corre-
sponding master binary log and byte offset/position found in SHOW SLAVE
STATUS.

NOTE  In MySQL 5.5 it is possible to obtain the master binary log position on
the slave in mysqldump with the --slave-data option.

Stopping the slave during a backup is not always the best solution, espe-
cially if this is used as a read server or for failover purposes.

There are different replication errors that cause either the SQL or I/O
slave thread to stop. Running a CHANGE MASTER TO statement and assign-
ing the incorrect master credentials can cause a simple I/O thread error.
Replication errors can be as complex as trying to solve a split-brain, pri-
mary key issue using multiple masters in a complex replication topology.
Given all of the causes of replication lag, you should consider the following
when starting to troubleshoot:

•	Replication stopped intentionally (e.g., backup/upgrade)

•	Replication stopped from an error (e.g., slave I/O or SQL thread or both)

•	Master load

•	Slave load

•	Network latency and connectivity issues

After you have considered what the problem could be, the next step is to
check the MySQL error log.

02-ch02.indd 36 9/6/12 2:22 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_parallel_workers
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#sysvar_slave_parallel_workers

	 Diagnosing Common Replication Problems	 37

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The MySQL Error Log
All of the errors covered in the previous section can also be seen and mon-
itored in the MySQL error log. For example, if you are monitoring the error
log, and you should be, you would see the following entries in your error
log when a 1062 error occurs:

120602 5:56:44 [ERROR] Slave SQL: Could not execute Write_rows event on
 table book3.uniq_test; Duplicate entry '1' for key 'id', Error_code: 1062;
 handler error HA_ERR_FOUND_DUPP_KEY; the event's master log binary-
logs.000003, end_log_pos 1065, Error_code: 1062
120602 5:56:44 [Warning] Slave: Duplicate entry '1' for key 'id'
Error_code: 1062
120602 5:56:44 [ERROR] Error running query, slave SQL thread aborted. Fix
the problem, and restart the slave SQL thread with "SLAVE START". We stopped
 at log 'binary-logs.000003' position 905

If you were to run STOP SLAVE, mysqld would also record this in the
error log. For example:

120611 13:39:42 [Note] Error reading relay log event: slave SQL thread was
 killed
120611 13:39:42 [ERROR] Error reading packet from server: Lost connection
to MySQL server during query (server_errno=2013)
120611 13:39:42 [Note] Slave I/O thread killed while reading event
120611 13:39:42 [Note] Slave I/O thread exiting, read up to log
'mysql-bin.000003', position 107

The same behavior occurs when starting the slave with START SLAVE:

120611 13:41:36 [Note] Slave SQL thread initialized, starting replication
 in log 'mysql-bin.000003' at position 107, relay log
'./relay-bin.000008' position: 253
120611 13:41:36 [Note] Slave I/O thread: connected to master,
replication started in log 'mysql-bin.000003' at position 107

TIP  The error log is one of the best sources of information you can use to gain
insight on what might be happening or has happened on a server. It is usually
the first place an administrator should look.

Simple Techniques to Improve and Minimize Lag
The simplest way to improve replication lag is to improve SQL performance
that blocks the single-threaded SQL execution on the slave. Reducing the
execution time of UPDATE and DELETE statements can greatly improve
replication lag. Effective MySQL: Optimizing SQL Statements (McGraw-
Hill, 2011) provides many examples for improving SQL performance in-
cluding techniques to reduce the number of, and complexity of,

02-ch02.indd 37 9/6/12 2:22 PM

38 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SQL statements that are executed. Improving the schema design to remove
excessive and duplicate indexes will improve the performance of applying
DML statements on a slave.

In some cases you may not need to replicate certain databases or tables.
Excluding certain databases and/or tables will reduce SQL execution on
the slave host. MySQL replication has the ability to ignore specific data-
bases and/or tables through the system variables --replicate-ignore-
db=[database name] and --replicate-ignore-table=[table
name], respectively. The logic behind this is that if you do not replicate
certain databases or tables, there will be less relay log processing, and
there will be fewer writes running to the slave host. That said, recovery of
these databases or tables will have to considered in detail as to not affect
production traffic in the event of a failover.

You should avoid using the --replicate-ignore-db option if you
are using cross-database updates. For example, if the slave host was started
with --replicate-ignore-db=app and you run the following SQL, the
statement will be replicated to the slave:

master> USE book3;
master> UPDATE app.test_tbl
 -> SET val1 = 5 WHERE val1 = 1;

The update to the table succeeds on the master and is replicated be-
cause --replicate-ignore-db only applies to the default database
set by the preceding USE statement. The solution is to use --repli-
cate-wild* options.

NOTE  The --replicate-* options do not accept multiple values in one
line. To specify multiple databases or tables, add multiple --replicate-*-
db or --replicate-*-table options to your my.cnf file.

Choosing an alternate filesystem type—for example, ext4 or xfs—may
provide additional benefits for your production workload. Tuning the filesys-
tem configuration appropriately with noatime and nobarrier attributes
can also assist in disk I/O performance. Appropriate hardware is also an es-
sential part of any database architecture. If the system you are working with
has a heavy write workload or a mixed read/write workload, consider using
faster disks, more CPUs, and always more memory. Using the best RAID con-
figuration and considering SSDs are discussed in the following section.

02-ch02.indd 38 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 39

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Your MySQL topology is only as good as the weakest link in your infra-
structure. If you have well-configured hardware running your master, your
slave also requires appropriate hardware choices. Recognizing the weakest
link can lead to better system design in the future and higher availability in
the event of an emergency. For all MySQL slave replication configuration
options, visit http://dev.mysql.com/doc/refman/5.5/en/replication-options-
slave.html.

Advanced Techniques
to Improve and Minimize Lag
MySQL can be configured to behave differently in replication by changing
certain system variables:

CAUTION  Altering the MySQL configuration on a slave may impact your
production failover or backup strategy. Use caution when altering the
configuration between servers in any MySQL replication topology, now and
in the future. At a later time, the requirements and the purpose for the slave
may alter.

•	innodb_flush_log_at_trx_commit  By default, the value of
innodb_flush_log_at_trx_commit is 1. This means that the log
buffer is written after every commit and a flush disk operation is
performed on the log file. You would normally change the default
setting of innodb_flush_log_at_trx_commit when your system
has an I/O bottleneck. Setting the value of innodb_flush_log_at_
trx_commit to 2 will write every transaction to the log buffer;
however, the flush to disk is only a loose interval of once per second.
Although the default value of 1 is required for ACID compliance, it
would be easy to automate and recognize when a slave may be
lagging behind and change this global dynamic value from 1 to 2
during times of lag.

CAUTION  Setting innodb_flush_log_at_trx_commit to 1 will
ensure full ACID compliance. However, setting this variable to 1 also will
hinder replication performance. For more information please see, http://dev
.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_flush_
log_at_trx_commit.

02-ch02.indd 39 9/6/12 2:22 PM

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html

40 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	sync_binlog  The default value of 0 means that mysqld does not
control synchronization to disk, but leaves synchronization up to the
operating system. The system variable, sync_binlog, is another
server tunable used to speed up replication when there is an I/O
bottleneck on the system. When the value of sync_binlog is set to
1, the safest setting, events sync to the binary log after every commit,
which provides, at most, one transaction lost in the event of a
mysqld crash if autocommit is enabled. Setting sync_binlog to a
value greater than the default, 0, allows MySQL to sync events at a
much slower rate (allowing the disk to not work as much). Although
setting sync_binlog to 1 is the slowest setting, it can also be sped
up with the use of a battery-backed write cache.

In the event replication falls behind the master, an administrator can set
sync_binlog to 30 and innodb_flush_log_at_trx_commit to 2 to
help assist with replication catch-up. The action of changing these two vari-
ables may cause different problems in a disaster recovery situation.

You may also gain performance if you store your data and binary logs on
separate storage partitions. This may affect your backup and recovery
strategy if you use this slave for that purpose.

Using the correct RAID configuration within your hardware is another
way to ensure minimal replication lag. RAID 1 + 0, or RAID 10, is the best
configuration for database write throughput, whereas the more common
RAID 5 is optimized for read workloads. Although more disk space is used
when using RAID 10, the gain in write throughput can prove to be worth it.
In a RAID 10 configuration, which requires a minimum of four disks, the
addition of two disks can also make a significant improvement. Popular 1U
servers generally support the installation of six drives.

If the writes of the system cause normal spinning disks to run with too
much I/O wait, you may want to consider running SSD or a flash disk solution.

Prefetching data on the slave host is another possible optimization tech-
nique that is designed to read the relay log slightly ahead of the SQL
thread. The SQL statement is then converted into a SELECT statement, and
executed in a different thread. This has the benefit of performing the disk
I/O of the read independently, and will result in increasing the speed of the
write when it is executed. Chapter 5 will discuss this advanced feature in
more detail.

02-ch02.indd 40 9/6/12 2:22 PM

	 Diagnosing Common Replication Problems	 41

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Upgrading the version of MySQL can also provide benefits. There are
new features in MySQL 5.6 that provide performance improvements for
reducing lag. The binlog group commit (BGC) addition, discussed in
Chapter 3, is one feature for considering the upgrade of your MySQL ver-
sion in a high volume environment. MySQL replication can also support
using a newer version on a slave, i.e., a MySQL master may be running
MySQL 5.1 or MySQL 5.5, and a slave can be using MySQL 5.6. Some new
features may be limited as they require MySQL 5.6 on the master.

Multiple companies are working to improve on the native MySQL rep-
lication implementation. While many products require a custom MySQL
binary to be installed and configured, Tungsten Replicator can be installed
and configured with an existing MySQL topology, including multiple
MySQL versions, and can be used to take over native replication to im-
prove replication performance and correct lag. Tungsten Replicator will be
covered in more detail in Chapter 6.

It may be time to shard your environment. Sharding is a way to segment
data into multiple vertical silos or partitions. Typically, sharding is needed
to scale write activity in an environment, meaning expanding the number
of master servers you have vertically. If an environment is made up of a mas-
ter/slave topology where replication lag is prevalent, you may need to
move some of the operations to a new master/slave topology. From a data
and schema perspective, this is relatively easy; however, the application
accessing this data may need to be modified to find the appropriate data in
multiple locations.

Monitoring Replication
It has been stated that Seconds_Behind_Master in the output of
SHOW SLAVE STATUS is poorly named, given the implication of its name.
Seconds_Behind_Master really measures the latency in seconds the
slave SQL thread is in relation to the slave I/O thread, or the quantity of
relay log events not applied on the slave in relation to committed events on
the master. If you see values higher than 0, you may be dealing with net-
work latency or high server loads.

If you want a more accurate measurement of Seconds_Behind_Master,
consider running your own heartbeat through the master from the slave

02-ch02.indd 41 9/6/12 2:22 PM

42 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

server. A simple example can be found at http://datacharmer.blogspot
.com/2006/04/measuring-replication-speed.html. The Percona Toolkit
heartbeat utility pt-heatbeat is another example available at http://
www.percona.com/.
SHOW SLAVE STATUS shows a great deal of information needed for

replication monitoring and will be covered more in depth in Chapter 8.
Another consideration is disk space utilization, both of the master and
slave hosts. By default, the size of a binary log is ~1GB, and if you do not
have a mechanism to remove older files, it could potentially fill up the en-
tire disk. Chapter 5 provides some utilities to assist with disk management
of binary logs.

Conclusion
Knowing some of the common issues you may find in a replicated environ-
ment will ensure you are better prepared to administer MySQL. Having a
solid understanding of the moving parts in replication will help you diagnose
issues faster when they arise. Every replication installation has different load
and data manipulation characteristics. It is essential to benchmark and test
different replication configurations to fit your unique business requirements.
Armed with the information in this chapter you will be able to avoid common
replication issues and hopefully avoid potential data disasters.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

02-ch02.indd 42 9/6/12 2:22 PM

http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html
http://www.percona.com/
http://www.percona.com/
http://EffectiveMySQL.com/book/replication-techniques
http://datacharmer.blogspot.com/2006/04/measuring-replication-speed.html

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

43

3
Improving Standard
Replication Features

In the past, improving replication involved implementing different replica-
tion topologies and increasing throughput with faster servers and networks.
While these methods are still important today, MySQL replication is be-
coming more feature rich, and third party software products have been de-
veloped to break the asynchronous replication mold. Data drift and single
threaded asynchronous replication are two of the important issues with
the current implementation of MySQL replication, but there is hope for the
future on multiple fronts.

03-ch03.indd 43 9/6/12 2:03 PM

44 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we will be discussing:

•	 Improving on asynchronous replication

•	Securing MySQL replication

•	New replication features in MySQL 5.6

Extending Asynchronous Behavior
A common complaint with traditional MySQL replication is that it is asyn-
chronous. This means that a write operation has to complete on the master
host before it is replicated and applied to the slave host. What if something
happens to the data written on the master before this is replicated to the
slave? There are many new capabilities, both in and outside the MySQL
server that provide better data integrity and synchronization.

Semisynchronous Replication
In addition to the performance improvements in MySQL 5.5, one major
new feature is semisynchronous replication. This new replication method is
an intermediate mechanism when compared to asynchronous replication
and synchronous replication. You can think of semisynchronous replication
as a step in the right direction toward full synchronous replication.

Asynchronous replication in MySQL means that events are written to
the binary log on the master host, and the slave I/O thread independently
records the event on the slave. There is no guarantee to the master that
events reach, or have been committed, to the slave host.

On the other side of the replication spectrum is synchronous replication
where all transactions are acknowledged and committed on all slaves be-
fore returning to the session that initiated the transaction. Semisynchro-
nous, in this case, means that after a commit on the master host, a wait will
occur until one of the configured slave hosts has logged the event to disk.
There is a drawback implied here, but we will cover this in more detail
later in this section.

Semisynchronous Plugin Installation
Semisynchronous replication is installed using plugins on MySQL 5.5 and
higher. This type of replication can be used as an alternative to traditional

03-ch03.indd 44 9/6/12 2:03 PM

	 Improving Standard Replication Features	 45

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

asynchronous replication. A best practice is to load the semisynchronous
plugin with the INSTALL PLUGIN command on the master and slave hosts.
Ensuring the MySQL server supports dynamic loading on both the master
and slave host is a requirement if you want to install semisynchronous rep-
lication with these SQL statements. To see if dynamic loading is enabled on
your MySQL master and slave server, run the following command:

master> SHOW VARIABLES LIKE 'have_dynamic_loading';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| have_dynamic_loading | YES |
+----------------------+-------+

NOTE  To install semisynchronous replication dynamically, both the master and
slave hosts require the system variable have_dynamic_loading to be YES.

There are two separate plugins used for semisynchronous replication,
one for the master host and one for the slave host.

NOTE  You should use the root account, or at least a user that has SUPER
privilege and INSERT privilege on the mysql.plugin table when installing
these plugins.

On the master host:

master> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
master> SHOW PLUGINS\G
...
*************************** 21. row ***************************
 Name: rpl_semi_sync_master
 Status: ACTIVE
 Type: REPLICATION
Library: semisync_master.so
License: GPL

On the slave host:

slave> INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';
slave> SHOW PLUGINS\G
...
*************************** 21. row ***************************
 Name: rpl_semi_sync_slave
 Status: ACTIVE
 Type: REPLICATION
Library: semisync_slave.so
License: GPL

03-ch03.indd 45 9/6/12 2:03 PM

46 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The system variables that toggle the use of semisynchronous replication
are similar on the master and slave host. A zero (0) value for both rpl_
semi_sync_master_enabled and rpl_semi_sync_slave_enabled
system variables disables semisynchronous replication where a value of
one (1) will enable it. Semisynchronous replication is a dynamic process
which you can toggle at runtime, for example.

On the master host:

master> SET GLOBAL rpl_semi_sync_master_enabled = 1;
master> SHOW GLOBAL VARIABLES LIKE 'rpl_semi_sync_master_enabled'\G
*************************** 1. row ***************************
Variable_name: rpl_semi_sync_master_enabled
 Value: ON

On the slave host:

slave> SET GLOBAL rpl_semi_sync_slave_enabled = 1;
slave> SHOW GLOBAL VARIABLES LIKE 'rpl_semi_sync_slave_enabled'\G
*************************** 1. row ***************************
Variable_name: rpl_semi_sync_slave_enabled
 Value: ON

When enabled, this will be reported as a note in the MySQL error log:

120617 18:51:08 [Note] Semi-sync replication initialized for transactions.
120617 18:51:08 [Note] Semi-sync replication enabled on the master.

Another system variable you will need to consider is rpl_semi_sync_
master_timeout. This variable represents the time in milliseconds the
master will wait on a commit acknowledgement from a slave host before
timing out and switching to asynchronous replication. The default value is
10,000, or 10 seconds, which is too high for many installations. In the
example below the value has been changed from 10 seconds to 1 second:

master> SET GLOBAL rpl_semi_sync_master_timeout = 1000;

To ensure these dynamic semisynchronous replication settings are en-
abled after a server restart, you will need to add the following to your
configuration files.

In the master configuration file:

[mysqld]
rpl_semi_sync_master_enabled = 1
rpl_semi_sync_master_timeout = 1000

03-ch03.indd 46 9/6/12 2:03 PM

	 Improving Standard Replication Features	 47

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In the slave configuration file:

[mysqld]
rpl_semi_sync_slave_enabled = 1

Semisynchronous replication currently includes four additional system
variables. The full list is:

master> SHOW GLOBAL VARIABLES LIKE 'rpl_semi%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
rpl_semi_sync_master_enabled	ON
rpl_semi_sync_master_timeout	1000
rpl_semi_sync_master_trace_level	32
rpl_semi_sync_master_wait_no_slave	ON
+------------------------------------+-------+

Monitoring the operations of semisynchronous replication is possible
with a number of MySQL status variables:

master> SHOW GLOBAL STATUS LIKE 'rpl%';
+--+-------+
| Variable_name | Value |
+--+-------+
Rpl_semi_sync_master_clients	0
Rpl_semi_sync_master_net_avg_wait_time	0
Rpl_semi_sync_master_net_wait_time	0
Rpl_semi_sync_master_net_waits	0
Rpl_semi_sync_master_no_times	0
Rpl_semi_sync_master_no_tx	0
Rpl_semi_sync_master_status	ON
Rpl_semi_sync_master_timefunc_failures	0
Rpl_semi_sync_master_tx_avg_wait_time	0
Rpl_semi_sync_master_tx_wait_time	0
Rpl_semi_sync_master_tx_waits	0
Rpl_semi_sync_master_wait_pos_backtraverse	0
Rpl_semi_sync_master_wait_sessions	0
Rpl_semi_sync_master_yes_tx	0
+--+-------+

03-ch03.indd 47 9/6/12 2:03 PM

48 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Semisynchronous replication can be disabled at any time when a time-
out occurs. The Rpl_semi_sync_master_status status variable is im-
portant to monitor:

master> SHOW GLOBAL STATUS LIKE 'rpl%status';
+-----------------------------+-------+
| Variable_name | Value |
+-----------------------------+-------+
| Rpl_semi_sync_master_status | OFF |
+-----------------------------+-------+

In the event this occurs, the MySQL error log will report the situation,
but not as an error:

120617 18:53:09 [Warning] Timeout waiting for reply of binlog (file:
alpha-bin.000004, pos: 357), semi-sync up to file , position 0.
120617 18:53:09 [Note] Semi-sync replication switched OFF.

Semisynchronous Operation
Understanding the flow of a semisynchronous transaction will help in un-
derstanding some of the drawbacks when using this feature. The primary
steps are as follows:

1.	 A slave connects to the master host.

2.	 The slave declares to the master if it is using semisynchronous
replication or not (in this case, we are).

3.	 If both the master and at least one slave have semisynchronous
replication enabled, transactions from the master to the slave will
start using semisynchronous replication.

4.	 A thread on the master runs a commit on a transaction.

5.	 A wait occurs on the master while at least one semisynchronous
slave acknowledges the transaction, or a timeout occurs if the wait
on the master exceeds rpl_semi_sync_master_timeout.

NOTE  If a timeout occurs the master automatically reverts to asynchronous
replication for future transactions. The master will automatically switch back
to semisynchronous replication when the slave is caught up to the master host.

6.	 On the slave, the transaction event is written to the relay log and
flushed to disk.

03-ch03.indd 48 9/6/12 2:03 PM

	 Improving Standard Replication Features	 49

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

7.	 The slave acknowledges to the master that the transaction is
recorded.

8.	 The master releases the thread that performed the transaction.

9.	 The thread can execute the next transaction.

As you may have seen in the process there are a few drawbacks when
using semisynchronous replication. In the case where a system has more
than one slave server, there is no confirmation all of the slaves have ac-
knowledged the receipt of the event; only one slave has to acknowledge the
event. On top of not waiting for all slave hosts to acknowledge receipt of
events, semisynchronous replication does not require those events to be
fully executed and committed on the slave host. Thus, it is still possible to
see replication lag (Seconds_Behind_Master > 0) on the slave host
and have the rpl_semi_sync_master_status variable set to ON in the
master host.

There are performance implications, as a commit has the overhead of
slave acknowledgement for transactions. Network latency is an important
factor when determining if semisynchronous replication is right for your
installation and transaction throughput needs. It is still possible for replica-
tion to revert back to asynchronous replication in the event of a slave error
or slow network connection. Semisynchronous replication is a positive step
toward better data integrity, and like other technologies there are tradeoffs
that need to be considered specifically for your installation. In a more com-
plex MySQL topology it is possible to have both semisynchronous and
asynchronous replication between different MySQL instances. For exam-
ple, in a multi-master topology, this may be semisynchronous replication,
while additional attached slaves could use asynchronous replication.

Synchronous Replication
The standard MySQL server distribution does not currently support syn-
chronous replication. MySQL does provide a different product called
MySQL Cluster that does support this functionality. It is important to un-
derstand that MySQL Cluster is a different product than MySQL server.
An overview of MySQL Cluster is provided in Chapter 6.

Third party products, including Galera, Tungsten, and Schooner Tech,
are now offering MySQL synchronous replication features. The cloud

03-ch03.indd 49 9/6/12 2:03 PM

50 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

offerings of Amazon RDS with a Multi-AZ deployment and Google Cloud
SQL also provide proprietary synchronous replication features. These will
be discussed in detail in Chapter 6.

Securing Replication with SSL
Securing MySQL communication and MySQL replication with SSL has been
around for a very long time; however, this is generally not implemented.
With more organizations implementing cloud services, this additional secu-
rity consideration is very significant for using replication. Setting up MySQL
replication using an SSL connection for encryption will make it difficult for
third parties to sniff out data transferred between the master and slave.

Making MySQL SSL Ready
You need to ensure SSL is enabled on both the master and slave host. To
see if SSL is enabled, run the following command on both hosts:

master> SHOW VARIABLES LIKE '%ssl%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
have_openssl	YES
have_ssl	YES
ssl_ca	
ssl_capath	
ssl_cert	
ssl_cipher	
ssl_key	
+---------------+-------+

slave> SHOW VARIABLES LIKE '%ssl%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
have_openssl	YES
have_ssl	YES
ssl_ca	
ssl_capath	
ssl_cert	
ssl_cipher	
ssl_key	
+---------------+-------+

03-ch03.indd 50 9/6/12 2:03 PM

	 Improving Standard Replication Features	 51

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

If either have_openssl or have_ssl is set to DISABLED, you will need
to add the ssl option to the my.cnf file and restart the MySQL server.

Creating the Necessary Security Certificates
The next step is to create and store three types of certificates, the Certifi-
cate Authority (CA), server, and client. In this example we will create the
certificates on the master host first in the /usr/local/mysql/certs
directory that we will also create.

On the master host:

$ sudo mkdir -p /usr/local/mysql/certs
$ openssl genrsa 2048 > ca-key.pem
Generating RSA private key, 2048 bit long modulus
....................+++
..+++
e is 65537 (0x10001)

$ openssl req -new -x509 -nodes -days 9999 \
 -key ca-key.pem > ca-cert.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:CA
Locality Name (eg, city) [Newbury]:Sunnyvale
Organization Name (eg, company) [My Company Ltd]:EffectiveMySQL
Organizational Unit Name (eg, section) []:SSL Replication
Common Name (eg, your name or your server's hostname) []:
Email Address []:
You can see the two files created for the CA certificate below:
$ ls *.pem
ca-cert.pem ca-key.pem

Next we need to create the server certificates:

$ openssl req -newkey rsa:2048 -days 1000 -nodes -keyout \
server-key.pem > server-req.pem
Generating a 2048 bit RSA private key
..........+++
..+++
writing new private key to 'server-key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

03-ch03.indd 51 9/6/12 2:03 PM

52 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:CA
Locality Name (eg, city) [Newbury]:Sunnyvale
Organization Name (eg, company) [My Company Ltd]:EffectiveMySQL
Organizational Unit Name (eg, section) []:SSL Replication
Common Name (eg, your name or your server's hostname) []:
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Leave the challenge password empty in the previous example.

$ openssl x509 -req -in server-req.pem -days 9999 -CA ca-cert.pem \
 -CAkey ca-key.pem -set_serial 01 > server-cert.pem
Signature ok
subject=/C=US/ST=CA/L=Sunnyvale/O=EffectiveMySQL/OU=SSL Replication
Getting CA Private Key

You can see on the file system that three new files have been created:

$ ls server-*.pem
server-cert.pem server-key.pem server-req.pem

The last set of certificates is the client certificates, which are created as
follows:

$ openssl req -newkey rsa:2048 -days 9999 -nodes -keyout \
client-key.pem > client-req.pem
Generating a 2048 bit RSA private key
............+++
..............................+++
writing new private key to 'client-key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:CA
Locality Name (eg, city) [Newbury]:Sunnyvale
Organization Name (eg, company) [My Company Ltd]:EffectiveMySQL
Organizational Unit Name (eg, section) []:SSL Replication
Common Name (eg, your name or your server's hostname) []:
Email Address []:

03-ch03.indd 52 9/6/12 2:03 PM

	 Improving Standard Replication Features	 53

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Leave the challenge password empty in the preceding example.

$ openssl x509 -req -in client-req.pem -days 9999 -CA ca-cert.pem -CAkey \
 ca-key.pem -set_serial 01 > client-cert.pem
Signature ok
subject=/C=US/ST=CA/L=Sunnyvale/O=EffectiveMySQL/OU=SSL Replication
Getting CA Private Key

All of the certificates we just created are listed here:

$ sudo mv *.pem /usr/local/mysql/certs/
$ ls -l /usr/local/mysql/certs
total 32
-rw-rw-r-- 1 uid gid 1229 Jun 11 16:23 ca-cert.pem
-rw-rw-r-- 1 uid gid 1679 Jun 11 16:23 ca-key.pem
-rw-rw-r-- 1 uid gid 1099 Jun 11 16:25 client-cert.pem
-rw-rw-r-- 1 uid gid 1704 Jun 11 16:24 client-key.pem
-rw-rw-r-- 1 uid gid 956 Jun 11 16:24 client-req.pem
-rw-rw-r-- 1 uid gid 1099 Jun 11 16:24 server-cert.pem
-rw-rw-r-- 1 uid gid 1700 Jun 11 16:21 server-key.pem
-rw-rw-r-- 1 uid gid 956 Jun 11 16:23 server-req.pem

You will need to create the /usr/local/mysql/certs directory on
the slave host and copy the newly created ca-cert.pem client-cert
.pem client-key.pem files to the slave.

Slave:

$ sudo mkdir –p /usr/local/mysql/certs

Master:

$ scp ca-cert.pem client-cert.pem client-key.pem \
 root@slave.example.com:/usr/local/mysql/certs

In the event the slave host is promoted to master, you will need to have
all of the server SSL keys on the slave host. You can copy all files to the
slave server. The previous scp syntax is to illustrate the minimum number
of files needed.

MySQL SSL Configuration Requirements
The final step is to define these certifications in the master and slave
my.cnf configuration file:

03-ch03.indd 53 9/6/12 2:03 PM

54 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

NOTE  It is important to add the following configuration settings to both the
master and the slave for failover purposes.

Add the following variables to the [mysqld] section of the my.cnf file:

$ vi /etc/my.cnf
[mysqld]
ssl
ssl-ca=/usr/local/mysql/certs/ca-cert.pem
ssl-cert=/usr/local/mysql/certs/server-cert.pem
ssl-key=/usr/local/mysql/certs/server-key.pem

A MySQL restart is needed on both the master and slave host for the
SSL changes to take effect. The following example verifies the new con-
figuration is operational:

$ service mysql restart
$ mysql –uroot –p –e "SHOW VARIABLES LIKE '%ssl%'"
+---------------+--+
| Variable_name | Value |
+---------------+--+
have_openssl	YES
have_ssl	YES
ssl_ca	/usr/local/mysql/certs/ca-cert.pem
ssl_capath	
ssl_cert	/usr/local/mysql/certs/server-cert.pem
ssl_cipher	
ssl_key	/usr/local/mysql/certs/server-key.pem
+---------------+--+

MySQL User Privileges Requirements
Replication requires a MySQL user account with the appropriate
REPLICATION SLAVE permission. To use SSL, the REQUIRE SSL attri-
bute is also necessary.

NOTE  Setting up a replication user with the requirement to use SSL is
important. If you include REQUIRE SSL in your GRANT statement, only
encrypted SSL slave threads will be allowed. In the following example, this
means the user “repl” from % (everywhere) will only be able to connect to the
master host with SSL encryption. If REQUIRE SSL is omitted, then both SSL
encrypted and normal replication threads will be allowed with the same user.
Here is a GRANT statement that illustrates how to enable a replication user,
with SSL required for connections:
master> GRANT REPLICATION SLAVE ON *.* TO 'repl@'%'

 -> IDENTIFIED BY 'some_password' REQUIRE SSL;

03-ch03.indd 54 9/6/12 2:03 PM

	 Improving Standard Replication Features	 55

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

It is also important to mention that if you have more than one GRANT
set up for replication, you will need to modify these users to also use
REQUIRE SSL. This would be the case if you have specifically added mul-
tiple “repl” accounts from a specific IP, IP range, or hostname. For example,
if you have three slave hosts that connect to this master and have specified
the slave’s IP address to connect from, all specified “repl” users would need
to have REQUIRE SSL added:

master> SELECT user,host,password
 -> FROM mysql.user
 -> WHERE user = 'repl'
 -> ORDER BY host\G
************************ 1. row ************************
 user: repl
 host: %
password: *48924CC1D59E9904D72265EFD60FB3C5C88BBEB5
************************ 2. row ************************
 user: repl
 host: 192.168.1.101
password: *48924CC1D59E9904D72265EFD60FB3C5C88BBEB5
************************ 3. row ************************
 user: repl
 host: 192.168.1.102
password: *48924CC1D59E9904D72265EFD60FB3C5C88BBEB5
************************ 4. row ************************
 user: repl
 host: 192.168.1.103
password: *48924CC1D59E9904D72265EFD60FB3C5C88BBEB5
4 rows in set (0.00 sec)

Limiting replication connectivity to a specific IP is something you may
want to implement in your environment when using SSL encrypted repli-
cation. When implementing this you should also consider removing “repl”
users with broader access credentials. Doing this can add a more granular
level of security to your system.

Adding the REQUIRE SSL option to any user can be accomplished by
running the GRANT line shown earlier with the username and host modi-
fied to fit our needs. In the following example the new privilege is defined
for one user. The process would need to be repeated for all “repl” users that
require SSL encryption.

03-ch03.indd 55 9/6/12 2:03 PM

56 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Before:

master> SHOW GRANTS FOR repl@192.168.1.102\G
************************ 1. row ************************
GRANT REPLICATION SLAVE ON *.* TO repl@192.168.1.102
IDENTIFIED BY PASSWORD
'*48924CC1D59E9904D72265EFD60FB3C5C88BBEB5'

Adding the REQUIRE SSL option:

master> GRANT REPLICATION SLAVE ON *.* TO
repl@192.168.1.102
 -> IDENTIFIED BY 'some_password' REQUIRE SSL;

After:

master> SHOW GRANTS FOR repl@192.168.1.102\G
************************ 1. row ************************
GRANT REPLICATION SLAVE ON *.* TO
repl@192.168.1.102 IDENTIFIED BY PASSWORD
'*48924CC1D59E9904D72265EFD60FB3C5C88BBEB5' REQUIRE SSL

On the slave host you have two options to start using SSL replication.
You can either add the slave certificates to the [client] section in the
slave my.cnf file, or you can explicitly specify the SSL information using
the CHANGE MASTER TO statement. Remember, we copied the ca-cert
.pem, client-cert.pem, and client-key.pem over to the slave host and these
are located in the /usr/local/mysql/certs directory on the slave. The
following are examples of both methods:

NOTE  If you choose to implement the SSL changes in the [client] section of
the my.cnf file you should also add these options to the master my.cnf file
in the event the master is demoted to slave.

Master and slave my.cnf file change:

[client]
ssl
ssl-ca=/usr/local/mysql/certs/ca-cert.pem
ssl-cert=/usr/local/mysql/certs/client-cert.pem
ssl-key=/usr/local/mysql/certs/client-key.pem

You then need to restart the slave host with --skip-slave-start and
then run a CHANGE MASTER TO statement with the MASTER_SSL = 1
option:

03-ch03.indd 56 9/6/12 2:03 PM

	 Improving Standard Replication Features	 57

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

slave> CHANGE MASTER TO
 MASTER_HOST='master.example.com'',
 MASTER_USER='repl',
 MASTER_PASSWORD='some_password',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='binary-logs.000001',
 MASTER_LOG_POS=106,
 MASTER_CONNECT_RETRY=10,
 MASTER_SSL = 1;

The second option is to specify all of the certificates within the CHANGE
MASTER TO statement:

slave> CHANGE MASTER TO
 MASTER_HOST='master.example.com',
 MASTER_USER='repl',
 MASTER_PASSWORD='some_password',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='binary-logs.000001',
 MASTER_LOG_POS=106,
 MASTER_CONNECT_RETRY=10,
 MASTER_SSL = 1,
 MASTER_SSL_CA = '/usr/local/mysql/certs/ca-cert.pem',
 MASTER_SSL_CERT = '/usr/local/mysql/certs/client-cert.pem',
 MASTER_SSL_KEY = '/usr/local/mysql/certs/client-key.pem';

After you have your new SSL options in place, remember to run START
SLAVE on the slave host and check that replication is running as it should be:

slave> START SLAVE;
slave> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master.example.com
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: binary-logs.000001
 Read_Master_Log_Pos: 106
 Relay_Log_File: mysqld-relay-bin.000001
 Relay_Log_Pos: 4
 Relay_Master_Log_File: binary-logs.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Master_SSL_Allowed: Yes
 Master_SSL_CA_File: /usr/local/mysql/certs/ca-cert.pem
 Master_SSL_CA_Path:
 Master_SSL_Cert: /usr/local/mysql/certs/client-cert.pem
 Master_SSL_Cipher:
 Master_SSL_Key: /usr/local/mysql/certs/client-key.pem
...

03-ch03.indd 57 9/6/12 2:03 PM

58 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SSL replication is a long process and is difficult to diagnose if you mistype
something or miss a step. Anyone who is looking for added security, espe-
cially within a cloud service like Amazon Web Services (AWS), should con-
sider running SSL replication for MySQL. More information can be found
at http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-ssl.html.

New Replication Features
Starting with MySQL 5.5, there have been major performance and scalabil-
ity improvements added to the MySQL server. With MySQL 5.6 there are
many new additions to replication specifically focused on data integrity,
performance, and usability.

New and Improved Data Integrity
Data integrity is very important to a business and should not be taken
lightly by database administrators. When data integrity issues are identi-
fied, it usually takes operational time to remedy and engineering time to
fix moving forward. With MySQL 5.6 less administration time is needed if
a slave crashes, a human or application error occurs with a destructive SQL
statement on a master, or you are suffering from data drift.

Crash-Safe Slaves
Traditionally, runtime replication information has been stored on the slave
host in two files found in the data directory, master.info and relay-
log.info. While this is still the default method in MySQL 5.6, MySQL
now supports logging replication information to tables located in the
mysql database. There are two new configuration variables that control
how the master connection information and slave relay log information are
stored:

•	master-info-repository  When the value of this option is set
to TABLE the master info log information will be stored in the
mysql.slave_master_info table. When the value of this option is
set to FILE the default filename master.info will be created on the
file system to store the appropriate connection information.

03-ch03.indd 58 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-ssl.html

	 Improving Standard Replication Features	 59

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	relay-log-info-repository  When the value of this option is
set to TABLE the relay log information will be stored in the mysql
.slave_relay_log_info table. When the value of this option is set
to FILE the default filename relay-log.info will be created on the
file system to store the appropriate relay log information.

NOTE  It is important to review the grant privileges for all users. With these
new tables, access to SELECT from the mysql schema would enable viewing
the replication user password, which is stored in plain text.

By default, these new tables exist in the mysql schema for MySQL 5.6;
however, they contain no information:

slave> SELECT * FROM mysql.slave_master_info;
Empty set (0.00 sec)
slave> SELECT * FROM mysql.slave_relay_log_info;
Empty set (0.00 sec)

The following configuration is enabled on a slave to demonstrate the
information available:

[mysqld]
master-info-repository=TABLE
relay-log-info-repository=TABLE

slave> SELECT * FROM mysql.slave_master_info\G
*************************** 1. row ***************************
 Master_id: 3
 Number_of_lines: 23
 Master_log_name: alpha-bin.000003
 Master_log_pos: 187
 Host: alpha
 User_name: repl
 User_password: *clear_password_text*
 Port: 3306
 Connect_retry: 60
 Enabled_ssl: 0
 Ssl_ca:
 Ssl_capath:
 Ssl_cert:
 Ssl_cipher:
 Ssl_key:
Ssl_verify_server_cert: 0
 Heartbeat: 1800
 Bind:
 Ignored_server_ids: 0
 Uuid: ba7ac732-b707-11e1-a1b3-0800275824dc
 Retry_count: 86400
 Ssl_crl:
 Ssl_crlpath:
 Enabled_auto_position: 1

03-ch03.indd 59 9/6/12 2:03 PM

60 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

mysql> SELECT * FROM mysql.slave_relay_log_info\G
*************************** 1. row ***************************
 Master_id: 3
 Number_of_lines: 6
 Relay_log_name: ./gamma-relay-bin.000006
 Relay_log_pos: 346
 Master_log_name: alpha-bin.000002
 Master_log_pos: 391
 Sql_delay: 0
Number_of_workers: 0
1 row in set (0.00 sec)

The default storage engine for the two new tables defined with slave_
master_info and slave_relay_log_info is MyISAM. It is important
to note that you will need to change the engine of these tables to InnoDB in
order for replication to be crash safe. It is recommended you stop MySQL
replication during this process. For example:

slave> STOP SLAVE;
slave> ALTER TABLE mysql.slave_master_info ENGINE = InnoDB;
slave> ALTER TABLE mysql.slave_relay_log_info ENGINE = InnoDB;
slave> START SLAVE;

NOTE  MySQL will not operate if you attempt to change the storage engine
from MyISAM for any other mysql schema tables.

Keep in mind that you can use other storage engines for these tables;
however, the same transactional engine should be used so replication in-
formation can be added to transactions and committed with the corre-
sponding transaction. More information can be found at http://dev.mysql
.com/doc/refman/5.6/en/slave-logs.html.

Delayed Replication
Time delayed replication has been used through the history of MySQL
replication for disaster recovery purposes and testing application behavior
while a slave is lagging. Making a slave host in a MySQL topology lag be-
hind by a certain amount of time can help avoid catastrophic operational
errors introduced on the master, for example, a TRUNCATE TABLE. In the
event a TRUNCATE TABLE command was issued on the master host, an
administrator would be able to skip the physical statement and then pro-
mote the delayed slave to master. This new feature is implemented with
the CHANGE MASTER TO statement and the MASTER_DELAY attribute:

03-ch03.indd 60 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/slave-logs.html
http://dev.mysql.com/doc/refman/5.6/en/slave-logs.html

	 Improving Standard Replication Features	 61

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	MASTER_DELAY  This attribute specifies how much time in seconds
the SQL_THREAD will pause execution of events on the slave host.
The default value is zero (0), or no lag, with an upper bound of 68
years, or 231 – 1.

A time delay can be set on any slave server and acts independently of
other replication streams. An administrator could set a time delay during
the initial CHANGE MASTER TO statement or after replication has started
with the following commands:

slave> STOP SLAVE;
slave> CHANGE MASTER TO MASTER_DELAY = 10;
slave> START SLAVE;

You can observe time delay in action with the SHOW SLAVE STATUS\G
command on the slave. For example:

slave> SHOW SLAVE STATUS\G
*********************** 1. row ***********************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master.example.com
...
 SQL_Delay: 10
 SQL_Remaining_Delay: 6
 Slave_SQL_Running_State: Waiting until MASTER_DELAY seconds after
 master executed event
...

The SQL_Delay column shows the desired lag time in seconds; in this
example, we want ten seconds of delay. The SQL_Remaining_Delay indi-
cates how many seconds the slave needs to wait until new events are ap-
plied to the slave. The Slave_SQL_Running_State corresponds to the
Slave_IO_State and displays the same information shown with SHOW
FULL PROCESSLIST:

slave> SHOW FULL PROCESSLIST\G
*********************** 1. row ***********************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 1414
 State: Waiting for master to send event
 Info: NULL
*********************** 2. row ***********************
 Id: 11
 User: system user
 Host:
 db: NULL

03-ch03.indd 61 9/6/12 2:03 PM

62 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Command: Connect
 Time: 10
 State: Waiting until MASTER_DELAY seconds after master executed event
 Info: NULL
*********************** 3. row ***********************
 Id: 12
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: init
 Info: SHOW FULL PROCESSLIST

More information can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-delayed.html.

Checksums for Replicated Data
Prior to version 5.6 an administrator would have to use SSL replication as
a workaround to implement checksums. With the implementation of
CRC32 checksums, you can be assured that data being replicated to a slave
has the same integrity as that applied to the master. If data corruption
occurs an error will be returned and slave replication is stopped. Checksum
information is recorded in the master binary log and the slave relay logs
and can be activated on a per server basis.

To enable checksums with the master binary log, the following setting is
needed:

•	binlog_checksum  When this option is set to CRC32 the master
will write a checksum for each event into the binary log. binlog_
checksum is a dynamic global variable with the default value of
NONE. Changing this option to CRC32 will rotate the binary log, as
checksums are always written to an entire binary log file. If the default
is set for this option, the server will verify that only complete events
are written to the binary log by writing and checking the event length.

Enabling binlog_checksum does not force verification of the check-
sums created. There are two system variables, one for the master host and
the other for slave host(s) to enforce the verification of CRC32 checksums.

On the master host:

•	master_verify_checksum  This variable is disabled by default.
When this variable is set to one (1) or ON, the master host will
examine checksums when reading from the binary log.

03-ch03.indd 62 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-delayed.html
http://dev.mysql.com/doc/refman/5.6/en/replication-delayed.html

	 Improving Standard Replication Features	 63

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

On the slave host:

•	slave_sql_verify_checksum  This option is also disabled by
default. When slave_verify_checksum is enabled with a value of one
(1) or ON, the slave host will examine and verify checksums when
reading the relay log.

When enabled, the binary log provides the following information:
$ mysqlbinlog binary-logs.000008
#111129 22:29:25 server id 1 end_log_pos 584974 CRC32 0x3e864aba
Query thread_id=19 exec_time=0 error_code=0
SET TIMESTAMP=1322605765/*!*/;
INSERT INTO ...
/*!*/;
at 584974
#111129 22:29:25 server id 1 end_log_pos 585005 CRC32 0x1376938a
Xid = 24943
COMMIT/*!*/;
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

The following details are recorded in the slave relay log for comparison:

$ mysqlbinlog mysqld-relay-bin.000007
#111129 22:29:25 server id 1 end_log_pos 584974 CRC32 0x3e864aba
Query thread_id=19 exec_time=0 error_code=0
SET TIMESTAMP=1322605765/*!*/;
INSERT INTO ...
at 585133
#111129 22:29:25 server id 1 end_log_pos 585005 CRC32 0x1376938a
Xid = 24943
COMMIT/*!*/;
DELIMITER ;
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

More information can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options-binary-log.html#option_mysqld_binlog-checksum.

New Performance Improvements for Replication
Two new performance related additions in MySQL 5.6 for replication are
multi-threaded slaves and row image control within row-based replication
(RBR).

03-ch03.indd 63 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_binlog-checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_binlog-checksum

64 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Multi-Threaded Slaves
Parallel transaction execution on a slave host provides better scalability in
replication, especially on multicore systems, but there is a catch.

The SQL thread acts as a coordinator for what are referred to as slave
worker threads, which work on a per database schema level and can be
enabled and tuned with the slave_parallel_workers system variable.
To utilize multi-threaded slaves, your data will need to be partitioned into
multiple database schemas. This allows worker threads on the slave to pro-
cess transactions on a given database without blocking when updates are
processed on others. You also need to ensure there are no foreign key de-
pendencies across schemas and there are no cross schema DML queries
(i.e., INSERT INTO db1.t1 SELECT * FROM db2.t2).

When slave_parallel_workers is set to a non-zero value on the
slave, host transactions will not necessarily be applied on the slave in the
same order as they were recorded in the master host binary log. This can
lead to recovery complexity along with interpreting relay log information.
This variable is defined in the my.cnf configuration file. A MySQL
instance restart is necessary for these configuration settings to take effect:

[mysqld]
slave_parallel_workers=3
relay_log_info_repository=TABLE

With the implementation of slave_parallel_workers a new table
has been added to the mysql database, slave_worker_info. Along with
the new crash-safe tables you should also convert the slave_worker_
info table to InnoDB:

master> ALTER TABLE mysql.slave_worker_info ENGINE=InnoDB;

Parallel threads will only work when both master and slave hosts are
MySQL version 5.6 or higher. If you attach a version 5.6 slave to a version
5.5 master, replication will slow down exponentially when the multi-
threaded configuration is enabled on the slave.

When running a test on multiple schemas using the example procedure
to test replication found in the appendix, you can observe the following
information:

slave> SELECT * FROM mysql.slave_worker_info\G
*************************** 1. row ***************************
 Master_id: 3
 Worker_id: 0

03-ch03.indd 64 9/6/12 2:03 PM

	 Improving Standard Replication Features	 65

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Relay_log_name:
 Relay_log_pos: 0
 Master_log_name:
 Master_log_pos: 0
 Checkpoint_relay_log_name:
 Checkpoint_relay_log_pos: 0
Checkpoint_master_log_name:
 Checkpoint_master_log_pos: 0
 Checkpoint_seqno: 0
 Checkpoint_group_size: 64
 Checkpoint_group_bitmap:
*************************** 2. row ***************************
 Master_id: 3
 Worker_id: 1
 Relay_log_name:
 Relay_log_pos: 0
 Master_log_name:
 Master_log_pos: 0
 Checkpoint_relay_log_name:
 Checkpoint_relay_log_pos: 0
Checkpoint_master_log_name:
 Checkpoint_master_log_pos: 0
 Checkpoint_seqno: 0
 Checkpoint_group_size: 64
 Checkpoint_group_bitmap:
*************************** 3. row ***************************
 Master_id: 3
 Worker_id: 2
 Relay_log_name: ./gamma-relay-bin.000009
 Relay_log_pos: 13641
 Master_log_name: alpha-bin.000003
 Master_log_pos: 21209
 Checkpoint_relay_log_name: ./gamma-relay-bin.000009
 Checkpoint_relay_log_pos: 13329
Checkpoint_master_log_name: alpha-bin.000003
 Checkpoint_master_log_pos: 20897
 Checkpoint_seqno: 0
 Checkpoint_group_size: 64
 Checkpoint_group_bitmap:
3 rows in set (0.00 sec)

More information can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options-slave.html#option_mysqld_slave-parallel-workers.

Row-Based Replication – Row Image Control
Row-based replication (RBR), when compared to statement-based replica-
tion (SBR), has traditionally taken up more space in the binary log. This is
due to the default behavior of RBR where all column values are sent to the
slave where a write occurs instead of just sending the values in the row

03-ch03.indd 65 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#option_mysqld_slave-parallel-workers
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#option_mysqld_slave-parallel-workers

66 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

where the write occurs. With row image control it is now possible to save
system and network resources by toggling the behavior of row-based rep-
lication. Detailed next are examples of all three settings for the new system
variable, binlog_row_image.

First we need to create a table, in the following example, called test_
rbr_image:

master> use book3
master> CREATE TABLE test_rbr_image (
 -> id INT UNSIGNED NOT NULL,
 -> col1 INT DEFAULT NULL,
 -> var2 CHAR(3) DEFAULT NULL,
 -> comment TEXT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

When the binlog_row_image system variable is set to full (the de-
fault), all columns will be logged to the binary log after a write event. With
the INSERT statement, we are adding a row to the table but only adding
values to three (3) columns to the row:

master> SET SESSION binlog_format = ROW;
master> SHOW MASTER STATUS\G
************************ 1. row ************************
 File: mysql-bin.000002
 Position: 11783
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:
master> INSERT INTO test_rbr_image (id, col1, var2)
 -> VALUES(1, 2, '3');

Now we can see what this event looks like in the binary log using the
mysqlbinlog client utility and the values from the output of SHOW
MASTER STATUS:

$ mysqlbinlog --base64-output=DECODE-ROWS \
 --verbose --start-position=11783 mysql-bin.000002
at 11783
...
at 11912
#120613 17:11:10 server id 1 end_log_pos 11912
Table_map: `book3`.`test_rbr_image` mapped to number 73
#120613 17:11:10 server id 1 end_log_pos 11952

03-ch03.indd 66 9/6/12 2:03 PM

	 Improving Standard Replication Features	 67

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Write_rows: table id 73 flags: STMT_END_F
INSERT INTO book3.test_rbr_image
SET
@1=1
@2=2
@3='3'
@4=NULL
...

Although we only added three column values to the row, all four of the
column values end up in the binary log. The value for the fourth column in
the row (in bold), in this case column comment, is set to NULL even though
we did not reference the column in the INSERT statement.

When binlog_row_image is set to minimal, only the changed columns
are added to the binary log. The following is an example SQL statement
with this format:

master> SET SESSION binlog_row_image=minimal;
master> SHOW MASTER STATUS\G
************************ 1. row ************************
 File: mysql-bin.000002
 Position: 12169
...
master> INSERT INTO test_rbr_image(id) VALUES(4);

Let’s take a look inside the binary log using the mysqlbinlog client
utility:

$ mysqlbinlog --base64-output=DECODE-ROWS --verbose \
 --start-position=12169 mysql-bin.000002
...
at 12298
#120613 17:22:43 server id 1 end_log_pos 12298
Table_map: `book3`.`test_rbr_image` mapped to number 73
#120613 17:22:43 server id 1 end_log_pos 12332
Write_rows: table id 73 flags: STMT_END_F
INSERT INTO book3.test_rbr_image
SET
@1=4
at 12332

You can see there is only one (1) column specified in the binary log for
this event. It is relatively easy to see that with this new behavior less disk
space and network bandwidth will be used during replication.

03-ch03.indd 67 9/6/12 2:03 PM

68 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The last setting for binlog_row_image is noblob. In this case all non-
text or blob columns are omitted from the binary log unless those columns
are being added or changed. For example:

master> SET SESSION binlog_row_image=noblob;
master> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000002
 Position: 12359
...
master> INSERT INTO test_rbr_image(id,var2) VALUES(5,'abc');
$ mysqlbinlog --base64-output=DECODE-ROWS --verbose \
 --start-position=12359 mysql-bin.000002
at 12488
#120613 17:44:48 server id 1 end_log_pos 12488
Table_map: `book3`.`test_rbr_image` mapped to number 73
#120613 17:44:48 server id 1 end_log_pos 12526
Write_rows: table id 73 flags: STMT_END_F
INSERT INTO book3.test_rbr_image
SET
@1=5
@2=NULL
@3='abc'

It is also important to mention that when using minimal or noblob for
binlog_row_image the tables from the master host to the slave(s) need to
have the same columns in the same order with the same data type and
identical primary keys.

More information can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options-binary-log.html#sysvar_binlog_row_image.

New Replication Management Features
The MySQL server and client utilities have always been easy to use, and
now there are two additions that make administration more robust. Binary
log backups through the mysqlbinlog client utility and Universally
Unique Identifiers (UUID) are now available in MySQL 5.6.

Remote Binary Log Backup
When running point in time recovery it is necessary to save the master bi-
nary logs. This is generally implemented by copying binary logs to a shared
storage device or another server. The mysqlbinlog client utility now has
this functionality built in, making it easier to copy binary logs to different
servers and locations.

03-ch03.indd 68 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image

	 Improving Standard Replication Features	 69

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

There are several new options for mysqlbinlog that are used to back
up binary logs to a second server:

•	--raw  This option ensures that the copied binary log will be in the
same format as the original and not in text format.

•	--read-from-remote-server | -R This option tells
mysqlbinlog to connect to a server and request the binary log(s)
from the host.

•	--read-from-remote-master=type This option reads the
binary logs. The value of BINLOG-DUMP-NON-GTIDS is equivalent to
--read-from-remote-server. The other valid value is BINLOG-
DUMP_GTIDS.

•	--to-last-log  Will gather all binary logs starting with the
binary log specified to the last binary log on the server.

•	--stop-never  Will run mysqlbinlog in a daemon mode and
stay connected to the server after reaching the end of the last log. If
--stop-never is specified, it is not necessary to add the --to-
last-log option, as this is implied with --stop-never.

•	--results-file  When added in conjunction with --raw the
value of this option will be added as a prefix name to the output files.

In the following examples we will be using the nine (9) binary logs spec-
ified here:

master> SHOW BINARY LOGS;
+--------------------+-----------+
| Log_name | File_size |
+--------------------+-----------+
binary-logs.000001	60286
binary-logs.000002	909656
binary-logs.000003	124878902
binary-logs.000004	52616276
binary-logs.000005	158611
binary-logs.000006	700233141
binary-logs.000007	18865438
binary-logs.000008	342192894
binary-logs.000009	1364
+--------------------+-----------+

03-ch03.indd 69 9/6/12 2:03 PM

70 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

To make a static backup of all the binary logs, you can use the following
command:

$ mysqlbinlog -usomeuser --host=master.example.com \
--port=3306 --raw --read-from-remote-server \
--to-last-log binary-logs.000001

On the host where the mysqlbinlog command was executed we can
now see the binary logs on the file system:

$ ls -l |awk '{print $9 " | " $5}'
binary-logs.000001 | 60286
binary-logs.000002 | 909656
binary-logs.000003 | 124878902
binary-logs.000004 | 52616276
binary-logs.000005 | 158611
binary-logs.000006 | 700233141
binary-logs.000007 | 18865438
binary-logs.000008 | 342192894
binary-logs.000009 | 1364

To run mysqlbinlog in daemon mode and keep a live running backup
of all binary logs, you can use the following command:

$ mysqlbinlog -uroot --host=master.example.com --port=3306 \
--raw --read-from-remote-server \
--stop-never binary-logs.000001

The binary backups will continue to be recorded while mysqlbinlog is
running with the --stop-never option. After some write operations on
the master host you can see that the byte value of binary-logs.000009
has changed to 585352 from its previous value of 1364 on the backup
server:

$ ls -l |awk '{print $9 " | " $5}'
binary-logs.000007 | 18865438
binary-logs.000008 | 342192894
binary-logs.000009 | 585352

Binary logs will continue to be recorded up until mysqlbinlog is
stopped or the master server is shut down. Appropriate system monitoring
should be in place if this daemon operation is implemented to ensure this
does not stop unexpectedly.

For more information visit http://dev.mysql.com/doc/refman/5.6/en/
mysqlbinlog.html.

03-ch03.indd 70 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog.html
http://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog.html

	 Improving Standard Replication Features	 71

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Universally Unique Identifier (UUID)
The UUID is now added to every server running MySQL version 5.6 and
above. This addition allows easier tracking and auto discovery for remote
monitoring and inventory systems. The new system variable server_uuid
is accessible with a SELECT statement and, if replication is turned on,
through the SHOW SLAVE STATUS command. For example:

master> SELECT @@GLOBAL.server_uuid;
+--------------------------------------+
| @@GLOBAL.server_uuid |
+--------------------------------------+
| cae53eb6-1aa8-11e1-a608-00238b979631 |
+--------------------------------------+

This information is stored in the auto.cnf file found in the data directory:

$ cat auto.cnf
[auto]
server-uuid= cae53eb6-1aa8-11e1-a608-00238b979631

Viewing the master host UUID on the slave host:

slave> SHOW SLAVE STATUS\G
*********************** 1. row ***********************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master.example.com
 Master_User: repl
 Master_Port: 3306
...
 Master_Server_Id: 1
 Master_UUID: cae53eb6-1aa8-11e1-a608-00238b979631
...

For more information see http://dev.mysql.com/doc/refman/5.6/en/
replication-options.html#sysvar_server_uuid.

Global Transaction Identifier (GTID)
GTIDs make it easier to keep track of replication between a master and
slave and with other topologies, including cascading and circular replica-
tion. Building a mechanism in house to keep track of replication, run
failovers, and promote slaves is no longer necessary with the new GTID
utilities that accompany this new feature.

Global transaction identifiers are composed of the original master host
UUID and a sequence that is automatically generated for every event

03-ch03.indd 71 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid

72 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

written to the binary log. This means that every transaction written to the
binary log has a unique GTID assigned to it, making it very easy to track
and compare the progress of replicated events on every slave host in a rep-
lication topology. To enable GTID usage you need all four of the following
configuration variables in the my.cnf file:

[mysqld]
log-bin
log-slave-updates
gtid-mode=ON
disable-gtid-unsafe-statements

There are several limitations to GTID usage. GTID will not work when:

•	Using nontransactional statements, i.e., MyISAM tables, including
for example running the mysql_secure_installation command

•	CREATE TABLE … SELECT

•	Temporary tables within transactions

This means that you will not be able to use GTID unless you are using
InnoDB specifically. Using GTID-based replication is different from using
traditional replication. When gtid_mode is active on all master and slave
servers you will be able to use MASTER_AUTO_POSITION in the
CHANGE MASTER TO statement. MASTER_AUTO_POSITION is new in
MySQL 5.6.5 and utilizes the GTID on the master to synchronize slave
servers within a replication topology. If you do choose to use MASTER_
AUTO_POSITION, you will no longer be able to specify MASTER_LOG_
FILE and MASTER_LOG_POS in the CHANGE MASTER TO statement.
Here is an example of MASTER_AUTO_POSITION usage:

slave> CHANGE MASTER TO
 -> MASTER_HOST='master.example.com',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='somepassword,
 -> MASTER_PORT=3306,
 -> MASTER_AUTO_POSITION = 1;
Query OK, 0 rows affected, 2 warnings (0.24 sec)

There are two warnings that have been added in version 5.6 when run-
ning a CHANGE MASTER TO statement. The following is the output of
SHOW WARNINGS after the CHANGE MASTER TO statement has been
issued:

03-ch03.indd 72 9/6/12 2:03 PM

	 Improving Standard Replication Features	 73

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

slave> SHOW WARNINGS\G
************************ 1. row ************************
 Level: Note
 Code: 1756
Message: Sending passwords in plain text without SSL/TLS is extremely
 insecure.
************************ 2. row ************************
 Level: Note
 Code: 1757
Message: Storing MySQL user name or password information in the master.info
 repository is not secure and is therefore not recommended. Please see the
 MySQL Manual for more about this issue and possible alternatives.

NOTE  The output specifies MySQL best practices for securing replication and
storing passwords.

We can now start GTID-based replication on the slave host and view the
corresponding replication thread connection on the master host:

slave> START SLAVE;

master> SHOW PROCESSLIST\G
************************ 1. row ************************
 Id: 3
 User: repl
 Host: master.example.com:40709
 db: NULL
Command: Binlog Dump GTID
 Time: 65
 State: Master has sent all binlog to slave; waiting
for binlog to be updated
 Info: NULL

NOTE  You can see the Command column value now indicates that we are using
GTID for replication.

In the event you would like to move back to non-GTID replication you
will need to disable MASTER_AUTO_POSITION and then run the correct
CHANGE MASTER TO statement. The following example running GTID-
based replication will show the error condition and correct syntax to switch
back to non-GTID replication:

slave> STOP SLAVE;
slave> SHOW SLAVE STATUS\G
 Slave_IO_State:
 Master_Host: master.example.com
 Master_User: repl

03-ch03.indd 73 9/6/12 2:03 PM

74 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: binary-logs.000010
 Read_Master_Log_Pos: 191
 Relay_Log_File: mysqld-relay-bin.000003
 Relay_Log_Pos: 365
 Relay_Master_Log_File: binary-logs.000010
 Slave_IO_Running: No
 Slave_SQL_Running: No
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 191
 Relay_Log_Space: 784
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: NULL
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_UUID:
f52e965a-b18d-11e1-bdfe-00238b979631
 Master_Info_File: /local/mysql/slave/master.info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Slave_SQL_Running_State:
 Master_Retry_Count: 86400
 Master_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Retrieved_Gtid_Set:
 Executed_Gtid_Set:
8A94F357-AAB4-11DF-86AB-C80AA9429562:1-9,
F52E965A-B18D-11E1-BDFE-00238B979631:1-155

03-ch03.indd 74 9/6/12 2:03 PM

	 Improving Standard Replication Features	 75

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

slave> CHANGE MASTER TO
 -> MASTER_HOST='master.example.com',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='somepassword',
 -> MASTER_PORT=3306,
 -> MASTER_LOG_FILE='binary-logs.000010',
 -> MASTER_LOG_POS=191,
 -> MASTER_CONNECT_RETRY=10;
ERROR 1775 (HY000): Parameters MASTER_LOG_FILE, MASTER_LOG_POS,
RELAY_LOG_FILE and RELAY_LOG_POS cannot be set when MASTER_AUTO_POSITION
is active.

As you can see there is an error when you just issue a CHANGE MAS-
TER TO statement. We will now set MASTER_AUTO_POSITION to 0 and
re-run the CHANGE MASTER TO statement:

slave> CHANGE MASTER TO MASTER_AUTO_POSITION = 0;
slave> CHANGE MASTER TO
 -> MASTER_HOST='master.example.com',
 -> MASTER_USER='repl',
 -> MASTER_PASSWORD='somepassword',
 -> MASTER_PORT=3306,
 -> MASTER_LOG_FILE='binary-logs.000010',
 -> MASTER_LOG_POS=191,
 -> MASTER_CONNECT_RETRY=10;
 slave> START SLAVE;

We are now replicating with non-GTID replication.
More information on GTID configuration setting can be found at http://

dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html.
There are two new utilities, which help monitor and, if needed, promote

or fail over to another server in your replication environment. These utili-
ties are discussed in Chapter 5.

Binary Log Group Commit
The most recent version of MySQL 5.6.6 (2012-08-07) includes a feature to
improve performance of binary log writing. By grouping several writes to-
gether in a high volume environment, throughput can be greatly improved.
This feature is very important when ensuring maximum durability via the
sync_binlog=1 setting. No additional configuration is necessary as this is
enabled by default. This feature introduces the configuration variables bin-
log_order_commits, binlog_max_flush_queue_time, and innodb_
flush_log_at_timeout to provide additional compatibility and fine-
tuning option.

03-ch03.indd 75 9/6/12 2:03 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html
http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html

76 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

More information including a detailed technical description can be found
at http://mysqlmusings.blogspot.in/2012/06/binary-log-group-commit-in-
mysql-56.html.

Initial work on improving group commit was first included with MariaDB,
a fully compatible version of MySQL. This work by Monty Program AB was
provided as part of the MySQL open source license for Oracle or any other
organization to implement or modify. More information on this work is
available at http://kristiannielsen.livejournal.com/12254.html.

Balancing Read and Write Load
With the introduction of a MySQL topology using replication, your applica-
tion may require modification to support read operations and write opera-
tions with different connection parameters. Fortunately, several of the MySQL
connectors provide this functionality natively to minimize the requirements
for application modifications.

Connector/J for Java has enabled the splitting of read and write SQL
statements for many years. Recent improvements in Connector/J 5.1.12 and
5.1.13 have further improved these load balancing features to include
failover support. More information is available at http://dev.mysql.com/
doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-managing-load-
balanced-connections.html and http://dev.mysql.com/doc/refman/5.0/en/
connector-j-usagenotes-j2ee-concepts-load-balancing-failover.html.

The PHP native driver (mysqlnd) also provides appropriate connection
management for reads and writes. Refer to http://dev.mysql.com/doc/ref-
man/5.5/en/apis-php-book.mysqlnd-ms.html and http://blog.ulf-wendel
.de/2012/peclmysqlnd_ms-14-a-failover-standby-using-weightedpriori-
tized-load-balancing/ for more information. This driver is the default in
PHP 5.4 and higher. You can also find information in the PHP reference
manual at http://php.net/manual/en/mysqlnd-ms.rwsplit.php.

MySQL proxy was another product to consider for load balancing. Avail-
able from http://dev.mysql.com/downloads/mysql-proxy/, this product has
stalled in development in recent years and future work is undetermined.
An example for load balancing and splitting connections with MySQL
proxy can be found at http://agiletesting.blogspot.com/2009/04/mysql-load-
balancing-and-read-write.html.

03-ch03.indd 76 9/6/12 2:03 PM

http://mysqlmusings.blogspot.in/2012/06/binary-log-group-commit-in-mysql-56.html
http://mysqlmusings.blogspot.in/2012/06/binary-log-group-commit-in-mysql-56.html
http://kristiannielsen.livejournal.com/12254.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-managing-load-balanced-connections.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-managing-load-balanced-connections.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-managing-load-balanced-connections.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-load-balancing-failover.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-usagenotes-j2ee-concepts-load-balancing-failover.html
http://dev.mysql.com/doc/ref�man/5.5/en/apis-php-book.mysqlnd-ms.html
http://dev.mysql.com/doc/ref�man/5.5/en/apis-php-book.mysqlnd-ms.html
http://blog.ulf-wendel.de/2012/peclmysqlnd_ms-14-a-failover-standby-using-weightedprioritized-load-balancing/
http://php.net/manual/en/mysqlnd-ms.rwsplit.php
http://dev.mysql.com/downloads/mysql-proxy/
http://agiletesting.blogspot.com/2009/04/mysql-load-balancing-and-read-write.html
http://agiletesting.blogspot.com/2009/04/mysql-load-balancing-and-read-write.html
http://blog.ulf-wendel.de/2012/peclmysqlnd_ms-14-a-failover-standby-using-weightedprioritized-load-balancing/
http://blog.ulf-wendel.de/2012/peclmysqlnd_ms-14-a-failover-standby-using-weightedprioritized-load-balancing/

	 Improving Standard Replication Features	 77

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Additional products can be used to manage load balancing read con-
nections to a pool of slaves. The primary concern is the necessary manage-
ment and monitoring of replication lag, and the proactive removal of slave
servers to ensure data is consistent.

Conclusion
This chapter has covered many new features of MySQL replication in 5.5
and 5.6. For any large MySQL environment using replication with a previous
version, these are significant reasons to consider upgrading and benefiting
from performance, data integrity, network optimizations, and improved
failover capabilities when replication is an important component of your
MySQL topology.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

03-ch03.indd 77 9/6/12 2:03 PM

http://EffectiveMySQL.com/book/replication-techniques

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

79

4
Using Multi-Master

Replication

MySQL replication can be used for many benefits, including supporting
scalability and higher availability. By default, MySQL replication does not
support an environment that manages failover situations, or writing concur-
rently to multiple servers in a replication topology, without additional
configuration and management.

04-ch04.indd 79 9/6/12 2:38 PM

80 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we will discuss:

•	Configuring MySQL replication to support failover

•	Demonstrating the manual steps for failover and failback

•	More advanced replication topologies

MySQL Replication Failover Capabilities
A common way to set up a highly available (HA) MySQL environment is
to use a multi-master topology with two servers. Multi-master, also
known as a MySQL pair, is configured with two servers, and both servers
can act as a master and slave in replication terms. In this situation this is
an active/passive master configuration that is a common MySQL deploy-
ment approach. A true active/active master/master MySQL configuration
is when both servers are supporting write activity at the same time. This
type of setup is not typically recommended, given the number of data and
scalability problems you may encounter. Writing to both servers does not
actually increase throughput but only adds a level of redundancy. This con-
figuration makes failure situations more complex in order to support the
same amount of writes on one server when the volume is supported with
two servers under normal conditions.

A better practice is to set up a multi-master environment with two servers,
where writes are supported on one server at a time and the other server is
acting as a standby that can support read load.

Active/Passive Multi-Master Replication
Multi-master replication is when each server replicates to the other, so
server A would replicate to server B and server B would replicate to server
A. An active/passive or active/standby configuration is a safe approach to
run a multi-master environment to support higher availability. This means
that one server, the active server, will support all write activity along with
reads and the other server, the passive server, only supports read activity if
necessary. The passive or standby server in this case will be ready and avail-
able if the active server should fail or a planned failover occurs. Figure 4-1
shows a normal master and slave topology with a single replication stream.

04-ch04.indd 80 9/6/12 2:38 PM

	 Using Multi-Master Replication	 81

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Figure 4-2 shows an improved multi-master topology with two replica-
tion streams.

Required Multi-Master Configuration Settings
A multi-master topology is relatively easy to set up. In addition to the con-
figuration variables needed for standard replication (server-id and
log-bin) there is one more mandatory configuration variable when set-
ting up multi-master replication:

my.cnf
[mysqld]
log-slave-updates

Used in conjunction with log-bin, this option enables a slave host to
write activity from the SQL slave thread to its own binary log.

Optional Multi-Master Configuration Settings
It is highly recommended to set the passive server to read only. It is a re-
quirement of the failover steps to ensure that read-only is set to FALSE
at the appropriate time to enable future writes.

my.cnf
[mysqld]
read-only

This causes the host to only accept write activity from the I/O thread or
from users that have the SUPER privilege granted.

Master Slave

Figure 4-1  MySQL master/slave replication

Active Master Passive Master

Figure 4-2  MySQL master/master replication

04-ch04.indd 81 9/6/12 2:38 PM

82 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

TIP  A system monitoring alert check for identifying any users with SUPER
privilege other than a predefined list will provide protection in the future.

Other Configuration Variables to Consider
There are other options that you may need to consider when setting up
multi-master replication and you plan to write to both servers simultane-
ously. The following settings are not required in an active/passive setup;
however, if you plan to write to both hosts simultaneously you will need to
set these.

NOTE  The following variables protect against duplication of auto-increment
fields only. Duplicates can still occur on the server if you write the same data
to both masters and update the same row(s). In this case, MySQL may silently
overwrite records, leading to invalid or missing data. You can also encounter
key clashes when UNIQUE keys are present.

•	auto_increment_increment  Controls the interval between
successive column values.

•	auto_increment_offset  Determines the starting point of the
AUTO_INCREMENT column.

•	slave_exec_mode  If slave_exec_mode is IDEMPOTENT, which
is generally only used for multi-master replication and the MySQL
Cluster NDB storage engine, a failure to apply changes when using
row-based replication (RBR) because the original row cannot be
found does not trigger an error, causing replication to fail.

CAUTION  Setting slave_exec_mode to IDEMPOTENT can cause data
drift between the master and slave.

NOTE  If you have set replicate-do-db or replicate-ignore-db,
you will need to ensure these are set the same on both servers.

Example Configuration
The following outlines the recommended configuration file options for a
MySQL pair or MySQL active/passive master setup. For this chapter we
will use the VirtualBox environment that is defined in the appendix with
the servers running MySQL 5.5. These server names are alpha and beta.

04-ch04.indd 82 9/6/12 2:38 PM

	 Using Multi-Master Replication	 83

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Active Server (alpha)
On the master server, the following configuration is defined:

[mysqld]
server-id = 51
log-bin = mysql-bin
relay-log = relay-log
read_only = FALSE
log-slave-updates
skip-slave-start

Passive/Standby Server (beta)
On the failover server, the following configuration is defined:

[mysqld]
server-id = 52
log-bin = mysql-bin
relay-log = relay-log
read_only = TRUE
log-slave-updates

NOTE  The slave replication that is operating on the master is disabled on initial
server startup. This is important for certain specific error situations with
multiple replication streams for a failed failover or unexpected server restart. This
does require an additional management check and execution step when MySQL
is initiated on both servers. An alternative view is to disable slave startup on both
servers. This ensures the configuration files are more consistent between both
servers, and then ensures a human verification step is necessary before starting
replication.

CAUTION  These configuration settings are defined to demonstrate the setup
and manual failover of an active/passive environment. The use of appropriate
additional configuration to maintain durability is important for any production
system.

Replication Setup
The key to this setup and failover is the configuration of replication between
both servers. Replication only travels one way, from the master to the slave.
When setting up multi-master there are two replication streams to set up.
Replication runs from the active server to the passive server, where the pas-
sive server is the active server’s slave. Replication also runs from the passive

04-ch04.indd 83 9/6/12 2:38 PM

84 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

server to the active server, where the active server acts as a slave to the pas-
sive server. This means that SHOW MASTER STATUS and SHOW SLAVE STA-
TUS work on both servers.

Obtain Master Status on Active Server
Replication requires the master log file and position available from SHOW
MASTER STATUS. This can be obtained from both servers:

alpha> SHOW MASTER STATUS\G
************************ 1. row ************************
 File: mysql-bin.000001
 Position: 107
 Binlog_Do_DB:
Binlog_Ignore_DB:
beta> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000001
 Position: 107
 Binlog_Do_DB:
Binlog_Ignore_DB:

Create Replication User
In order for a slave server to use replication, an appropriate user has to be
configured on each server:

alpha> GRANT REPLICATION SLAVE ON *.* TO repl@beta IDENTIFIED BY 'repl';
beta> GRANT REPLICATION SLAVE ON *.* TO repl@alpha IDENTIFIED BY 'repl';

TIP  It is recommended that when using GRANT with IDENTIFIED BY you
first determine the hash of the password and use this value directly rather than
a clear text password. The syntax shown here is for readability purposes and is
not secure.

Configure First Replication Stream
The active and passive server can now be connected for replication with
the CHANGE MASTER TO command:

beta> CHANGE MASTER TO
 -> MASTER_HOST='alpha', MASTER_PORT=3306,
 -> MASTER_USER='repl', MASTER_PASSWORD='repl',
 -> MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=107,
 -> MASTER_CONNECT_RETRY=10;
beta> START SLAVE;
beta> SHOW SLAVE STATUS\G

04-ch04.indd 84 9/6/12 2:38 PM

	 Using Multi-Master Replication	 85

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
 Master_Host: alpha
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 364
 Relay_Log_File: relay-log.000002
 Relay_Log_Pos: 510
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Master_Server_Id: 51

Configure Second Replication Stream
Repeating the same steps on the active server, which also acts as a slave server,
configure the second replication stream with CHANGE MASTER TO:

alpha> CHANGE MASTER TO
 -> MASTER_HOST='beta', MASTER_PORT=3306,
 -> MASTER_USER='repl', MASTER_PASSWORD='repl',
 -> MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=107,
 -> MASTER_CONNECT_RETRY=10;
alpha> START SLAVE;
alpha> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: beta
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 504
 Relay_Log_File: relay-log.000002
 Relay_Log_Pos: 393
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Master_Server_Id: 52

Multi-master replication is now up and running.

CAUTION  With multi-master replication, the SHOW MASTER STATUS
and SHOW SLAVE STATUS commands operate on both systems, unlike a
traditional setup where SHOW MASTER STATUS displays binary log
information, and SHOW SLAVE STATUS displays replication information
on the slave.

04-ch04.indd 85 9/6/12 2:38 PM

86 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Multi-Master Replication Verification
A simple verification step can be used to ensure that both replication
streams are working. That is, a DML or DDL statement on the active master
is replicated to the slave, and a DML or DDL statement on the slave (i.e., the
passive master) is replicated to the master. This verification is used to dem-
onstrate and confirm operation.

This verification only works when we use a MySQL user that has been
granted the SUPER privilege along with CREATE, DROP, SELECT, INSERT,
and DELETE. The SUPER privilege bypasses read_only on the slave host
and allows DML queries to run on any production system without impact.

CAUTION  Never use a user with SUPER privilege for application access to
your data. When an application requires this privilege to manage objects, for
example, triggers in MySQL 5.0, it is recommended that a dedicated DBA user
with localhost only privileges is defined and used.

First Replication Stream Verification
On the active master server:

alpha> CREATE SCHEMA IF NOT EXISTS verify_failover;
alpha> USE verify_failover
alpha> CREATE TABLE rpl_test (id SERIAL) ENGINE = InnoDB;
alpha> INSERT INTO rpl_test(id) VALUES(1),(2),(3);
alpha> SELECT * FROM rpl_test;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.01 sec)

On the passive master server:

beta> USE verify_failover
beta> SELECT * FROM rpl_test;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.01 sec)

04-ch04.indd 86 9/6/12 2:38 PM

	 Using Multi-Master Replication	 87

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Second Replication Stream Verification
On the passive master server:

beta> USE verify_failover
beta> DELETE FROM rpl_test WHERE id=2;
beta> INSERT INTO rpl_test(id) VALUES (11),(22);
beta> SELECT * FROM rpl_test;
+----+
| id |
+----+
| 1 |
| 3 |
| 11 |	
| 22 |	
+----+
4 rows in set (0.00 sec)

On the active master server:

alpha> USE verify_failover
alpha> SELECT * FROM rpl_test;
+----+
| id |
+----+
| 1 |
| 3 |
| 11 |	
| 22 |	
+----+
4 rows in set (0.00 sec)
alpha> DROP SCHEMA verify_failover;

And a final verification on the passive master server, which should
result in the error provided:

beta> USE verify_failover
ERROR 1049 (42000): Unknown database 'verify_failover'

Application Usage and Verification
The final setup step is to define an application user for normal access and
for any further testing during failover:

alpha> CREATE SCHEMA book3;
alpha> CREATE USER app@'192.168.1.%' IDENTIFIED BY 'sakila';
alpha> GRANT INSERT,UPDATE,DELETE,SELECT ON book3.* TO app@'192.168.1.%';
alpha> USE book3
alpha> CREATE TABLE verify (id SERIAL) ENGINE = InnoDB;

04-ch04.indd 87 9/6/12 2:38 PM

88 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Manual Failover Process
In this section we will step through the manual slave promotion process.
This example is intended to highlight the complexities of automating this
process. In summary:

•	Restrict write access to active master

•	Verify no write access

•	Ensure MySQL replication is up to date

•	Enable write access on failover master

•	Support application needs

Restrict Write Access
Stop application access to the active master server but keep MySQL run-
ning. You accomplish this by first setting read_only to TRUE and option-
ally changing or dropping application user access or setting an appropriate
firewall rule with iptables.

In this case, set the active master read_only variable to TRUE. This
operation requires a user with the SUPER privilege.

alpha> SET GLOBAL read_only = TRUE;

At this time you should also modify the default configuration of MySQL
on the server to match the new read-only status. This is necessary to define
the startup state if MySQL is restarted at a future time. If the active master
also has skip-slave-start defined and this is not specified also on the
failover master, this should also be removed to reflect the startup state of
the passive master.

Verify No Write Access
Verify the active master is read only with a user that does not have the
SUPER privilege. It is recommended that you do not run any SQL that
would damage your current data:

$ mysql -uapp -psakila -halpha book3
alpha> INSERT INTO verify VALUES(NULL);
ERROR 1290 (HY000): The MySQL server is running with the --read-only option
 so it cannot execute this statement

04-ch04.indd 88 9/6/12 2:38 PM

	 Using Multi-Master Replication	 89

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Ensure Replication Is Up to Date
A verification of the master and slave status is necessary to ensure the
slave that will be promoted to the active master has replication running
and has completed all transactions.

On the current active master, obtain the current master replication posi-
tion:

alpha> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000003
 Position: 26312
 Binlog_Do_DB:
Binlog_Ignore_DB:

On the failover slave, confirm the position matches the master:

beta> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
...
 Master_Log_File: mysql-bin.000003
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Exec_Master_Log_Pos: 26312
...
 Master_Server_Id: 51

CAUTION  This step relies on the requirement that no additional data changes
are occurring on the master. The read-only status can be easily overridden by
any user that has the SUPER privilege. This is another primary reason why an
application user should never have this privilege.

Enable Write Access on New Master
At this time, the current master is defined as read-only and replication is
confirmed as operational. A sanity check is shown to indicate the new
failover master is not currently supporting writes:

$ mysql -uapp -psakila -hbeta book3
beta> INSERT INTO verify VALUES(NULL);
ERROR 1290 (HY000): The MySQL server is running with the --read-only option
 so it cannot execute this statement

04-ch04.indd 89 9/6/12 2:38 PM

90 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

CAUTION  If the new failover master fails the read-only check, failover may
still continue. However, this is an indication that data inconsistency is
possible. Having an appropriate check of data consistency via checksums is
an important monitoring step in a multi-master environment.

Using a user with the SUPER privilege, the slave that is now the new
active master is enabled to accept writes:

beta> SET GLOBAL read_only = FALSE;
$ mysql -uapp -psakila -hbeta book3

A final sanity check with an application user with appropriate privileges
can be performed, i.e., the earlier check that failed due to the read-only state:

beta> INSERT INTO verify VALUES(NULL);
Query OK, 1 row affected (0.01 sec)

Additional steps, for example, enabling suitable application user per-
missions that are disabled by default, or removing a firewall restriction,
may also be needed depending on what additional steps are required in
the environment.

TIP  Additional care has to be taken when adding and removing MySQL user
privileges, as the replication of the mysql schema would cause this to be
replicated also. Certain commands may need to be excluded from binary logging.

Verifying Resumed Operations
A final check should be performed with transaction throughput on the new
active master to ensure the second replication stream is operating as expected.
A SHOW PROCESSLIST will confirm statements are being executed on the
new active master. It is important that the SHOW MASTER STATUS and
SHOW SLAVE STATUS is performed on the correct servers, i.e., the inverse of
what was performed before commencing the manual failover:

beta> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000001
 Position: 33426
 Binlog_Do_DB:
Binlog_Ignore_DB:

alpha > SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: beta

04-ch04.indd 90 9/6/12 2:38 PM

	 Using Multi-Master Replication	 91

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: mysql-bin.000001
 Read_Master_Log_Pos: 33426
 Relay_Log_File: relay-log.000002
 Relay_Log_Pos: 1044
 Relay_Master_Log_File: mysql-bin.000001
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Exec_Master_Log_Pos: 33426
...
 Master_Server_Id: 52
1 row in set (0.00 sec)

CAUTION  The location of the Read_Master_Log_Pos column in the
SHOW SLAVE STATUS output should not be mistaken for the need to verify
the Exec_Master_Log_Pos that occurs later in the output.

NOTE  It is very easy to be confused when running SHOW MASTER STATUS
and SHOW SLAVE STATUS on the wrong servers in a MySQL pair
configuration. Both servers act as a master and a slave in a replication sense.

Manage Application Access
In these examples, there is a clear manual understanding of which server
is the active master and which server becomes the new active master. In an
application situation, that must be pre-determined or managed in addition
to the steps just highlighted to minimize application downtime. A common
approach is to use a virtual IP (VIP) address that may optionally resolve to
a common DNS name. The application configuration always communicates
with the VIP or common name rather than the physical IP address of the
active master server. The failover approach then manages the changing of
the VIP to point to the correct server that is acting as an active master. For
example, add a VIP address to an existing physical network adapter on the
master:

alpha$ sudo ifconfig eth1:0 192.168.1.101 up
alpha$ ifconfig
...
eth1 Link encap:Ethernet HWaddr 08:00:27:d4:5f:91
 inet addr:192.168.1.51 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::a00:27ff:fed4:5f91/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:370474 errors:0 dropped:0 overruns:0 frame:0

04-ch04.indd 91 9/6/12 2:38 PM

92 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 TX packets:1184045 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:31804703 (31.8 MB) TX bytes:1671393644 (1.6 GB)

eth1:0 Link encap:Ethernet HWaddr 08:00:27:d4:5f:91
 inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
...

In addition, this should be added to the /etc/network/interfaces
file, or applicable file for your operating system, to preserve this state when
the system is restarted.

The application is modified to always connect to this IP address or a DNS
entry. The use of an IP address for database connections removes additional
DNS translation overhead and possible DNS server lookup failures. For this
example the new host information is defined on all servers in the test
environment:

#/etc/hosts
192.168.1.101 master

When performing a failover, the removal of the IP address from the
master should be performed when the server is set to read-only:

alpha$ sudo ifconfig eth1:0 down

When read-only access is removed on the failover master, the IP address
should then be enabled on the new active master:

beta$ sudo ifconfig eth1:0 192.168.1.101 up
beta$ ifconfig

The application will operate with this VIP because the application user
privileges were defined for a wildcard host, i.e., 192.168.1.%

A further complication with this network mapping is you may need to
have a network admin run an Address Resolution Protocol (ARP) cache
clear to ensure the passive slave’s Media Access Control (MAC) address
will be assigned to the VIP. ARP is primarily used to connect the OSI Mod-
el Network Layer (Layer 3) to the Data Link Layer (Layer 2). For most net-
works this refers to IP and MAC mapping. The arp and arping commands
can be used in identification and notification steps. This link provides a
good introduction to these commands: http://homepage.smc.edu/morgan_
david/cs75/labs/arp-and-arping.htm.

04-ch04.indd 92 9/6/12 2:38 PM

http://homepage.smc.edu/morgan_david/cs75/labs/arp-and-arping.htm
http://homepage.smc.edu/morgan_david/cs75/labs/arp-and-arping.htm

	 Using Multi-Master Replication	 93

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Review
The manual slave promotion process has a lot of steps and is prone to human
error. Floating IP addresses or VIPs add a level of complexity in that a net-
work administrator will need to be involved, plus a MySQL administrator
may not have access to run the IP removal and addition to the servers, pos-
sibly needing a system administrator to run those commands.

Certain cloud infrastructures may not be able to assign a second IP ad-
dress that can float from server to server. Until very recently, it was not pos-
sible to have a second IP address with Amazon Web Services (AWS). This
was announced on July 6, 2012 (see http://aws.typepad.com/aws/2012/07/
multiple-ip-addresses-for-ec2-instances-in-a-virtual-private-cloud.html).
This requires a different approach to steps 6, 7, and 8 earlier, which may
include changing a connection string in your application and restarting
your web server.

Real World Usage Complications
While these steps hint at a plausible solution, the reality is there are many
additional situations where this process has potential flaws or additional
complications. In a fully controlled situation, these initial steps do provide a
viable solution. Some of the complexities that have to be considered include

•	Management or administrative processes that are executed on the
master, for example, batch processes. These should be stopped
before a controlled failover. These processes may require additional
configuration if they are designed to run on the local master server.

•	The unavailability of the actual master server does not enable a
controlled failover. There is no guarantee MySQL replication is up to
date, and the managed state of changing the master read-only at
runtime and configuration is not possible. If a VIP is in use, this is not
actively removed. This situation can result in a split-brain where
both masters could receive data. This is a disaster situation that can
cause data corruption.

•	The use of persistent connections, for example, Connector/J, can add
additional complexities to connection management. Additional
testing and error validation are necessary to ensure the application

04-ch04.indd 93 9/6/12 2:38 PM

http://aws.typepad.com/aws/2012/07/multiple-ip-addresses-for-ec2-instances-in-a-virtual-private-cloud.html
http://aws.typepad.com/aws/2012/07/multiple-ip-addresses-for-ec2-instances-in-a-virtual-private-cloud.html

94 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

supports the physical change of the underlying server that is
servicing requests with the VIP. It is recommended that a flush of
persistent connection pool on application servers is performed to
minimize complexities during the failover.

•	Long running queries on the master may result in additional
complications. While the setting of read-only will address new
writes, including within a transaction, any long running queries
should be monitored before completing a failover.

•	 In an uncontrolled failover situation the write consistency, especially
of slave information, may cause replication issues. Additional
configuration settings may be necessary to ensure file
synchronization of important replication information; however, this
has a performance impact for all transactions. The specific issue of
file consistency of replication slave information has been addressed
with crash-consistent slaves available in MySQL 5.6.

•	A management server or arbitrator can be used to manage split-
brain or other network unavailability situations. When the MySQL
pair is initiated, each server asks an arbitrator (i.e., a third party) who
is the master rather than starting with a default state.

•	Unless continuously checksummed, there is no absolute
confirmation that data on both servers is synchronized.

Additional Slave Servers
While this initial example used two MySQL servers, it is possible to have ad-
ditional replication slaves in the MySQL topology. The use of a MySQL pair,
i.e., two servers to support writes and additional slaves to support reads, can
easily be supported with the described multi-master replication environment.
These additional servers can be managed with:

•	Replication slaves connected with the active master.

•	Replication slaves moved from the active master to the new master
before the failover occurs.

In the example, by adding a third server using the virtual environment
defined in the appendix, these steps can be demonstrated.

04-ch04.indd 94 9/6/12 2:38 PM

	 Using Multi-Master Replication	 95

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Slave Server Setup (gamma)
On a new slave server, the following configuration is defined:

[mysqld]
server-id = 53
relay-log = relay-log
read_only=TRUE

The setup of the slave repeats the same steps for the initial replication
streams. First create an appropriate replication user:

alpha> GRANT REPLICATION SLAVE ON *.* TO repl@gamma
IDENTIFIED BY 'repl';

Initiate replication on the new slave:

gamma> CHANGE MASTER TO
 -> MASTER_HOST='alpha', MASTER_PORT=3306,
 -> MASTER_USER='repl', MASTER_PASSWORD='repl',
 -> MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=107,
 -> MASTER_CONNECT_RETRY=10;
gamma> START SLAVE;
gamma> DO SLEEP(2);
gamma> SHOW SLAVE STATUS\G

The MySQL topology now has three MySQL servers, a master server
(alpha), a failover master (beta), and an additional slave (gamma). Figure 4-3
shows the servers and the replication streams currently configured. This
figure includes an indication that additional slave servers can be added in
the same fashion.

Slave 3

Slave 2

Active Master

Slave 1

Passive Master

Figure 4-3  MySQL master/master replication with additional slaves

04-ch04.indd 95 9/6/12 2:38 PM

96 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

It is also possible to split slaves between both the active and passive
master and not move slaves during the failover. This has the added benefit
that in an uncontrolled failure half the slaves are always in operation. This
also has the added risk that with certain replication failure situations, half
the slaves are out of date.

Slave Server Management
As described in the introduction, the key to using additional slaves effec-
tively is for the slaves to connect to the active master. In a failover situation
the slave should be moved to the new master prior to failover. This involves
the following steps:

1.	 Ensure slave is operating and up to date.

2.	 Obtain a consistent view of both replication streams on the
failover server.

Ensure Slave Operation

gamma> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: alpha
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
 Master_Log_File: mysql-bin.000003
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Exec_Master_Log_Pos: 26661
...
 Seconds_Behind_Master: 0
...
 Master_Server_Id: 51

gamma> STOP SLAVE SQL_THREAD;

Prior to stopping the SQL thread, ensure the slave is running (Slave_
IO_Running and Slave_SQL_Running) and slave is up to date (Seconds_
Behind_Master) and confirm the current master (Master_Host).

Determine Failover Position  On the master you are failing over to (i.e.,
the current passive master and not the host described in the SHOW SLAVE

04-ch04.indd 96 9/6/12 2:38 PM

	 Using Multi-Master Replication	 97

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

STATUS output), obtain a consistent snapshot of the slave replication
stream and the master replication stream on the instance. For example:

beta> STOP SLAVE SQL_THREAD;
beta> SHOW SLAVE STATUS\G
beta> SHOW MASTER STATUS\G
beta> START SLAVE SQL_THREAD;

With the SHOW SLAVE STATUS output you have the Master_Log_
File and the Exec_Master_Log_Pos. For example:

beta> SHOW SLAVE STATUS\G
...
 Master_Log_File: mysql-bin.000003
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
...
 Exec_Master_Log_Pos: 26661
...

This is used to construct the SQL statement.

START SLAVE UNTIL
 MASTER_LOG_FILE='mysql-bin.000003', MASTER_LOG_POS=26661;

With the SHOW MASTER STATUS OUTPUT you have to use the new
File and Position. For example:

beta> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000001
 Position: 33566
 Binlog_Do_DB:
Binlog_Ignore_DB:

You can use this to create the following SQL statement:

CHANGE MASTER TO
 MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=33566;

Unfortunately, this is insufficient access to information to obtain the con-
nection details of the new master. There is no easy way to obtain this infor-
mation in one step. Some information can be obtained and inferred from
the SHOW SLAVE STATUS, for example, the Master_User and Master_
Port, providing these are consistent across your topology. Also required
are the host and the password. The host can be obtained with the following
SQL statement in MySQL 5.1 or better:

beta> SELECT variable_value AS host_name
 -> FROM information_schema.global_variables

04-ch04.indd 97 9/6/12 2:38 PM

98 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 -> WHERE variable_name='hostname';
+-----------+
| host_name |
+-----------+
| beta |
+-----------+

This still leaves the required replication user password. There are two
options, either use a known value for the password (i.e., you hardcode this
in your subsequent SQL statement), or find all the information and the
password by using the second replication stream on the current master in
the master.info file found in the MySQL data directory:

$ cd /path/to/datadir
$ head -7 master.info | tail -4
beta
repl
repl
3306

In plain text you now have all the new master connection details from
the existing replication stream that is the slave on the new failover master.
This information is used to construct the full SQL statement necessary:

CHANGE MASTER TO
 MASTER_HOST='beta', MASTER_USER='repl', MASTER_PASSWORD='repl',
 MASTER_LOG_FILE='mysql-bin.000001', MASTER_LOG_POS=33566;

NOTE  In MySQL 5.6 when using crash-safe slaves, the information from the
master.info file is available in the mysql.slave_master_info table.

Perform Slave Failover  We now execute on the attached slave that is being
moved the following SQL to align the replication stream with the recorded
failover position:

gamma> START SLAVE UNTIL
 -> MASTER_LOG_FILE='mysql-bin.000003', MASTER_LOG_POS=26661;
gamma> DO SLEEP(1);
gamma> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
...
 Master_Log_File: mysql-bin.000003
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
...
 Exec_Master_Log_Pos: 26661
 Until_Condition: Master

04-ch04.indd 98 9/6/12 2:38 PM

	 Using Multi-Master Replication	 99

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Until_Log_File: mysql-bin.000003
 Until_Log_Pos: 26661
...

A confirmation should be performed to ensure the slave is at the correct
location by comparing the Master_Log_File + Exec_Master_Log_
Pos and Until_Log_File + Until_Log_Pos values.

The final step is to reset the slave and point to the current master posi-
tion of the failover master:

gamma> STOP SLAVE;
gamma> RESET SLAVE;
gamma> CHANGE MASTER TO
 -> MASTER_HOST='beta', MASTER_USER='repl', MASTER_PASSWORD='repl',
 -> MASTER_LOG_FILE=' mysql-bin.000001', MASTER_LOG_POS=33566;
gamma> START SLAVE;
gamma> DO SLEEP(1);
gamma> SHOW SLAVE STATUS\G

*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: beta
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 10
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...
 Master_Server_Id: 52
1 row in set (0.00 sec)

These steps need to be repeated for each attached slave. In an environ-
ment when you have a larger number of slaves, the chaining of the slaves
via a relay server (aka just another slave) enables you to move just one
slave (i.e., the relay slave) to achieve the same result. Figure 4-4 shows an
example replication topology between the servers for this situation.

TIP  When using a large number of slaves with a relay slave, the use of the
BLACKHOLE storage engine on the relay slave can improve replication
performance. This minimizes the writes of the actual data, as the BLACKHOLE
engine simply discards the data. What is necessary is the binary log on the
relay that is used for replication with all attached slaves.

CAUTION  You should only use the BLACKHOLE storage engine with the
technique described above when binlog-format is set to STATEMENT.

04-ch04.indd 99 9/6/12 2:38 PM

100 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Read and Write Load Balancing
The implementation of an active/passive multi-master environment gen-
erally uses a virtual IP (VIP) to support the management of writes. In an
active/active configuration, the application will need to make the decision
of which master to write to, and balancing these writes may be an impor-
tant consideration to manage load. The use of additional slave servers for
read scalability also requires the application to support splitting reads and
writes, and also balancing reads between a pool of read slaves if applicable.
Chapter 3 described several techniques for managing these requirements.

Circular Replication
A MySQL pair is the use of two MySQL instances in a multi-master replica-
tion configuration. While the recommendation is to use an active/passive
implementation, the same approach is used for an active/active implemen-
tation. As previously mentioned, additional configuration settings, for
example, when using auto increment columns, is critical. MySQL replication
does not support collision detection, so depending on the complexity of the
application using the active/active environment, additional tricks are needed
to minimize conditions that may cause replication to break.

Active Master

Relay Slave

Passive Master

Slave 1 Slave 2 Slave n

Figure 4-4  MySQL master/master replication with relay slave

04-ch04.indd 100 9/6/12 2:38 PM

	 Using Multi-Master Replication	 101

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

MySQL can support more than two servers via a circular replication
configuration. Again, while not recommended this is indeed possible.
Figure 4-5 shows how replication may be configured in this situation.

NOTE  A more complex MySQL replication topology is not due to the
configuration and effective use. The complexity and significant difficulties are
in managing an environment after the result of some replication failure, which
can then cause cascading replication failures or data corruption that can be
extremely difficult to plan for and even correct. The need to consider a more
complex topology for a more highly available replication environment indicates
the importance of the system, and the need for high uptime should be carefully
weighted with the increased risk of the inherent dangers that can occur.

Other Replication Topologies
There are many other types of MySQL replication topologies in addition to
the simple, multi-master, and circular replication approaches that have
been described. A tree or hierarchical architecture can produce a fan-out
environment to support massive read scalability. MySQL replication can

Figure 4-5  MySQL master/master circular replication

Server 1

Server 5

Server 2

Slave

Slave

Server 3

Server 4

04-ch04.indd 101 9/6/12 2:38 PM

102 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

work remarkably well with 100 to 200 MySQL slaves attached to a master.
When the number of slaves continues to increase, for example, 300 or more,
a multi-level tree architecture is definitely needed for performance as well
as redundancy for any disaster situation.

Other approaches include a hybrid circular and multi-master configura-
tion, and complex systems that include sharding and using several different
topologies all with one environment.

The current MySQL replication implementation does not support one
significant type of topology. That is a slave instance that supports writes
from multiple masters. We will discuss this in Chapter 6 with a Tungsten
Replicator that does provide this feature.

Automating High Availability Failovers
From these steps you can determine there are many moving parts to a suc-
cessful multi-master replication environment, and there is complexity in
ensuring all operations are performed and verified as expected.

The following open source utilities exist in the MySQL ecosystem for
automating failover architectures:

•	MHA for MySQL: Master High Availability Manager and tools for
MySQL was created by Yoshinori Matsunobu and is a viable way to
automate master failover and slave promotion.

•	MMM or Multi-Master Replication Manager for MySQL is another
tool that monitors and automates management and failover of
multi-master MySQL clusters.

•	Flipper is another legacy tool that supports managing a simple
MySQL pair configuration.

More information about these tools is available in Chapter 5.
Starting with MySQL 5.6, many of these steps and additional utilities

can be simplified or eliminated with the introduction of features including
UUID, GTID, and crash-safe slaves that were discussed in Chapter 3. In
Chapter 5 several utilities leveraging these new features are also discussed.

04-ch04.indd 102 9/6/12 2:38 PM

	 Using Multi-Master Replication	 103

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Conclusion
Running multi-master topologies with native MySQL replication has been
around for a long time. Multi-master replication is not complex to configure;
however, it is complex to manage and support for all production situations
and possible disaster recovery needs. Successful implementations using
multi-master replication generally involve designing the application to be
aware of, and cater for, the inherent limitations and risks.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

04-ch04.indd 103 9/6/12 2:38 PM

http://EffectiveMySQL.com/book/replication-techniques

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

105

5
MySQL Replication Tools

The MySQL ecosystem includes many different tools that can be used to
support, manage, and monitor MySQL replication. These tools have been
developed to enhance the default MySQL installation. Over time MySQL
has incorporated some of these community features and tools.

In this chapter we discuss:

•	Various available toolkits, including Openark Kit, Percona Toolkit,
Maatkit, and MySQL Workbench Utilities

•	Replication prefetch options

•	MySQL failover managers, including MySQL MHA, MMM, and Flipper

05-ch05.indd 105 9/6/12 4:33 PM

106 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Various MySQL Toolkits
Several individuals and companies have created a number of tools and
combined them into various toolkits. The most common toolkits and the
relevant MySQL replication utilities are included. Each of the examples in
the following toolkits relies on the configuration of a suitable MySQL
topology. The MySQL Sandbox and/or the VirtualBox setup that is defined
in the appendix is used.

Openark Kit
Created and maintained by the 2009 MySQL community member of the
year and Oracle ACE Shlomi Noach (http://code.openark.org), Openark
provides a number of common utilities to administer, diagnose, and audit
MySQL databases. The following are the related MySQL replication utilities.

This software is written in Python and is available under the open source
BSD license. More information can be found at http://code.openark.org/
forge/openark-kit.

Installation
The following steps install Openark and the necessary dependencies on an
Ubuntu/Debian server:

$ cd /tmp
$ wget http://openarkkit.googlecode.com/files/openark-kit-180-1.deb
$ sudo apt-get install python-mysqldb
$ sudo dpkg -i openark-kit-*.deb
$ rm -f openark-kit-*.deb
$ oak-get-slave-lag -help

The following steps install Openark and the necessary dependencies on
a Red Hat/CentOS/Oracle Linux server:

$ cd /tmp
$ wget http://openarkkit.googlecode.com/files/openark-kit-180-1.noarch.rpm
$ sudo yum install MySQL-python
$ sudo rpm -i openark-kit-*.noarch.rpm
$ rm -f openark-kit-*.noarch.rpm
$ oak-get-slave-lag -help

Refer to http://code.google.com/p/openarkkit/downloads/list for de-
tails of the most current version and software for other operating systems.

05-ch05.indd 106 9/6/12 4:33 PM

http://code.openark.org
http://code.openark.org/forge/openark-kit
http://code.openark.org/forge/openark-kit
http://code.google.com/p/openarkkit/downloads/list

	 MySQL Replication Tools	 107

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

oak-get-slave-lag
The oak-get-slave-lag utility provides a convenience script of capturing
the Seconds_Behind_Master information from SHOW SLAVE STATUS.
This also supports an acceptable amount before providing an error. The
following examples use a MySQL Sandbox environment as defined in the
appendix:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ oak-get-slave-lag --defaults-file=node1/my.sandbox.cnf
0

In an error situation when replication lag exceeds a given number of
seconds specified:

$ oak-get-slave-lag --defaults-file=node1/my.sandbox.cnf -e 5
-- ERROR: 8

When replication is not running:

$./s1 -e "STOP SLAVE"
$ oak-get-slave-lag --defaults-file=node1/my.sandbox.cnf
None
$./s1 -e "START SLAVE

References 

Code: http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/
oak-get-slave-lag.html.

oak-show-replication-status
This command provides a convenient report of the MySQL topology for a
given master. This will automatically detect and check all slaves for the spec-
ified master. This will not report slaves in a nested topology. For example:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ oak-show-replication-status --defaults-file=master/my.sandbox.cnf
-- master log: mysql-bin.000003
-- Slave host Slave port Master_Log_File Seconds_Behind_Master
Status
-- ERROR: Cannot SHOW SLAVE STATUS on SBslave1:21380
-- ERROR: Cannot SHOW SLAVE STATUS on SBslave2:21381

In this situation you can see errors. This is due to the underlying process of
using SHOW SLAVE HOSTS, which requires the --report-host option to

05-ch05.indd 107 9/6/12 4:33 PM

http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-get-slave-lag.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-get-slave-lag.html

108 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

be defined on slaves. By adding SBslave1 and SBslave2 to your machine
hosts file, a correct output is provided to demonstrate the utility:

 $ oak-show-replication-status --defaults-file=master/my.sandbox.cnf
-- master log: mysql-bin.000001
-- Slave host Slave port Master_Log_File Seconds_Behind_Master Status
-- SBslave1 21380 mysql-bin.000001 0 Good
-- SBslave2 21381 mysql-bin.000001 0 Good

CAUTION  There is no validation in MySQL for the --report-host value
as shown with using MySQL Sandbox. If this is not an actual server name,
this utility will not produce the results you may be expecting.

When using the virtual environment as defined in the appendix:

$ oak-show-replication-status -uroot -ppasswd -Halpha
-- master log: alpha-bin.000007
-- Slave host Slave port Master_Log_File Seconds_Behind_Master Status
-- beta 3306 alpha-bin.000007 0 Good

oak-show-replication-status does not support nested master/
slave topologies as demonstrated in the later MySQL Workbench Utilities
example.

References

Code: http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/
oak-show-replication-status.html.

oak-purge-master-logs
The master binary logs require monitoring and management to ensure
available disk space exists on the master server for normal database opera-
tions. The expire_logs_days configuration option and the PURGE
MASTER LOGS command can be used to maintain a healthy amount of
files. While expire_logs_days will only delete binary logs older than
the specific amount when a new binary log is created, PURGE MASTER
LOGS can remove files by name or to a certain date and time. In addition
the oak-purge-master-logs command can perform removal of binary
logs for an applicable retention policy with the number of available files.
For example:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ oak-purge-master-logs --retain-logs=3 --print-only \
 --defaults-file=master/my.sandbox.cnf
PURGE MASTER LOGS TO 'mysql-bin.000005'

05-ch05.indd 108 9/6/12 4:33 PM

http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-show-replication-status.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-show-replication-status.html

	 MySQL Replication Tools	 109

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

This syntax will provide what can be run manually. To confirm the cor-
rect information you can review the existing binary logs in place with:

$ ls -l master/data/mysql-bin*
-rw-rw---- 1 uid gid6309531 May 21 22:10 master/data/mysql-bin.000001
-rw-rw---- 1 uid gid 5327 Jun 7 09:26 master/data/mysql-bin.000002
-rw-rw---- 1 uid gid 2981 Jun 12 18:42 master/data/mysql-bin.000003
-rw-rw---- 1 uid gid 126 Jun 12 18:50 master/data/mysql-bin.000004
-rw-rw---- 1 uid gid 6354 Jun 14 12:18 master/data/mysql-bin.000005
-rw-rw---- 1 uid gid 27650 Jun 14 13:32 master/data/mysql-bin.000006
-rw-rw---- 1 uid gid 107 Jun 14 13:32 master/data/mysql-bin.000007
-rw-rw---- 1 uid gid 133 Jun 14 13:32 master/data/mysql-bin.index

$ oak-purge-master-logs --retain-logs=3 \
 --defaults-file=master/my.sandbox.cnf
$ ls -l master/data/mysql-bin*
-rw-rw---- 1 uid gid 6354 Jun 14 12:18 master/data/mysql-bin.000005
-rw-rw---- 1 uid gid 27650 Jun 14 13:32 master/data/mysql-bin.000006
-rw-rw---- 1 uid gid 107 Jun 14 13:32 master/data/mysql-bin.000007
-rw-rw---- 1 uid gid 133 Jun 14 13:32 master/data/mysql-bin.index

This utility can also ensure that binary logs are maintained for any slaves
that may be out of date.

CAUTION  It is important you keep the current binary logs from the last static
backup available. This should be part of your standard backup and recovery
process. If your system writes a large number of files per day, for example, 100
files, removing files by a constant number without an adequate backup may
delete important binary logs for a disaster recovery from the previous static
backup or an older static backup. These are important business considerations
to review in addition to the technical needs.

The Effective MySQL: Backup and Recovery book (McGraw-Hill, 2012) pro-
vides extensive details on how to manage the MySQL binary logs, includ-
ing how to make copies, and how to monitor and verify copied files.

References

Code: http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/
oak-purge-master-logs.html.

Percona Toolkit
The Percona toolkit, by the product name owners, provides various utilities
including the following commands relevant to MySQL replication. This
software is available under the GPL v2 license and can be obtained from
http://www.percona.com/software/percona-toolkit/.

05-ch05.indd 109 9/6/12 4:33 PM

http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-purge-master-logs.html
http://openarkkit.googlecode.com/svn/trunk/openarkkit/doc/html/oak-purge-master-logs.html
http://www.percona.com/software/percona-toolkit/

110 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Installation
The following instructions install Percona Toolkit on an Ubuntu/Debian
distribution:

$ wget http://www.percona.com/redir/downloads/percona-toolkit/2.1.1/
percona-toolkit_2.1.1_all.deb
$ sudo apt-get install libterm-readkey-perl
$ sudo dpkg -i percona-toolkit_2.1.1_all.deb
$ pt-slave-find -help

The following instructions install Percona Toolkit on a Red Hat/CentOS/
Oracle Linux distribution:

$ wget http://www.percona.com/redir/downloads/percona-toolkit/2.1.1/
percona-toolkit-2.1.1-1.noarch.rpm
$ sudo yum install perl-TermReadKey
$ sudo yum install perl-DBD-MySQL
$ sudo rpm -i percona-toolkit-2.1.1-1.noarch.rpm
$ pt-slave-find -help

Refer to http://www.percona.com/downloads/percona-toolkit/LATEST/
for the most current version and software for other operating systems and
distributions.

pt-table-checksum
One feature that is essential for managing and ensuring replication data
consistency is appropriate table checksum verification. The Percona Toolkit
provides the pt-table-checksum command, which replaces the Maatkit
mk-table-checksum tool. The following example shows a test table
that is missing a row on the slave using the MySQL Sandbox environment
that is defined in the appendix:

CAUTION  This utility is disk intensive for large databases as by default this
reads the entire table for the specified schemas and tables.

$ cd $HOME/sandboxes/rsandbox_5_5_24
$./m
master> CREATE SCHEMA IF NOT EXISTS book3;
master> USE book3
master> CREATE TABLE difference_test (id INT NOT NULL);
master> INSERT INTO difference_test VALUES (1),(2),(3);
$./s1
slave> USE book3
slave> DELETE FROM difference_test LIMIT 1;

05-ch05.indd 110 9/6/12 4:33 PM

http://www.percona.com/downloads/percona-toolkit/LATEST/

	 MySQL Replication Tools	 111

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Running the pt-table-checksum command:

$ pt-table-checksum --databases=book3 --defaults-file=master/my.sandbox.cnf \
 --replicate book3.checksum
TS ERRORS DIFFS ROWS CHUNKS SKIPPED TIME TABLE
06-14T15:57:31 0 0 3 1 0 0.031 book3.difference_test
06-14T15:57:31 0 0 1 1 0 0.028 book3.no_tbl_on_slave
06-14T15:57:32 0 0 1048576 7 0 1.148 book3.numbers
06-14T15:57:32 0 0 2 1 0 0.030 book3.rbr_test
06-14T15:57:32 0 0 4 1 0 0.027 book3.uniq_test

Full details of the checksums between the master and slave tables can
be found in the book3.checksum table. The following SQL will provide a
difference recorded in this table if any exists:

$./s1
slave> SELECT db, tbl, SUM(this_cnt) AS total_rows,
 -> COUNT(*) AS chunks
 -> FROM book3.checksum
 -> WHERE (master_cnt <> this_cnt OR
 -> master_crc <> this_crc OR
 -> ISNULL(master_crc) <> ISNULL(this_crc))
 -> GROUP BY db, tbl;
+-------+-----------------+------------+--------+
| db | tbl | total_rows | chunks |
+-------+-----------------+------------+--------+
| book3 | difference_test | 2 | 1 |
+-------+-----------------+------------+--------+
1 row in set (0.00 sec)

For comparison, the second slave shows no differences:

$./s2
slave> SELECT ...
Empty set (0.01 sec)

If there are missing schema objects in your slave schema, this command
will break replication. For example:

$./s1
slave> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
...
 Slave_IO_Running: Yes
 Slave_SQL_Running: No
...
 Last_Errno: 1146
 Last_Error: 'Table 'book3.no_tbl_on_slave' doesn't exist'
on query. Default database:'book3'.Query: 'REPLACE INTO `book3`.`checksum` (db,
 tbl, chunk, chunk_index, lower_boundary, upper_boundary, this_cnt, this_crc)

05-ch05.indd 111 9/6/12 4:33 PM

112 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 SELECT 'book3', 'no_tbl_on_slave', '1', NULL, NULL, NULL, COUNT(*) AS cnt,
COALESCE(LOWER(CONV(BIT_XOR(CAST(CRC32(`id`) AS UNSIGNED)), 10, 16)), 0) AS crc
 FROM `book3`.`no_tbl_on_slave` /*checksum table*/'
...

The following utility describes how to identify the actual row differences.

References

Documentation: http://www.percona.com/doc/percona-toolkit/pt-table-
checksum.html.

pt-table-sync
This tool attempts to identify data changes and synchronize these via
re-applying commands on the MySQL master. This tool does change data
and comes with a recommendation that you backup your data before use.
You can also run the tool in print-only mode to see what operations would
be run. This is generally used in conjunction with an identified data drift
from the output of pt-table-checksum.

Demonstrating how to identify the difference of the slave data as
described with the pt-table-checksum command:

This is needed for the full connection string required for this utility
$ cat node1/my.sandbox.cnf
$ pt-table-sync --print --sync-to-master --databases=book3 h=localhost,P=21380,
u=msandbox,p=msandbox,S=/tmp/mysql_sandbox21380.sock
REPLACE INTO `book3`.`checksum`(`db`, `tbl`, `chunk`, `chunk_time`,
`chunk_index`, `lower_boundary`, `upper_boundary`, `this_crc`, `this_cnt`,
`master_crc`, `master_cnt`, `ts`) VALUES ('book3', 'difference_test', '1',
'0.008657', NULL, NULL, NULL, 'f4dbdf21', '3', 'f4dbdf21', '3', '2012-06-14
15:57:31');
REPLACE INTO `book3`.`difference_test`(`id`) VALUES ('1')
 /*percona-toolkit src_db:book3 src_tbl:difference_test ... */;
Table book3.no_tbl_on_slave does not exist on P=21380,S=/tmp/mysql_sandbox21380.
sock,h=localhost,p=...,u=msandbox
while doing book3.no_tbl_on_slave on localhost

As you can see from the output, more information was provided than
expected. This utility does identify the data drift in the difference_table
and provides a suitable REPLACE command that, if run on the master,
would provide for consistent data in this table. What is also shown are mod-
ifications to synchronize the actual checksum table that you do not want to
be modified. The utility also highlights a difference of a missing table.

CAUTION  While this tool can be used to identify physical data differences, it
is recommended that all SQL statements are carefully verified before execution
to ensure no data loss.

05-ch05.indd 112 9/6/12 4:33 PM

http://www.percona.com/doc/percona-toolkit/pt-table-checksum.html
http://www.percona.com/doc/percona-toolkit/pt-table-checksum.html

	 MySQL Replication Tools	 113

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

References

Documentation: http://www.percona.com/doc/percona-toolkit/pt-table-
sync.html.

pt-heartbeat
This utility attempts to monitor replication delay by monitoring actual rep-
licated information. This is performed in two parts, the --update com-
mand, and the --check or --monitor command:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ pt-heartbeat --defaults-file=master/my.sandbox.cnf \
 --create-table --database=book3 --table=heartbeat --update &

You can review what is actually being created with:

$./m
master> SELECT * FROM book3.heartbeat\G
*************************** 1. row ***************************
 ts: 2012-05-21T17:19:20.001820
 server_id: 1
 file: mysql-bin.000001
 position: 231760
relay_master_log_file: NULL
 exec_master_log_pos: NULL
1 row in set (0.00 sec)

master> SELECT * FROM book3.heartbeat\G
*************************** 1. row ***************************
 ts: 2012-05-21T17:19:21.001820
 server_id: 1
 file: mysql-bin.000001
 position: 232097
relay_master_log_file: NULL
 exec_master_log_pos: NULL
1 row in set (0.00 sec)

Replication is monitored with:

$ pt-heartbeat --defaults-file=master/my.sandbox.cnf \
 --database=book3 --master-server-id 1 --check

0.00

or

$ pt-heartbeat --defaults-file=master/my.sandbox.cnf \
 --database=book3 --master-server-id 1 --monitor
0.00s [0.00s, 0.00s, 0.00s]
0.00s [0.00s, 0.00s, 0.00s]
0.00s [0.00s, 0.00s, 0.00s]
0.00s [0.00s, 0.00s, 0.00s]
0.00s [0.00s, 0.00s, 0.00s]

05-ch05.indd 113 9/6/12 4:33 PM

http://www.percona.com/doc/percona-toolkit/pt-table-sync.html
http://www.percona.com/doc/percona-toolkit/pt-table-sync.html

114 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

References

Documentation: http://www.percona.com/doc/percona-toolkit/pt-heart-
beat.html.

pt-slave-delay
This utility allows a MySQL slave to have a certain delay behind the MySQL
master. In some environments this feature can offer access to data that may
be modified or deleted accidently on a master. This is not a replacement for
a backup if data is deleted; however, it can provide a more convenient view
of the data in question.

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ pt-slave-delay --delay 1m --interval 15s --defaults-file=node2/my.sandbox.cnf
17:03:16 slave running 0 seconds behind
17:03:16 STOP SLAVE until 17:04:16 at master position mysql-bin.000001/2081
17:03:31 slave stopped at master position mysql-bin.000001/2081
17:03:46 slave stopped at master position mysql-bin.000001/2081
17:04:01 slave stopped at master position mysql-bin.000001/2081
17:04:16 no new binlog events
17:04:31 slave stopped at master position mysql-bin.000001/8063
17:04:46 slave stopped at master position mysql-bin.000001/18465
17:05:01 slave stopped at master position mysql-bin.000001/23666
17:05:16 slave stopped at master position mysql-bin.000001/23666
17:05:31 START SLAVE until master 17:04:31 mysql-bin.000001/8063

NOTE  MySQL 5.6 provides delayed replication as a core feature using the
CHANGE MASTER TO MASTER_DELAY command. See http://dev.mysql
.com/doc/refman/5.6/en/replication-delayed.html for more details.

References

Documentation: http://www.percona.com/doc/percona-toolkit/pt-slave-
delay.html.

pt-slave-find
This utility will connect to a MySQL master and print the replication topol-
ogy and additional summary information. This also finds nested master/
slaves in a MySQL topology. For example, using the virtual environment
from the appendix:

$ pt-slave-find u=root,p=passwd --host=alpha
alpha
Version 5.6.5-m8-log
Server ID 51
Uptime 33:42 (started 2012-06-25T14:55:39)
Replication Is not a slave, has 1 slaves connected, is not read_only
Filters

05-ch05.indd 114 9/6/12 4:33 PM

http://www.percona.com/doc/percona-toolkit/pt-heart�beat.html
http://www.percona.com/doc/percona-toolkit/pt-heart�beat.html
http://dev.mysql.com/doc/refman/5.6/en/replication-delayed.html
http://www.percona.com/doc/percona-toolkit/pt-slave-delay.html
http://www.percona.com/doc/percona-toolkit/pt-slave-delay.html
http://dev.mysql.com/doc/refman/5.6/en/replication-delayed.html

	 MySQL Replication Tools	 115

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Binary logging STATEMENT
Slave status
Slave mode STRICT
Auto-increment increment 1, offset 1
InnoDB version 1.2.5
+- beta
 Version 5.6.5-m8-log
 Server ID 52
 Uptime 14:30 (started 2012-06-25T15:14:51)
 Replication Is a slave, has 1 slaves connected, is not read_only
 Filters
 Binary logging STATEMENT
 Slave status 0 seconds behind, running, no errors
 Slave mode STRICT
 Auto-increment increment 1, offset 1
 InnoDB version 1.2.5
 +- gamma
 Version 5.6.5-m8
 Server ID 53
 Uptime 12:29 (started 2012-06-25T15:16:52)
 Replication Is a slave, has 0 slaves connected, is not read_only
 Filters
 Binary logging STATEMENT
 Slave status 0 seconds behind, running, no errors
 Slave mode STRICT
 Auto-increment increment 1, offset 1
 InnoDB version 1.2.5

When used in MySQL Sandbox, the output is not as expected for a mas-
ter server with two connected slaves:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ pt-slave-find --defaults-file=master/my.sandbox.cnf --host localhost \
 --report-format summary
localhost
Version 5.5.24-log
Server ID 1
Uptime 22:45 (started 16:33:12)
Replication Is not a slave, has 2 slaves connected,
 is not read_only
Filters
Binary logging STATEMENT
Slave status
Slave mode STRICT
Auto-increment increment 1, offset 1
InnoDB version 1.1.8

This was logged as a bug with Percona Toolkit; see https://bugs.launch-
pad.net/percona-toolkit/+bug/1002512.

CAUTION  Do not always rely on the output of third-party utilities. The
software may have bugs, be incomplete, or operate differently in a test
environment, as demonstrated here with multiple MySQL instances on a single
server. Adequate testing is always advisable.

05-ch05.indd 115 9/6/12 4:33 PM

https://bugs.launch�pad.net/percona-toolkit/+bug/1002512
https://bugs.launch�pad.net/percona-toolkit/+bug/1002512

116 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

References

Documentation: http://www.percona.com/doc/percona-toolkit/2.1/pt-slave-
find.html.

Maatkit
The predecessor to Percona Toolkit, Maatkit is no longer developed or
maintained and has a number of commands that have not been incorpo-
rated. It is unclear if this is due to the tools’ limitations or stability. Some
Maatkit tools are specifically deprecated by the authors as incomplete
tools and are no longer recommended for use.

MySQL Workbench Utilities
The MySQL Workbench is a graphical user interface (GUI) for designing
and managing your MySQL database objects. In addition to a fully func-
tional entity relationship (ER) visual modeling tool, a migration tool from
other RDBMS products, and a tool to reverse engineer MySQL schemas,
MySQL Workbench also includes a number of command line utilities. These
utilities are written in Python and are available under a GNU GPL v2 license.
More information can be found at https://launchpad.net/mysql-utilities.

NOTE  MySQL version 5.6 is a Development Milestone Release (DMR). This
clearly means this is not production-ready software, and is subject to change.
These MySQL Workbench utilities are also works in progress. Some utilities
are more mature than others, and in some situations the functionality is not
complete. While it would be ideal to demonstrate the full functionality of all
tools, the release of this book is not aligned with the unknown future release
date of MySQL 5.6.

CAUTION  Consider the MySQL Workbench Utilities as development
software. Every attempt has been made in this chapter to show the likely use;
however, this is subject to change. Examples provided at the time of publication
do show reported errors that will change in the future.

Installation
The MySQL Workbench Utilities are included with MySQL Workbench.
This can be downloaded from http://www.mysql.com/downloads/work-
bench/. In addition the MySQL Workbench Utilities are individually

05-ch05.indd 116 9/6/12 4:33 PM

http://www.percona.com/doc/percona-toolkit/2.1/pt-slave-find.html
http://www.percona.com/doc/percona-toolkit/2.1/pt-slave-find.html
https://launchpad.net/mysql-utilities
http://www.mysql.com/downloads/work�bench/
http://www.mysql.com/downloads/work�bench/

	 MySQL Replication Tools	 117

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

available on Launchpad; however, there is no single download file avail-
able at the time of this publication. This requires the use of Bazaar version
control software to obtain these files. Refer to http://bazaar.canonical.com/
for download instructions for your operating system. The following com-
mands will install these utilities on a VirtualBox virtual server, as defined in
the appendix:

$ cd /tmp
$ sudo apt-get install -y bzr
$ bzr branch lp:mysql-utilities
$ cd mysql-utilities
$ sudo python setup.py install
$ mysqlrplshow --version
MySQL Utilities mysqlrplshow version 1.0.6-preview
Copyright (c) 2012, Oracle and/or its affiliates. All
rights reserved.

The following list shows all of the utilities that are currently available at
the time of publication. In addition to the following utilities that are dis-
cussed, additional commands support database management for importing,
exporting, and comparison schemas and data.

$ ls -l /usr/local/bin/mysql*
-rwxrwxr-x 1 uid gid 6415 Jun 14 17:29 /usr/local/bin/mysqldbcompare
-rwxrwxr-x 1 uid gid 7257 Jun 14 17:29 /usr/local/bin/mysqldbcopy
-rwxrwxr-x 1 uid gid 8474 Jun 14 17:29 /usr/local/bin/mysqldbexport
-rwxrwxr-x 1 uid gid 6581 Jun 14 17:29 /usr/local/bin/mysqldbimport
-rwxrwxr-x 1 uid gid 5516 Jun 14 17:29 /usr/local/bin/mysqldiff
-rwxrwxr-x 1 uid gid 5818 Jun 14 17:29 /usr/local/bin/mysqldiskusage
-rwxrwxr-x 1 uid gid 6992 Jun 14 17:29 /usr/local/bin/mysqlfailover
-rwxrwxr-x 1 uid gid 5098 Jun 14 17:29 /usr/local/bin/mysqlindexcheck
-rwxrwxr-x 1 uid gid 3979 Jun 14 17:29 /usr/local/bin/mysqlmetagrep
-rwxrwxr-x 1 uid gid 3821 Jun 14 17:29 /usr/local/bin/mysqlprocgrep
-rwxrwxr-x 1 uid gid 5133 Jun 14 17:29 /usr/local/bin/mysqlreplicate
-rwxrwxr-x 1 uid gid 7640 Jun 14 17:29 /usr/local/bin/mysqlrpladmin
-rwxrwxr-x 1 uid gid 4294 Jun 14 17:29 /usr/local/bin/mysqlrplcheck
-rwxrwxr-x 1 uid gid 4708 Jun 14 17:29 /usr/local/bin/mysqlrplshow
-rwxrwxr-x 1 uid gid 4954 Jun 14 17:29 /usr/local/bin/mysqlserverclone
-rwxrwxr-x 1 uid gid 4119 Jun 14 17:29 /usr/local/bin/mysqlserverinfo
-rwxrwxr-x 1 uid gid 5391 Jun 14 17:29 /usr/local/bin/mysqluserclone

These utilities also require the MySQL Python/Connector to operate.
More information can be found at https://launchpad.net/myconnpy.

$ cd /tmp
$ wget https://launchpad.net/myconnpy/0.3/0.3.2/+download/

05-ch05.indd 117 9/6/12 4:33 PM

http://bazaar.canonical.com/
https://launchpad.net/myconnpy

118 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 mysql-connector-python-0.3.2-devel.tar.gz
$ tar xvfz mysql-connector-python-0.3.2-devel.tar.gz
$ cd mysql-connector-python-0.3.2-devel/
$ sudo python setup.py install

Documentation
Documentation for the MySQL Utilities can be found at http://dev.mysql
.com/doc/workbench/en/mysql-utilities.html. Additional documentation
is included with the utilities; however, this must be generated from the
source using Sphinx. The following steps will install Linux man pages for
the MySQL Utilities:

$ cd /tmp/mysql-utilities
$ sudo apt-get install python-setuptools
$ sudo easy_install -U Sphinx
$ sudo python setup.py build_sphinx -b man
$ sudo python setup.py build_man
$ sudo cp build/sphinx/man/* /usr/local/man/man1
$ man mysqlreplicate

Refer to http://sphinx.pocoo.org/ for additional instructions regarding
installing and configuring Sphinx.

mysqlreplicate
The following command will set up the necessary user permissions and
settings for replication between two servers. These MySQL servers must
have the following minimum configuration already defined in order to
complete the replication configuration. Using the virtual environment as
defined in the appendix:

Server 1:

[mysqld]
server-id=51
log-bin

Server 2:

[mysqld]
server-id=52

This command will perform the necessary steps to have a master/slave
replication environment:

05-ch05.indd 118 9/6/12 4:33 PM

http://dev.mysql.com/doc/workbench/en/mysql-utilities.html
http://sphinx.pocoo.org/
http://dev.mysql.com/doc/workbench/en/mysql-utilities.html

	 MySQL Replication Tools	 119

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$ mysqlreplicate --master=root:passwd@alpha \
 --slave=root:passwd@beta \
 --rpl-user=repl:repl --pedantic
master on alpha: ... connected.
slave on beta: ... connected.
Checking for binary logging on master...
Setting up replication...
...done.

This can be verified with SHOW SLAVE STATUS:

$ mysql -uroot -ppasswd -hbeta -e "SHOW SLAVE STATUS\G"
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: alpha
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: alpha-bin.000002
 Read_Master_Log_Pos: 147
 Relay_Log_File: beta-relay-bin.000005
 Relay_Log_Pos: 349
 Relay_Master_Log_File: alpha-bin.000002
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
...

If the necessary MySQL configuration is not in place, you will receive
errors, including:

$ mysqlreplicate --master=root:passwd@alpha \
 --slave=root:passwd@beta \
 --rpl-user=repl:repl \--pedantic
master on alpha: ... connected.
slave on beta: ... connected.
ERROR: Slave server_id is set to 0.

This utility can be run remotely. This does not have to be executed on the
master or slave host that is specified. The use of --pedantic verifies the
list of storage engines are consistent between the master and slave. You can
also use this utility to reinitialize a MySQL slave and retrieve necessary bi-
nary log information from a given master. This will be demonstrated later.

A second nested master/slave relationship can be created in the same
MySQL topology with:

$ mysqlreplicate --master=root:passwd@beta \
 --slave=root:passwd@gamma \
 --rpl-user=repl:repl --pedantic

05-ch05.indd 119 9/6/12 4:33 PM

120 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

mysqlrplshow
This utility shows the replication topology of your MySQL instances. Using
the MySQL Sandbox example configuration:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ mysqlrplshow --master=msandbox:msandbox@localhost:21379
master on localhost: ... connected.
Finding slaves for master: localhost:21379
Replication Topology Graph
localhost:21379 (MASTER)
 |
 +--- SBslave1:21380 - (SLAVE)
 |
 +--- SBslave2:21381 - (SLAVE)

NOTE  The output uses the --report-host information on the slave to
present a name. This is not a required parameter in MySQL. If not defined, the
output will report an unknown host.

Using the previously configured replication setup on the virtual server
environment that was defined with the mysqlreplicate command:

$ mysqlrplshow --master=root:passwd@alpha --recurse
...
Replication Topology Graph
alpha:3306 (MASTER)
 |
 +--- beta:3306 - (SLAVE + MASTER)
 |
 +--- gamma:3306 - (SLAVE)

This utility can be run remotely. This does not have to be executed on
the master host that is specified. This utility is capable of traversing a full
topology using the --recurse option as shown, providing the top level
master is specified. All slaves must define the optional report-host with
a value that matches the physical hostname. This option will also identify
circular topologies.

mysqlrplcheck
This utility performs a sanity check on the MySQL configuration between
a master and a slave:

$ mysqlrplcheck --master=root:passwd@alpha --slave=root:passwd@beta
master on alpha: ... connected.
slave on beta: ... connected.
Test Description Status

05-ch05.indd 120 9/6/12 4:33 PM

	 MySQL Replication Tools	 121

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Checking for binary logging on master [pass]
Are there binlog exceptions? [pass]
Replication user exists? [pass]
Checking server_id values [pass]
Checking server_uuid values [pass]
Is slave connected to master? [pass]
Check master information file [WARN]
Cannot read master information file from a remote machine.
Checking InnoDB compatibility [pass]
Checking storage engines compatibility [pass]
Checking lower_case_table_names settings [pass]
Checking slave delay (seconds behind master) [pass]
...done.

The warning message is because the utility has no present capability to
connect physically to the slave server. When using master-info-rep
=TABLE in the master and slave configuration, the following occurs.

...
Is slave connected to master? [pass]
Check master information file [pass]
Checking InnoDB compatibility [pass]
...

There is currently a reported issue regarding replication usernames and
host wildcards, as shown when using MySQL Sandbox:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ mysqlrplcheck --master=msandbox:msandbox@localhost:21379 \
 --slave=msandbox:msandbox@localhost:21380
master on localhost: ... connected.
slave on localhost: ... connected.
Test Description Status

...

Replication user exists? [FAIL]
The replication user rsandbox@127.0.0.1 was not found on the master.

Contrary to the reported FAIL message, a replication user does exist
using a wildcard hostname within MySQL Sandbox:

$./m
master> SELECT host,user,password FROM mysql.user;
+-----------+-------------+---+
| host | user | password |
+-----------+-------------+---+
...
| 127.% | rsandbox | *B07EB15A2E7BD9620DAE47B194D5B9DBA14377AD |
+-----------+-------------+---+

This example shows both the strengths and weaknesses of any open
source utilities. If there was an error in MySQL replication, the running of

05-ch05.indd 121 9/6/12 4:33 PM

122 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

this command regularly (e.g., daily) is a good management monitoring
approach. However, when the tool reports a problem that is not actually a
problem (due to a software bug), this can complicate the benefits of a
monitoring approach.

CAUTION  This is an example where software may have bugs, be incomplete,
or operate differently in a test environment as demonstrated here. Adequate
testing is always advisable.

mysqlrpladmin
The mysqlrpladmin utility provides a number of commands for managing
a MySQL topology. These commands currently include

•	start  Start replication on all slaves specified.

•	stop  Stop replication on all slaves specified.

•	reset  Stop and reset replication on all slaves specified.

•	health  Display the replication health of the defined master and
slave topology.

•	gtid  Verify the status of global transaction identifier (GTID)
variables to ensure these are correctly configured for the defined
masters and slaves. This command also displays UUID information
for all specified servers.

•	elect  Perform a best slave election and report which slave to use for
switchover.

•	switchover  Perform a slave promotion of an elected slave to master
and reconfigure the existing master as a slave.

•	failover  Conduct a failover from an unavailable master to the best
available slave.

Prerequisite Configuration

When using the elect, switchover, or failover commands you will have to en-
able the following settings in all of the servers’ my.cnf files to support GTID:

[mysqld]
log-bin
log-slave-updates
disable-gtid-unsafe-statements
gtid-mode=ON

05-ch05.indd 122 9/6/12 4:33 PM

	 MySQL Replication Tools	 123

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

If you fail to include the log-slave-updates option on the master, or
log-bin and log-slave-updates on slaves, the following error will be
found in the MySQL error log:

120614 18:51:42 [ERROR] --gtid-mode=ON or UPGRADE_STEP_1 or UPGRADE_STEP_2
 requires --log-bin and --log-slave-updates

Refer to Chapter 3 for more information about the GTID configuration
settings.

If GTID is not correctly configured on all hosts, you will run into the fol-
lowing replication error when running SHOW SLAVE STATUS\G:

slave> SHOW SLAVE STATUS\G
...
Last_IO_Errno: 1593
Last_IO_Error: The slave IO thread stops because the master has
GTID_MODE OFF and this server has GTID_MODE ON

health command

The following example shows the health of a master/slave configuration:

$ mysqlrpladmin --master=root:passwd@alpha --slave=root:passwd@beta health
Checking privileges.
Replication Topology Health:
+--------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+---------+
| alpha | 3306 | MASTER | UP | OFF | OK |
| beta | 3306 | SLAVE | UP | OFF | OK |
+--------+-------+---------+--------+------------+---------+
...done.

NOTE  You must specify all the slave servers you wish to check. This utility does
not discover what slaves exist in the replication topology.

If there are any issues with the slaves operating correctly you will find
output similar to the following:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ mysqlrpladmin --master=msandbox:msandbox@localhost:21379 \
 --slaves=msandbox:msandbox@localhost:21380, \
 msandbox:msandbox@localhost:21381 health
Checking privileges.
Replication Topology Health:
+------------+-------+---------+-------+------------+--------------------------+
| host | port | role | state | gtid_mode | health |
+------------+-------+---------+-------+------------+--------------------------+
| localhost | 21379 | MASTER | UP | NO | OK |
| localhost | 21380 | SLAVE | WARN | | Cannot connect to slave. |

05-ch05.indd 123 9/6/12 4:33 PM

124 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

| localhost | 21381 | SLAVE | WARN | | Cannot connect to slave. |
+------------+-------+---------+--------+------------+-------------------------+
...done.

When using the health command for this utility, this can be run remotely.
The following example shows two slaves connected in a MySQL envi-

ronment using a GTID setup. This example shows an error situation when
one slave is not correctly configured:

$ mysqlrpladmin --master=root:passwd@alpha \
 --slave=root:passwd@beta,root:passwd@gamma health
Checking privileges.
Replication Topology Health:
+--------+-------+---------+--------+------------+----------------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+----------------+
alpha	3306	MASTER	UP	ON	OK
beta	3306	SLAVE	UP	ON	OK
gamma	3306	SLAVE	UP	OFF	Not connected
+--------+-------+---------+--------+------------+----------------+
...done.

NOTE  For the global transaction identifier (GTID) to work correctly in a
MySQL topology all servers must be configured accordingly.

Alternatively, if GTID is correctly configured but one or more of the slave
threads is not running, the following will be reported. With this grid display
output it is important to review all columns for different error conditions:

Checking privileges.

Replication Topology Health:
+--------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+---------+
alpha	3306	MASTER	UP	ON	OK
beta	3306	SLAVE	UP	ON	OK
gamma	3306	SLAVE	UP	ON	ERROR
+--------+-------+---------+--------+------------+---------+

The utility will also provide feedback on any slave lag. For example:

+-------+------+--------+-------+------+---------------------------------------
| host | port | role | state | gtid | health
+-------+------+--------+-------+------+---------------------------------------
| alpha | 3306 | MASTER | UP | ON | OK
| beta | 3306 | SLAVE | UP | ON | Slave has 1 transactions behind master
| gamma | 3306 | SLAVE | WARN | | Cannot connect to slave.
+-------+------+--------+-------+------+---------------------------------------

05-ch05.indd 124 9/6/12 4:33 PM

	 MySQL Replication Tools	 125

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

gtid Command

The enabling of GTID with gtid_mode=ON,log-slave-updates and
disable-gtid-unsafe-statements configuration settings will sup-
port the most impressive feature of these utilities, that is, the ability for a
master switchover or failover to a slave. You can confirm the GTID configu-
ration for the full MySQL topology is valid with:

alpha$ mysqlrpladmin --master=root:passwd@alpha --slave=root:passwd@beta gtid

UUIDS for all servers:
+--------+-------+---------+---------------------------------------+
| host | port | role | uuid |
+--------+-------+---------+---------------------------------------+
| alpha | 3306 | MASTER | ba7ac732-b707-11e1-a1b3-0800275824dc |
| beta | 3306 | SLAVE | 0941e912-b709-11e1-a1bc-0800278bd7a3 |
+--------+-------+---------+---------------------------------------+

Transactions executed on the server:
+--------+-------+---------+---+
| host | port | role | gtid |
+--------+-------+---------+---+
alpha	3306	MASTER	BA7AC732-B707-11E1-A1B3-0800275824DC:1
beta	3306	SLAVE	0941E912-B709-11E1-A1BC-0800278BD7A3:1-4
beta	3306	SLAVE	BA7AC732-B707-11E1-A1B3-0800275824DC:1
+--------+-------+---------+---+
...done.

Refer to Chapter 3 for the details of what MySQL configuration vari-
ables are necessary for correct GTID configuration and usage. If GTID has
not been configured correctly in your MySQL topology, the following types
of error messages can be presented:

alpha$ mysqlrpladmin --master=root:passwd@alpha \
 --slave=root:passwd@beta gtid
Checking privileges.
WARNING: GTIDs are not supported on this topology.
...done.

alpha$ mysqlrpladmin --master=root:passwd@alpha \
 --slave=root:passwd@beta,root:passwd@gamma gtid
Checking privileges.
UUIDS for all servers:
+--------+-------+---------+---------------------------------------+
| host | port | role | uuid |
+--------+-------+---------+---------------------------------------+
alpha	3306	MASTER	ba7ac732-b707-11e1-a1b3-0800275824dc
beta	3306	SLAVE	0941e912-b709-11e1-a1bc-0800278bd7a3
gamma	3306	SLAVE	e6193aa0-b714-11e1-a209-080027530628
+--------+-------+---------+---------------------------------------+
ERROR retrieving GTID information: Global Transaction IDs are not enabled.
...done.

05-ch05.indd 125 9/6/12 4:33 PM

126 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

This command will not operate correctly when run remotely. The follow-
ing information was obtained when the command was run on the master
(i.e., alpha) server.

reset Command

This command will reset replication for the specified instance. Following
the correction of the required MySQL configuration on the second slave to
support GTID, and restarting the MySQL instance, we can use a combina-
tion of these utilities described to correctly configure and confirm replica-
tion in our MySQL topology. For example, to reset replication on a MySQL
slave:

$ mysqlrpladmin --slave=root:passwd@gamma reset
Checking privileges.
Performing STOP on all slaves.
Executing stop on slave gamma:3306 Ok
Performing RESET on all slaves.
Executing reset on slave gamma:3306 Ok
...done.

To reconfigure the MySQL server as a slave with the MySQL topology:

$ mysqlreplicate --master=root:passwd@alpha \
 --slave=root:passwd@gamma \
 --rpl-user=repl:repl --pedantic
master on alpha: ... connected.
slave on gamma: ... connected.
Checking for binary logging on master...
Setting up replication...
...done.

To confirm that the slave is now correctly configured and operating in
the MySQL topology:

$ mysqlrpladmin --master=root:passwd@alpha \
 --slave=root:passwd@beta,root:passwd@gamma health
Checking privileges.

Replication Topology Health:
+--------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+---------+
alpha	3306	MASTER	UP	ON	OK
beta	3306	SLAVE	UP	ON	OK
gamma	3306	SLAVE	UP	ON	OK
+--------+-------+---------+--------+------------+---------+
...done.

05-ch05.indd 126 9/6/12 4:33 PM

	 MySQL Replication Tools	 127

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

TIP  These new MySQL 5.6 Utilities can help in providing easy command line
configuration and management of your MySQL topology, eliminating the
legacy approach that required more administration management. It is
recommended that you understand how to leverage mysqladmin, and the
various commands that provide replication-specific information, with the
mysql client to learn how these tools actually work for verification.

elect Command

This command will provide information about which slave is the best to
promote to a master. In order to support switchover and failover with these
utilities the following MySQL 5.6 prerequisites are necessary. You should
also ensure that your hardware environment is the same for high volume
environments to ensure a slave can support future master load.

•	GTID is correctly configured and operating with the master and all
slaves in the MySQL topology.

•	All slaves are correctly configured as crash-safe slaves.

You can confirm how a switchover would operate by verifying what
slave would be elected:

$ mysqlrpladmin -vv --master=root:passwd@alpha \
 --slave=root:passwd@beta,root:passwd@gamma elect
Checking privileges.
Electing candidate slave from known slaves.
Checking eligibility of slave beta:3306 for candidate.
Slave connected to master ... Ok
GTID_MODE=ON ... Ok
Logging filters agree ... Ok
Replication user exists ... Ok
Best slave found is located on beta:3306.

...done.

switchover Command

When the MySQL topology can determine a new slave can be elected, it is
now possible to perform a controlled switchover from the master to a dif-
ferent slave in the MySQL replication topology. This will also reconfigure
the current master as a slave.

$ mysqlrpladmin -vv --master=root:passwd@alpha \
 --new-master=root:passwd@beta --demote-master switchover

05-ch05.indd 127 9/6/12 4:33 PM

128 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Checking privileges.
Performing switchover from master at alpha:3306 to slave at beta:3306.
Checking candidate slave prerequisites.
GTID_MODE=ON is set for all servers.
Checking eligibility of slave beta:3306 for candidate.
Slave connected to master ... Ok
GTID_MODE=ON ... Ok
Logging filters agree ... Ok
Replication user exists ... Ok
Creating replication user if it does not exist.
Blocking writes on master.
LOCK STRING: FLUSH TABLES WITH READ LOCK
Waiting for slaves to catch up to old master.
Stopping slaves.
Performing STOP on all slaves.
UNLOCK STRING: UNLOCK TABLES
Demoting old master to be a slave to the new master.
Switching slaves to new master.
Executing CHANGE MASTER on alpha:3306.
CHANGE MASTER TO MASTER_HOST = 'beta', MASTER_USER = 'repl',
MASTER_PASSWORD = 'repl', MASTER_PORT = 3306, MASTER_AUTO_POSITION=1
Starting all slaves.
Performing START on all slaves.
Checking slaves for errors.
Switchover complete.
Attempting to contact beta ... Success

Replication Topology Health:
+------+------+--------+-------+-----+--------+--------------+------
| host | port | role | state | gtid| health | version | ...
+------+------+--------+-------+-----+--------+--------------+------
| beta | 3306 | MASTER | UP | ON | OK | 5.6.5-m8-log | beta-
| alpha| 3306 | SLAVE | UP | ON | OK | 5.6.5-m8-log | alpha
+------+------+--------+-------+-----+--------+--------------+------
...done.

You should verify the health of the new replication topology appropri-
ately defining the new master and slave hosts.

$ mysqlrpladmin --master=root:passwd@beta \
 --slave=root:passwd@alpha,root:passwd@gamma health
Checking privileges.
#
Replication Topology Health:
+--------+-------+---------+--------+------------+-----------------------
| host | port | role | state | gtid_mode | health
+--------+-------+---------+--------+------------+-----------------------
| beta | 3306 | MASTER | UP | ON | OK
| alpha | 3306 | SLAVE | UP | ON | OK
| gamma | 3306 | SLAVE | WARN | | Slave is not connected
+--------+-------+---------+--------+------------+-----------------------
...done.

05-ch05.indd 128 9/6/12 4:33 PM

	 MySQL Replication Tools	 129

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

As you can see, in this switchover example, the second slave was not cor-
rectly assigned to the new master. Under normal execution this would
occur. This is demonstrated to show an error message.

failover Command

Finally, the failover command can be used when the master is no longer
accessible and a suitable slave is elected to become the master:

$ mysqlrpladmin -vv --slave=root:passwd@beta,root:passwd@gamma failover
Checking privileges.
Performing failover.
Checking eligibility of slave beta:3306 for candidate.
GTID_MODE=ON ... Ok
Replication user exists ... Ok
Candidate slave beta:3306 will become the new master.
Preparing candidate for failover.
LOCK STRING: FLUSH TABLES WITH READ LOCK
Connecting candidate to gamma:3306 as a master to retrieve unprocessed GTIDs.
Change master command for beta:3306
CHANGE MASTER TO MASTER_HOST = 'gamma', MASTER_USER = 'repl',
MASTER_PASSWORD = 'repl', MASTER_PORT = 3306, MASTER_AUTO_POSITION=1
UNLOCK STRING: UNLOCK TABLES
Waiting for candidate to catch up to slave gamma:3306.
Slave beta:3306:
QUERY = SELECT SQL_THREAD_WAIT_AFTER_GTIDS(
'0C50EA14-E74E-11E1-9C7E-0800275824DC:1-5', 3)
Return Code = 0
Slave beta:3306:
QUERY = SELECT SQL_THREAD_WAIT_AFTER_GTIDS(
'11603F93-E74E-11E1-9C7E-0800273BF04E:1-6', 3)
Return Code = None
Creating replication user if it does not exist.
Stopping slaves.
Performing STOP on all slaves.
Executing stop on slave beta:3306 Ok
Executing stop on slave gamma:3306 Ok
Switching slaves to new master.
Change master command for beta:3306
CHANGE MASTER TO MASTER_HOST = 'beta', MASTER_USER = 'repl',
MASTER_PASSWORD = 'repl', MASTER_PORT = 3306, MASTER_AUTO_POSITION=1
Change master command for gamma:3306
CHANGE MASTER TO MASTER_HOST = 'beta', MASTER_USER = 'repl',
MASTER_PASSWORD = 'repl', MASTER_PORT = 3306, MASTER_AUTO_POSITION=1
Starting slaves.
Performing START on all slaves.
Executing start on slave gamma:3306 Ok
Checking slaves for errors.
gamma:3306 status: Ok
Failover complete.
Attempting to contact beta ... Success
Attempting to contact gamma ... Success
#

05-ch05.indd 129 9/6/12 4:33 PM

130 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

mysqlfailover
This script provides continuous replication monitoring and enables auto-
matic failover to a designated or most up-to-date slave in the event of an
unplanned outage on the master for MySQL 5.6. Promotion policies are
configurable, but the default policy is to promote the most current slave in
the topology based on the global transaction identifier (GTID) that was
discussed in detail in Chapter 3. Think of mysqlfailover as a daemon
that will automatically fail over your environment in the event of a master
failure.

The mysqlfailover utility will report as follows in this case:

$ mysqlfailover --master=root:passwd@alpha:3306 \
 --slaves=root:passwd@beta:3306,root:passwd@gamma:3306 \
 --failover-mode=auto
MySQL Replication Failover Utility
Failover Mode = auto Next Interval = Wed Aug 15 23:50:44 2012
Master Information

Binary Log File Position Binlog_Do_DB Binlog_Ignore_DB
alpha-bin.000004 187
Replication Health Status
+--------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+---------+
alpha	3306	MASTER	UP	ON	OK
beta	3306	SLAVE	UP	ON	OK
gamma	3306	SLAVE	UP	ON	OK
+--------+-------+---------+--------+------------+---------+
Q-quit R-refresh H-health G-GTID Lists U-UUIDs

When using the mysqlfailover utility a new table is added only to the
master host in the mysql schema called failover_console. This table
contains information about the master host:

master> SHOW CREATE TABLE mysql.failover_console\G
************************ 1. row ************************
 Table: failover_console
Create Table: CREATE TABLE `failover_console` (
 `host` char(30) DEFAULT NULL,
 `port` char(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8

master> SELECT * FROM mysql.failover_console\G
************************ 1. row ************************
host: alpha
port: 3306

05-ch05.indd 130 9/6/12 4:33 PM

	 MySQL Replication Tools	 131

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Simulating Master Failure

When the mysqld process and the mysqld_safe angel process are killed
on the master, the mysqlfailover script will perform the failover to a suit-
able slave within a few seconds. The following information is shown during
this step:

Failover starting in 'auto' mode...
Candidate slave beta:3306 will become the new master.
Preparing candidate for failover.
Creating replication user if it does not exist.
Stopping slaves.
Performing STOP on all slaves.
Switching slaves to new master.
Starting slaves.
Performing START on all slaves.
Checking slaves for errors.
Failover complete.
Failover console will restart in 5 seconds.

MySQL Replication Failover Utility
Failover Mode = auto Next Interval = Thu Aug 16 00:20:18 2012
Master Information

Binary Log File Position Binlog_Do_DB Binlog_Ignore_DB
beta-bin.000003 6985
Transactions executed on the servers:
+--------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+---------+
| beta | 3306 | MASTER | UP | ON | OK |
| gamma | 3306 | SLAVE | UP | ON | OK |
+--------+-------+---------+--------+------------+---------+

You can then reset and include the original master in the topology with
the following commands:

CAUTION  The following commands show the syntax to reset a MySQL
instance as a slave. This is for demonstration purposes. In a production
situation, you will need to implement an appropriate recovery of your dataset
from a backup.

$ mysqlrpladmin --slave=root:passwd@alpha reset
$ mysqlreplicate --master=root:passwd@beta \
 --slave=root:passwd@alpha --rpl-user=repl:repl --pedantic
master on beta: ... connected.
slave on alpha: ... connected.
Checking for binary logging on master...
Setting up replication...
...done.
$ mysqlrpladmin --master=root:passwd@beta \
 --slave=root:passwd@alpha,root:passwd@gamma health

05-ch05.indd 131 9/6/12 4:33 PM

132 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Checking privileges.
#
Replication Topology Health:
+--------+-------+---------+--------+------------+-----------+
| host | port | role | state | gtid_mode | health |
+--------+-------+---------+--------+------------+-----------+
beta	3306	MASTER	UP	ON	OK
alpha	3306	SLAVE	UP	ON	OK
gamma	3306	SLAVE	UP	ON	OK
+--------+-------+---------+--------+------------+-----------+
...done.

Replication Failover Managers
MySQL replication easily enables a read scalable architecture by support-
ing multiple slaves. This provides a straightforward approach for replacing
a failed MySQL slave for high availability. It does not, by default, provide
high availability for the primary master database that performs all writes.
It is possible to define a MySQL replication configuration where failover,
and possibly failback, is possible, thus enabling high availability on the
MySQL master.

Prior to MySQL 5.6, with the introduction of new features including
GTID and crash-safe slaves, a more complicated approach was necessary.
In a controlled situation it is possible with a correct configuration to manu-
ally perform a failover with these steps:

•	Ensure appropriate MySQL configuration to support failover and
failback operations.

•	Move slaves from the primary master to the failover master with
appropriate replication checks.

•	Stop write access to the primary master and set the MySQL instance
to read only on the running server and in the server configuration file.

•	Confirm the failover master has received and performed all
replication events.

•	Disable read-only access on the MySQL failover master.

•	Update the default startup state of the original MySQL master and
failover master.

05-ch05.indd 132 9/6/12 4:33 PM

	 MySQL Replication Tools	 133

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	Redirect application and batch write operations to the failover
master. There is no single way to manage this step. This depends on
the application technology in use. A general approach is via a virtual
IP (VIP).

The setup of a MySQL pair and the regular use of performing a con-
trolled failover and failback is an excellent way to be prepared for what
steps are necessary in a true failover situation for your disaster recovery
(DR) strategy. This is a popular approach for managing software upgrades,
database modifications, and application upgrades. The configuration of a
MySQL pair is discussed in detail in Chapter 4 on multi-master replica-
tion. In a failure situation, however, there are several edge cases that can
cause potential data loss and corruption in different disaster scenarios. A
number of tools are available in the MySQL ecosystem to help in the man-
agement and automation of failover.

MySQL MHA
Created by MySQL expert and Oracle ACE Director Yoshinori Matsunobu
(http://yoshinorimatsunobu.blogspot.com/), the MySQL-MHA: MySQL
Master High Availability manager and tools (MySQL MHA) provide a
wrapper to support the management of a MySQL replication and failover
environment. This is one of the newer tools available and is being actively
developed and used. This tool is written in Perl.

A primary objective of MHA is automating master failover and slave
promotion within short (usually 10 to 30 seconds) downtime, without suf-
fering from replication consistency problems, without spending money for
lots of new servers, without performance penalty, without complexity (easy
to install), and without changing existing deployments.

Node Software Installation
On each MySQL master and slave server and management server, the in-
stallation of the MHA node software is necessary. You should always check
for the most current version to download at http://code.google.com/p/
mysql-master-ha/.

05-ch05.indd 133 9/6/12 4:33 PM

http://yoshinorimatsunobu.blogspot.com/
http://code.google.com/p/mysql-master-ha/
http://code.google.com/p/mysql-master-ha/

134 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Ubuntu/Debian

$ sudo apt-get install libdbd-mysql-perl
$ cd /tmp
$ wget http://mysql-master-ha.googlecode.com/files/
 mha4mysql-node_0.53_all.deb
$ sudo dpkg -i mha4mysql-node_*.deb
$ rm -f i mha4mysql-node_*.deb

RHEL/CentOS/OL

$ sudo yum install perl-DBD-MySQL
$ cd /tmp
$ wget https://mysql-master-ha.googlecode.com/files/
 mha4mysql-node-0.53-0.noarch.rpm
$ sudo rpm -ivh mha4mysql-node-*.noarch.rpm
$ rm -f i mha4mysql-node_*.noarch.rpm

Source Code

Refer to http://code.google.com/p/mysql-master-ha/wiki/Installation for
instructions on installing MySQL MHA from the source code.

Manager Software Installation
MHA is a management process and should be operated on a separate
management server that is not part of the MySQL master/slave topology.
The installation of the MHA manager software is performed with the
following.

Ubuntu/Debian

$ sudo apt-get install -y libdbd-mysql-perl libconfig-tiny-perl \
 liblog-dispatch-perl libparallel-forkmanager-perl
$ cd /tmp
$ wget http://mysql-master-ha.googlecode.com/files/
 mha4mysql-manager_0.53_all.deb
$ sudo dpkg -i mha4mysql-manager_*_all.deb
$ rm -f mha4mysql-manager_*_all.deb

RHEL/CentOS/OL

$ sudo yum install perl-Config-Tinyl perl-Log-Dispatch perl-Parallel-ForkManager
$ cd /tmp
$ wget https://mysql-master-ha.googlecode.com/files/
 mha4mysql-manager-0.53-0.noarch.rpm
$ sudo rpm -ivh mha4mysql-manager-*.noarch.rpm
$ rm -f mha4mysql-manager-*.noarch.rpm

05-ch05.indd 134 9/6/12 4:33 PM

http://code.google.com/p/mysql-master-ha/wiki/Installation

	 MySQL Replication Tools	 135

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

References
MHA is an open source project available under the GPL v2 license. More
information can be found at the following links:

•	Code  http://code.google.com/p/mysql-master-ha/

•	Blog  http://yoshinorimatsunobu.blogspot.com/2011/07/
announcing-mysql-mha-mysql-master-high.html

Usage with Virtual Environment
In this example we will use the three virtual servers that are defined in the
instructions in the appendix. The alpha server is the MySQL master, the
beta server is the failover master, and the gamma server will be used for a
management server. In this example we will use MySQL version 5.5.

Configuration Setup  MHA requires a number of configuration settings
regarding the definition of the MySQL topology and the SSH and MySQL
communication between the servers. On the management server the
following is required:

$ cd $HOME
$ mkdir -p mha/etc
$ echo "[server default]
mysql user and password
user=root
password=passwd
ssh_user=user
working directory on the manager
manager_workdir=/home/user/mha/log
working directory on MySQL servers
remote_workdir=/home/user/mha/log
master_binlog_dir=/home/user/mysql/data
[server1]
hostname=alpha
[server2]
hostname=beta" > $HOME/mha/etc/mha.cnf
$ sudo touch /etc/masterha_default.cnf

SSH Access

MHA uses SSH for server communication between databases. This will
require you to set up SSH keyed authentication to enable automated

05-ch05.indd 135 9/6/12 4:33 PM

http://code.google.com/p/mysql-master-ha/
http://yoshinorimatsunobu.blogspot.com/2011/07/announcing-mysql-mha-mysql-master-high.html
http://yoshinorimatsunobu.blogspot.com/2011/07/announcing-mysql-mha-mysql-master-high.html

136 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

commands. The following MHA command will check and confirm access
between the management server and all MySQL nodes:

$ masterha_check_ssh --conf=$HOME/mha/etc/mha.cnf
[info] Reading default configurations from /etc/masterha_default.cnf..
[info] Reading application default configurations from
/home/user/mha/etc/mha.cnf..
[info] Reading server configurations from /home/user/mha/etc/mha.cnf..
[info] Starting SSH connection tests..
[debug] Connecting via SSH from user@alpha(192.168.1.51:22) to
 user@beta(192.168.1.52:22)..
[debug] ok.
[debug] Connecting via SSH from user@beta(192.168.1.52:22) to
 user@alpha(192.168.1.51:22)..
[debug] ok.
[info] All SSH connection tests passed successfully.

MySQL Configuration Optimizations

The default slave configurations as defined in the appendix will produce
the following warning when running masterha_check_repl:

 [warning] relay_log_purge=0 is not set on slave
beta(192.168.1.52:3306).

This can be corrected with the following additional MySQL configura-
tion and restarting the MySQL instances on all servers:

$HOME/mysql/etc/my.cnf
[mysqld]
relay_log_purge=0

The manager requires mysqlbinlog in the PATH on each server to run
successfully via SSH. While the mysqldump command may be in the PATH
on the management server, and also on the MySQL instances when you
connect manually, you may experience the following error:

[info] Connecting to user@192.168.1.52(beta:22)..
Can't exec "mysqlbinlog": No such file or directory at
/usr/share/perl5/MHA/BinlogManager.pm line 99.
mysqlbinlog version not found!
 at /usr/bin/apply_diff_relay_logs line 463

The SSH command used here is a non-interactive shell, and while the
/etc/profile.d/mysql.sh script is executed for interactive shell us-
age, it is not for non-interactive usage (i.e., if you manually ssh to a server,
the MYSQL_HOME environment variable is defined and $MYSQL_
HOME/bin is added to your PATH).

05-ch05.indd 136 9/6/12 4:33 PM

	 MySQL Replication Tools	 137

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The solution is to add to the start of the $HOME/.bashrc file a reference
to source this file specifically:

[-s /etc/profile.d/mysql.sh] && . /etc/profile.d/mysql.sh

Adding to the end of the file will not work with the virtual environments
configured, as Ubuntu uses this line in the user $HOME/.bashrc file to
stop reading the file in non-interactive mode:

If not running interactively, don't do anything
[-z "$PS1"] && return

By default design, the slave replication stream on the active master serv-
er is not running. The masterha_check_repl will correctly report this
with:

 [warning] SQL Thread is stopped(no error) on alpha(192.168.1.51:3306)

This can be solved by starting the slave replication stream on the active
master:

alpha> SLAVE START;

MHA Replication Check

When the MHA node and manager software are installed and configured
you can confirm your MySQL topology meets the needs of MHA with:

$ masterha_check_repl --conf=$HOME/mha/etc/mha.cnf
[info] Reading default configurations from /etc/masterha_default.cnf..
[info] Reading application default configurations from
 /home/user/mha/etc/mha.cnf..
[info] Reading server configurations from /home/user/mha/etc/mha.cnf..
[info] MHA::MasterMonitor version 0.53.
[info] Multi-master configuration is detected. Current primary(writable)
 master is alpha(192.168.1.51:3306)
[info] Master configurations are as below:
Master alpha(192.168.1.51:3306), replicating from beta(192.168.1.52:3306)
Master beta(192.168.1.52:3306), replicating from alpha(192.168.1.51:3306),
read-only
[info] Dead Servers:
[info] Alive Servers:
[info] alpha(192.168.1.51:3306)
[info] beta(192.168.1.52:3306)
[info] Alive Slaves:
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
 between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info] Current Alive Master: alpha(192.168.1.51:3306)
[info] Checking slave configurations..
[info] Checking replication filtering settings..

05-ch05.indd 137 9/6/12 4:33 PM

138 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[info] binlog_do_db= , binlog_ignore_db=
[info] Replication filtering check ok.
[info] Starting SSH connection tests..
[info] All SSH connection tests passed successfully.
[info] Checking MHA Node version..
[info] Version check ok.
[info] Checking SSH publickey authentication settings on the current master..
[info] HealthCheck: SSH to alpha is reachable.
[info] Master MHA Node version is 0.53.
[info] Checking recovery script configurations on the current master..
[info] Executing command: save_binary_logs --command=test --start_pos=4
--binlog_dir=/home/user/mysql/data
--output_file=/home/user/mha/log/save_binary_logs_test
--manager_version=0.53 --start_file=mysql-bin.000005
[info] Connecting to user@alpha(alpha)..
 Creating /home/user/mha/log if not exists.. ok.
 Checking output directory is accessible or not..
 ok.
 Binlog found at /home/user/mysql/data, up to mysql-bin.000005
[info] Master setting check done.
[info] Checking SSH publickey authentication and checking recovery
script configurations on all alive slave servers..
[info] Executing command : apply_diff_relay_logs --command=test
--slave_user=root --slave_host=beta --slave_ip=192.168.1.52
--slave_port=3306 --workdir=/home/user/mha/log --target_version=5.5.24-log
--manager_version=0.53 --relay_log_info=/home/user/mysql/data/relay-log.info
--relay_dir=/home/user/mysql/data/ --slave_pass=xxx
[info] Connecting to user@192.168.1.52(beta:22)..
Creating directory /home/user/mha/log.. done.
 Checking slave recovery environment settings..
 Opening /home/user/mysql/data/relay-log.info ... ok.
 Relay log found at /home/user/mysql/data, up to relay-log.000012
 Temporary relay log file is /home/user/mysql/data/relay-log.000012
 Testing mysql connection and privileges.. done.
 Testing mysqlbinlog output.. done.
 Cleaning up test file(s).. done.
[info] Slaves settings check done.
[info]
alpha (current master)
 +--beta
[info] Checking replication health on beta..
[info] ok.
[warning] master_ip_failover_script is not defined.
[warning] shutdown_script is not defined.
[info] Got exit code 0 (Not master dead).
MySQL Replication Health is OK.
$ echo $?
0

If MySQL is not running you will find errors similar to:

[error][/usr/share/perl5/MHA/ServerManager.pm, ln188] There is no alive server.
We can't do failover

05-ch05.indd 138 9/6/12 4:33 PM

	 MySQL Replication Tools	 139

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[error][/usr/share/perl5/MHA/MasterMonitor.pm, ln383] Error happened on checking
configurations. at /usr/share/perl5/MHA/MasterMonitor.pm line 298
[error][/usr/share/perl5/MHA/MasterMonitor.pm, ln478] Error happened on
 monitoring servers.
[info] Got exit code 1 (Not master dead).
MySQL Replication Health is NOT OK!
$ echo $?
1

Running the MHA Manager

After successfully configuring SSH and MySQL access for MHA and con-
firming the replication environment is suitable to be managed by MHA,
you can start the MHA manager with:

$ masterha_manager --conf=$HOME/mha/etc/mha.cnf
...
[info] Slaves settings check done.
[info]
alpha (current master)
 +--beta
[warning] master_ip_failover_script is not defined.
[warning] shutdown_script is not defined.
[info] Set master ping interval 3 seconds.
[warning] secondary_check_script is not defined. It is highly recommended
setting it to check master reachability from two or more routes.
[info] Starting ping health check on alpha(192.168.1.51:3306)..
[info] Ping(SELECT) succeeded, waiting until MySQL doesn't respond..

This command is run in the foreground in this situation and will not
return access to the session until completed. For production operation, this
command should be wrapped to create an applicable daemon process and
monitored accordingly. The warnings described will be discussed at a later
time.

In a new terminal session you can verify the operation of the manager
that was just started. This command should be added to applicable system
and MySQL monitoring to detect any issues or failure with the manager.

$ masterha_check_status --conf=$HOME/mha/etc/mha.cnf
mha (pid:16387) is running(0:PING_OK), master:alpha
$ echo $?
0

If the MHA manager is not running, the following will occur:

$ masterha_check_status --conf=$HOME/mha/etc/mha.cnf
mha is stopped(2:NOT_RUNNING).
$ echo $?
2

05-ch05.indd 139 9/6/12 4:33 PM

140 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Stopping the MHA Manager

The running MHA manager can be terminated with:

$ masterha_stop --conf=$HOME/mha/etc/mha.cnf
Stopped mha successfully.

MySQL MHA Operation
The power of using MySQL MHA is to handle the situation of an uncon-
trolled failover (i.e., the loss of the MySQL master). MHA can also be used
to perform a controlled failover. This can be very helpful in managing soft-
ware releases and database maintenance windows.

MHA Controlled Failover

You can simulate a controlled failover with the following command on the
management server:

$ masterha_master_switch --conf=$HOME/mha/etc/mha.cnf \
 --master_state=alive --new_master_host=beta --orig_master_is_new_slave \
 --interactive=0
[info] MHA::MasterRotate version 0.53.
[info] Starting online master switch..
[info] * Phase 1: Configuration Check Phase..
[info] Reading default configurations from /etc/masterha_default.cnf..
[info] Reading application default configurations from
/home/user/mha/etc/mha.cnf..
[info] Reading server configurations from /home/user/mha/etc/mha.cnf..
[info] Multi-master configuration is detected. Current primary(writable)
master is alpha(192.168.1.51:3306)
[info] Master configurations are as below:
Master alpha(192.168.1.51:3306), replicating from beta(192.168.1.52:3306)
Master beta(192.168.1.52:3306), replicating from alpha(192.168.1.51:3306),
read-only
[info] Current Alive Master: alpha(192.168.1.51:3306)
[info] Alive Slaves:
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info] Executing FLUSH NO_WRITE_TO_BINLOG TABLES. This may take long time..
[info] ok.
[info] Checking MHA is not monitoring or doing failover..
[info] Checking replication health on beta..
[info] ok.
[info] beta can be new master.
[info]
From:
alpha (current master)
 +--beta

05-ch05.indd 140 9/6/12 4:33 PM

	 MySQL Replication Tools	 141

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

To:
beta (new master)
 +--alpha
[info] Checking whether beta(192.168.1.52:3306) is ok for the new master..
[info] ok.
[info] ** Phase 1: Configuration Check Phase completed.
[info]
[info] * Phase 2: Rejecting updates Phase..
[info]
[warning] master_ip_online_change_script is not defined.
Skipping disabling writes on the current master.
[info] Locking all tables on the orig master to reject updates
from everybody (including root):
[info] Executing FLUSH TABLES WITH READ LOCK..
[info] ok.
[info] Orig master binlog:pos is mysql-bin.000002:107.
[info] Waiting to execute all relay logs on beta(192.168.1.52:3306)..
[info] master_pos_wait(mysql-bin.000002:107) completed on
beta(192.168.1.52:3306). Executed 0 events.
[info] done.
[info] Getting new master's binlog name and position..
[info] mysql-bin.000002:107
[info] All other slaves should start replication from here.
Statement should be: CHANGE MASTER TO MASTER_HOST='beta or 192.168.1.52',
MASTER_PORT=3306, MASTER_LOG_FILE='mysql-bin.000002', MASTER_LOG_POS=107,
MASTER_USER='repl', MASTER_PASSWORD='xxx';
[info] Setting read_only=0 on beta(192.168.1.52:3306)..
[info] ok.
[info] * Switching slaves in parallel..
[info] Unlocking all tables on the orig master:
[info] Executing UNLOCK TABLES..
[info] ok.
[info] Starting orig master as a new slave..
[info] Resetting slave alpha(192.168.1.51:3306) and starting replication
from the new master beta(192.168.1.52:3306)..
[info] Executed CHANGE MASTER.
[info] Slave started.
[info] All new slave servers switched successfully.
[info] * Phase 5: New master cleanup phase..
[info] beta: Resetting slave info succeeded.
[info] Switching master to beta(192.168.1.52:3306) completed successfully.

This command also has an interactive mode. This can be used with
--interactive=1.

MHA Automated Failover

In the defined virtual environment from the appendix that is being used,
we can test MHA by stopping MySQL on the master:

alpha$ mysqladmin shutdown

05-ch05.indd 141 9/6/12 4:33 PM

142 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The following output from the MySQL MHA Manager session occurs
within a few seconds:

[warning] Got error on MySQL select ping: 2006 (MySQL server has gone away)
[info] Executing SSH check script: save_binary_logs --command=test --start_pos=
4 --binlog_dir=/home/user/mysql/data --output_file=/home/user/mha/log/
save_binary_logs_test --manager_version=0.53 --binlog_prefix=mysql-bin
 Creating /home/user/mha/log if not exists.. ok.
 Checking output directory is accessible or not..
 ok.
 Binlog found at /home/user/mysql/data, up to mysql-bin.000005
[info] HealthCheck: SSH to alpha is reachable.
[warning] Got error on MySQL connect: 2003 (Can't connect to MySQL server on
'192.168.1.51' (111))
[warning] Connection failed 1 time(s)..
[warning] Got error on MySQL connect: 2003 (Can't connect to MySQL server on
'192.168.1.51' (111))
[warning] Connection failed 2 time(s)..
[warning] Got error on MySQL connect: 2003 (Can't connect to MySQL server on
'192.168.1.51' (111))
[warning] Connection failed 3 time(s)..
[warning] Master is not reachable from health checker!
[warning] Master alpha(192.168.1.51:3306) is not reachable!
[warning] SSH is reachable.
[info] Connecting to a master server failed. Reading configuration file /etc/
masterha_default.cnf and /home/user/mha/etc/mha.cnf again, and trying to connect
to all servers to check server status..
[info] Reading default configurations from /etc/masterha_default.cnf..
[info] Reading application default configurations from /home/user/mha/etc/mha.
cnf..
[info] Reading server configurations from /home/user/mha/etc/mha.cnf..
[info] Dead Servers:
[info] alpha(192.168.1.51:3306)
[info] Alive Servers:
[info] beta(192.168.1.52:3306)
[info] Alive Slaves:
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info] Checking slave configurations..
[info] Checking replication filtering settings..
[info] Replication filtering check ok.
[info] Master is down!
[info] Terminating monitoring script.
[info] Got exit code 20 (Master dead).
[info] Reading default configurations from /etc/masterha_default.cnf..
[info] Reading application default configurations from /home/user/mha/etc/mha.
cnf..
[info] Reading server configurations from /home/user/mha/etc/mha.cnf..
[info] MHA::MasterFailover version 0.53.
[info] Starting master failover.
[info]
[info] * Phase 1: Configuration Check Phase..

05-ch05.indd 142 9/6/12 4:33 PM

	 MySQL Replication Tools	 143

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[info]
[info] Dead Servers:
[info] alpha(192.168.1.51:3306)
[info] Checking master reachability via mysql(double check)..
[info] ok.
[info] Alive Servers:
[info] beta(192.168.1.52:3306)
[info] Alive Slaves:
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info] ** Phase 1: Configuration Check Phase completed.
[info]
[info] * Phase 2: Dead Master Shutdown Phase..
[info]
[info] Forcing shutdown so that applications never connect to the current master
[warning] master_ip_failover_script is not set. Skipping invalidating dead
master ip address.
[warning] shutdown_script is not set. Skipping explicit shutting down of the
dead master.
[info] * Phase 2: Dead Master Shutdown Phase completed.
[info]
[info] * Phase 3: Master Recovery Phase..
[info]
[info] * Phase 3.1: Getting Latest Slaves Phase..
[info]
[info] The latest binary log file/position on all slaves is mysql-bin.000005:107
[info] Latest slaves (Slaves that received relay log files to the latest):
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info] The oldest binary log file/position on all slaves is mysql-bin.000005:107
[info] Oldest slaves:
[info] beta(192.168.1.52:3306) Version=5.5.24-log (oldest major version
between slaves) log-bin:enabled
[info] Replicating from alpha(192.168.1.51:3306)
[info]
[info] * Phase 3.2: Saving Dead Master's Binlog Phase..
[info]
[info] Fetching dead master's binary logs..
[info] Executing command on the dead master alpha(192.168.1.51:3306): save_
binary_logs --command=save --start_file=mysql-bin.000005 --start_pos=107
--binlog_dir=/home/user/mysql/data --output_file=/home/user/mha/log/
saved_master_binlog_from_alpha_3306_20120617202902.binlog --handle_raw_binlog=1
--disable_log_bin=0 --manager_version=0.53
 Creating /home/user/mha/log if not exists.. ok.
 Concat binary/relay logs from mysql-bin.000005 pos 107 to mysql-bin.000005 EOF
into /home/user/mha/log/saved_master_binlog_from_alpha_3306_20120617202902.
binlog ..
 Dumping binlog format description event, from position 0 to 107.. ok.
 Dumping effective binlog data from /home/user/mysql/data/mysql-bin.000005
position 107 to tail(126).. ok.
 Concat succeeded.
saved_master_binlog_from_alpha_3306_20120617202902.binlog

05-ch05.indd 143 9/6/12 4:33 PM

144 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

100% 126 0.1KB/s 00:00
[info] scp from user@192.168.1.51:/home/user/mha/log/saved_master_binlog_from_
alpha_3306_
20120617202902.binlog to local:/home/user/mha/log/saved_master_binlog_from_
alpha_3306_20120617202902.binlog succeeded.
[info] HealthCheck: SSH to beta is reachable.
[info]
[info] * Phase 3.3: Determining New Master Phase..
[info]
[info] Finding the latest slave that has all relay logs for recovering other
slaves..
[info] All slaves received relay logs to the same position. No need to resync
each other.
[info] Searching new master from slaves..
[info] Candidate masters from the configuration file:
[info] Non-candidate masters:
[info] New master is beta(192.168.1.52:3306)
[info] Starting master failover..
[info]
From:
alpha (current master)
 +--beta

To:
beta (new master)
[info]
[info] * Phase 3.3: New Master Diff Log Generation Phase..
[info]
[info] This server has all relay logs. No need to generate diff files from
the latest slave.
[info] Sending binlog..
saved_master_binlog_from_alpha_3306_20120617202902.binlog
100% 126 0.1KB/s 00:00
[info] scp from local:/home/user/mha/log/saved_master_binlog_from_al-
pha_3306_20120617202902.
binlog to user@beta:/home/user/mha/log/saved_master_binlog_from_alpha_
3306_20120617202902.binlog succeeded.
[info]
[info] * Phase 3.4: Master Log Apply Phase..
[info]
[info] *NOTICE: If any error happens from this phase, manual recovery is needed.
[info] Starting recovery on beta(192.168.1.52:3306)..
[info] Generating diffs succeeded.
[info] Waiting until all relay logs are applied.
[info] done.
[info] Getting slave status..
[info] This slave(beta)'s Exec_Master_Log_Pos equals to Read_Master_Log_Pos(
mysql-bin.000005:107). No need to recover from Exec_Master_Log_Pos.
[info] Connecting to the target slave host beta, running recover script..
[info] Executing command: apply_diff_relay_logs --command=apply --slave_user=
root --slave_host=beta --slave_ip=192.168.1.52 --slave_port=3306 --apply_files
=/home/user/mha/log/saved_master_binlog_from_alpha_3306_20120617202902.binlog
--workdir=/home/user/mha/log --target_version=5.5.24-log
--timestamp=20120617202902 --handle_raw_binlog=1 --disable_log_bin=0

05-ch05.indd 144 9/6/12 4:33 PM

	 MySQL Replication Tools	 145

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

--manager_version=0.53 --slave_pass=xxx
[info]
Applying differential binary/relay log files /home/user/mha/log/saved_master_
binlog_from_alpha_3306_20120617202902.binlog
on beta:3306. This may take long time...
Applying log files succeeded.
[info] All relay logs were successfully applied.
[info] Getting new master's binlog name and position..
[info] mysql-bin.000003:107
[info] All other slaves should start replication from here. Statement should
be: CHANGE MASTER TO MASTER_HOST='beta or 192.168.1.52', MASTER_PORT=3306,
MASTER_LOG_FILE='mysql-bin.000003', MASTER_LOG_POS=107, MASTER_USER='repl',
MASTER_PASSWORD='xxx';

[warning] master_ip_failover_script is not set. Skipping taking over new
master ip address.
[info] Setting read_only=0 on beta(192.168.1.52:3306)..
[info] ok.
[info] ** Finished master recovery successfully.
[info] * Phase 3: Master Recovery Phase completed.
[info]
[info] * Phase 4: Slaves Recovery Phase..
[info]
[info] * Phase 4.1: Starting Parallel Slave Diff Log Generation Phase..
[info]
[info] Generating relay diff files from the latest slave succeeded.
[info]
[info] * Phase 4.2: Starting Parallel Slave Log Apply Phase..
[info]
[info] All new slave servers recovered successfully.
[info]
[info] * Phase 5: New master cleanup phase..
[info]
[info] Resetting slave info on the new master..
[info] beta: Resetting slave info succeeded.
[info] Master failover to beta(192.168.1.52:3306) completed successfully.
[info]

----- Failover Report -----
mha: MySQL Master failover alpha to beta succeeded
Master alpha is down!
Check MHA Manager logs at gamma for details.
Started automated(non-interactive) failover.
The latest slave beta(192.168.1.52:3306) has all relay logs for recovery.
Selected beta as a new master.
beta: OK: Applying all logs succeeded.
Generating relay diff files from the latest slave succeeded.
beta: Resetting slave info succeeded.
Master failover to beta(192.168.1.52:3306) completed successfully.

As you can see in this first simple example, MySQL MHA successfully
detected a loss of communication with the master, and after performing
necessary checks and validations has successfully failed over to the
slave server.

05-ch05.indd 145 9/6/12 4:33 PM

146 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Additional MHA Configuration Settings
There are several additional configuration options and scripts that can fur-
ther improve the high availability with MHA. These include the master_
ip_failover_script, shutdown_script, and secondary_check_
script options, which are indicated as warnings in the previous output.

•	master_ip_failover_script  In common high availability (HA)
environments, in many cases people allocate one virtual IP address
on a master. If the master crashes, HA software moves the virtual IP
address to the standby server.

A sample script is located under (MHA Manager package)/samples/
scripts/master_ip_failover. Sample scripts are included in the MHA Man-
ager tarball and GitHub branch.

MHA Manager calls master_ip_failover_script three times. The
first time is before entering the master monitor (for script validity check-
ing), the second time is just before calling shutdown_script, and the
third time is after applying all relay logs to the new master.

•	shutdown_script  You may want to force a shutdown of the master
MySQL instance so that it never restarts the instance. This is known
as node fencing. This is important to avoid split-brain. A sample
script is located at (MHA Manager package)/samples/scripts/
power_manager. Sample scripts are included in MHA Manager
tarball and GitHub branch.

•	secondary_check_script  In general, it is highly recommended to have
two or more network routes to check MySQL master server availability.
By default, MHA Manager checks only using a single route from the
manager to the master. This is not recommended in a highly available
production environment. MHA can actually have two or more routes
for checking network connectivity by calling an external script defined
with the secondary_check_script parameter. For example:

secondary_check_script = masterha_secondary_check -s remote_1 -s remote_2

MMM
The Multi-Master Replication Manager for MySQL (MMM) is a set of
scripts that provide management monitoring and failover of a MySQL rep-
lication environment.

05-ch05.indd 146 9/6/12 4:33 PM

	 MySQL Replication Tools	 147

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

While this product works in a number of situations, generally just two serv-
ers, and is still used with production systems, it is no longer maintained and
several important bugs remain unresolved. It is not recommended you use
this product. For a good explanation of current issues, see http://mysql-mmm
.org/mmm1:development-plans and http://www.xaprb.com/blog/2011/05/04/
whats-wrong-with-mmm/.

More information about MMM can be found at http://mysql-mmm.org/.

Flipper
Another historical product found in MySQL environments for managing
MySQL pairs is Flipper. This can still be found in production use. This
product is also no longer maintained, and online documentation from the
original creator, Proven Scaling, is no longer available. You can find the
source code at http://code.google.com/p/flipper/ and more information
regarding usage at http://ronaldbradford.com/blog/using-flipper-to-
manage-mysql-pairs-2008-12-09/.

Cluster Control
The team from Severalnines provides a wizard approach to create an appro-
priate MySQL configuration for a highly available MySQL replication envi-
ronment. This requires the use of the online web form to obtain details of
your current configuration to create a suitable configuration, which you can
download. No testing of this wizard has been performed by the author. For
more details, visit http://www.severalnines.com/replication-configurator/.

Cluster Management
A common approach for using a MySQL pair effectively in a production
application environment is to use virtual IPs (VIPs) management for dedi-
cated write and read threads. By using a VIP, application connections can
remain defined as a fixed value, while the cluster management determines
the host ownership of the VIP address.

For a database like MySQL, connection management is more complex
due to several factors, including transactions and persistent connections. An
incorrect use of VIP can cause problems like split-brain situations and data

05-ch05.indd 147 9/6/12 4:33 PM

http://mysql-mmm.org/mmm1:development-plans
http://www.xaprb.com/blog/2011/05/04/whats-wrong-with-mmm/
http://www.xaprb.com/blog/2011/05/04/whats-wrong-with-mmm/
http://mysql-mmm.org/
http://code.google.com/p/flipper/
http://ronaldbradford.com/blog/using-flipper-to-manage-mysql-pairs-2008-12-09/
http://ronaldbradford.com/blog/using-flipper-to-manage-mysql-pairs-2008-12-09/
http://www.severalnines.com/replication-configurator/
http://mysql-mmm.org/mmm1:development-plans

148 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

corruption. The use of a VIP can be problematic, with persistent connection
managers and hanging connections. Depending on the application technol-
ogy, additional connection management, including killing the connection
pool on application servers, may be necessary to minimize risks. This follow-
ing article gives some great background details related to MySQL: http://
scale-out-blog.blogspot.com/2011/01/virtual-ip-addresses-and-their.html.

The Linux High Availability project maintains the building blocks for
cluster infrastructure, including the Heartbeat daemon and Cluster Glue.
More information can be found at http://linux-ha.org/. Combined with
Pacemaker, this Cluster Resource Manager (CRM) helps to provide a suit-
able solution to be used in conjunction with MySQL replication. More
information can be found at http://clusterlabs.org.

Red Hat also provides a high availability cluster manager. See http://
www.redhat.com/products/enterprise-linux-add-ons/high-availability/
for more information.

There is some information about clustering MySQL instances using Or-
acle Clusterware. More details can be found at http://ilmarkerm.blogspot
.com/2011/11/clustering-mysql-instances-with-oracle.html.

Providing a highly availability cluster environment combined with a
MySQL replication topology is further complicated when the application
technology uses persistent connection management (e.g., Java). Any clus-
ter management implementation needs to consider the type of database
access and the applicable error detection of a transaction and applicable
recovery processes to retry the transaction or report an appropriate error.
With persistent connection management technology it is often of benefit to
flush the connection pool when changing the underlying host.

Percona Replication Manager (PRM)
By combining Corosync, Pacemaker, a MySQL resource agent and MySQL,
the Percona Replication Manager (PRM) provides a cluster management
solution with a distributed architecture to reduce a single point of failure
(SPOF). The goal of PRM is to provide the following features:

•	Reader and writer VIP behaviors similar to MMM.

•	 If the master fails, a new master is promoted from the slaves; no
master to master setup needed. Selection of master is based on

05-ch05.indd 148 9/6/12 4:33 PM

http://scale-out-blog.blogspot.com/2011/01/virtual-ip-addresses-and-their.html
http://scale-out-blog.blogspot.com/2011/01/virtual-ip-addresses-and-their.html
http://linux-ha.org/
http://clusterlabs.org
http://www.redhat.com/products/enterprise-linux-add-ons/high-availability/
http://www.redhat.com/products/enterprise-linux-add-ons/high-availability/
http://ilmarkerm.blogspot.com/2011/11/clustering-mysql-instances-with-oracle.html
http://ilmarkerm.blogspot.com/2011/11/clustering-mysql-instances-with-oracle.html

	 MySQL Replication Tools	 149

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

scores published by the slaves, the more up to date slaves have
higher scores for promotion.

•	Some nodes can be dedicated to be only slaves or less likely to
become master.

•	A node can be the preferred master.

•	 If replication on a slave breaks or lags beyond a defined threshold,
the reader VIP(s) is removed. MySQL is not restarted.

•	 If no slaves are OK, all VIPs, readers and writer, will be located on
the master.

•	During a master switch, connections are killed on the demoted
master to avoid replication conflicts.

•	All slaves are in read-only mode.

•	Simple administrative commands can remove master role from a node.

•	Pacemaker stonith devices are supported.

•	No logical limits in term of number of nodes.

•	Easy to add nodes.

An introduction presentation at http://www.percona.com/files/
presentations/percona-live/dc-2012/PLDC2012-high-availability-with-
percona-prm.pdf provides an overview of the PRM product and imple-
mentation approach. Detailed instructions for configuration and usage is
available from the documentation at https://github.com/jayjanssen/Perco-
na-Pacemaker-Resource-Agents/blob/master/doc/PRM-setup-guide.rst.
The outdated article at http://www.mysqlperformanceblog.com/2011/
11/29/percona-replication-manager-a-solution-for-mysql-high-availability-
with-replication-using-pacemaker/ provided the listed features shown
and a very detailed description of how PRM is designed to work.

Replication Prefetch
Paul Tuckfield of YouTube presented to the MySQL Community in 2007 the
concept of replication slave prefetch. A very simple idea, this improves the
performance of the single-threaded slave SQL thread by preloading
the necessary data pages by a separate read thread. The ability to predict

05-ch05.indd 149 9/6/12 4:33 PM

http://www.percona.com/files/
https://github.com/jayjanssen/Perco�na-Pacemaker-Resource-Agents/blob/master/doc/PRM-setup-guide.rst
https://github.com/jayjanssen/Perco�na-Pacemaker-Resource-Agents/blob/master/doc/PRM-setup-guide.rst
http://www.mysqlperformanceblog.com/2011/

150 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

the future in MySQL replication is possible because the master binary log
and the relay log contain all events yet to be applied in the slave replication
stream. The following is a code snippet of the work:

module(..., package.seeall); required "lusql.mysql"
pattern= {
 ["UPDATE%s+(%w=).*%s(WHERE.*)"] = "SELECT * FROM %1 %2",
 [DELETE%s+FROM%s+(%w+).%s(WHERE.*)"] = SELECT * FROM %1 %2",
}
env = lusql.mysql()
con = env:connect("test", "root", "*****", "localhost", mysql.port)

function before_write(event)
 local line = event.query
 if not line then return end
 for pat,repl in pairs(pattern) do
 local str = string.gsub(line, pat, repl)
 if str then con:execute(str); break; end
 end
end

You can preview this code on a page from MySQL High Availability
(O’Reilly, 2011) at Safari Books online at http://j.mp/EM3-prefetch (no sub-
scription required).

Several articles exist that can provide some input on the various options
that have been implemented by different individuals or companies:

•	Replication Booster by Yoshinori Matsunobu can be found at https://
github.com/yoshinorim/replication-booster-for-mysql. Some more
information is at http://yoshinorimatsunobu.blogspot.com/2011/10/
making-slave-pre-fetching-work-better.html.

•	Domas Mituzas writes about work developments at Facebook at
http://dom.as/2011/12/03/replication-prefetching/. The code is
available at https://launchpad.net/mysqlatfacebook/tools.

•	Anders Karlsson has created a MySQL replication accelerator. Read
more at http://karlssonondatabases.blogspot.com/2011/03/want-to-
accellerate-mysql-slave-here-is.html. The code is available at http://
sourceforge.net/projects/slavereadahead/.

•	 It is not recommended that mk-slave-prefetch be used. This is
deprecated as directed by the author of the utility. More information
can be found at http://bit.ly/M0raRd.

05-ch05.indd 150 9/6/12 4:33 PM

http://j.mp/EM3-prefetch
https://github.com/yoshinorim/replication-booster-for-mysql
https://github.com/yoshinorim/replication-booster-for-mysql
http://yoshinorimatsunobu.blogspot.com/2011/10/making-slave-pre-fetching-work-better.html
http://yoshinorimatsunobu.blogspot.com/2011/10/making-slave-pre-fetching-work-better.html
http://dom.as/2011/12/03/replication-prefetching/
https://launchpad.net/mysqlatfacebook/tools
http://karlssonondatabases.blogspot.com/2011/03/want-to-accellerate-mysql-slave-here-is.html
http://karlssonondatabases.blogspot.com/2011/03/want-to-accellerate-mysql-slave-here-is.html
http://sourceforge.net/projects/slavereadahead/
http://sourceforge.net/projects/slavereadahead/
http://bit.ly/M0raRd

	 MySQL Replication Tools	 151

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

MySQL Patches and Variants
Patches for MySQL are driven by the necessity of solving a specific prob-
lem that the core product may or may not include in the future. These
improvements are generally due to the long deployment time of including
a feature in the core MySQL product that serves for all general use cases,
not just the specific customer case that it was originally developed for.

Patches are provided for the benefit of others, which is great for the
community; however, these come at a cost if the needs or specific versions
do not match your environment. When these conditions do match, the ad-
vantages of the development can be of great benefit. For example, Domas
Mituzas wrote about how convenient it was to use the Google Patch for
MySQL 4.0.26 because Wikipedia used the exact same point release. Read
more at http://dom.as/2007/06/23/mysql-40-google-edition/ and http://
dom.as/2010/07/25/mysql-versions-at-wikipedia/.

As you can see by these following company names, large web presences
use and extend MySQL for their respective businesses and for the possible
benefit of other MySQL users.

Independent Community Users
Several large MySQL users have contributed greatly to the MySQL ecosys-
tem. Some of the patches provided have become core features in more
recent versions of MySQL. Led initially by Google as early as 2007, many
community provided patches have included improvements around replica-
tion. The Google patches for MySQL version 5.0 included global transaction
IDs, binary logging event checksums, and semisynchronous replication,
now standard features in MySQL 5.6. Facebook is the top organization cur-
rently providing MySQL patches to the MySQL community. With several of
the top experts in MySQL and InnoDB internals outside of Oracle, Facebook
has a continued investment in improving MySQL at scale, specifically in
InnoDB multicore usage and replication.

While these patches can provide some exciting benefits, they have been
specifically written for the needs of the client in question. They may not be
applicable to other workloads and environments, and without a team of
specialists that know the internal working code of MySQL may be a high
risk to implement.

05-ch05.indd 151 9/6/12 4:33 PM

http://dom.as/2007/06/23/mysql-40-google-edition/
http://dom.as/2010/07/25/mysql-versions-at-wikipedia/
http://dom.as/2010/07/25/mysql-versions-at-wikipedia/

152 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

References
The following are some examples of community contributed works:

•	Google  http://code.google.com/p/google-mysql-tools/wiki/
Mysql5Patches

•	Facebook  http://www.facebook.com/MySQLatFacebook and
https://launchpad.net/mysqlatfacebook

•	eBay  http://code.google.com/p/mysql-heap-dynamic-rows/

•	Twitter  https://github.com/twitter/mysql

Commercial Organizations
The MySQL ecosystem has seen several companies start to provide addi-
tional engineering services for supporting new features with MySQL.
These provide feature development for a fee, and generally provide a far
quicker time to market.

Monty Program
Founded by Michael “Monty” Widenius, one of the original founders of
MySQL, Monty Program retains a number of core engineers from the origi-
nal MySQL AB company. They provide many improvements to the MySQL
product and offer these patches for upstream integration in future official
MySQL versions. MariaDB is a feature compatible drop-in replacement ver-
sion of MySQL that also includes many additional storage engines. MariaDB
is available under the open source GNU GPL v2 license. More information
can be found at http://mariadb.org. For environments that are heavy users of
MyISAM, MariaDB provides a number of great performance improvements.

Percona
Percona is the longest established alternative commercial vendor in the
MySQL space. They develop and support several MySQL Products, includ-
ing Percona Server, Percona Cluster (with Galera), XtraDB, XtraBackup,
and Percona Toolkit. More information can be found at http://percona.com.

05-ch05.indd 152 9/6/12 4:33 PM

http://code.google.com/p/google-mysql-tools/wiki/Mysql5Patches
http://code.google.com/p/google-mysql-tools/wiki/Mysql5Patches
http://www.facebook.com/MySQLatFacebook
https://launchpad.net/mysqlatfacebook
http://code.google.com/p/mysql-heap-dynamic-rows/
https://github.com/twitter/mysql
http://mariadb.org
http://percona.com

	 MySQL Replication Tools	 153

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Conclusion
A database administrator should be aware of and use this diverse set of
tools to monitor, manage, verify, and improve an existing production
MySQL replication environment. Combined with deployment automation
and service monitoring as described in Chapter 8, replication can provide
powerful benefits in any production environment when configured and
operating normally.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

05-ch05.indd 153 9/6/12 4:33 PM

http://EffectiveMySQL.com/book/replication-techniques

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

155

6
Extending Replication

for Practical Needs

MySQL replication is essential for any production environment. In the
previous chapters we have discussed the use of replication, some of the
known limitations, and hinted at some of the ongoing improvements. In
many deployments, current MySQL replication provides an adequate
approach to improving scalability and availability. Prior to the MySQL 5.6
version there were more complex operations necessary for multi-master
replication and high availability management. In addition, some of the fea-
tures of MySQL replication that are strengths in the flexibility of the repli-
cation implementation are also limitations for certain architectures.

06-ch06.indd 155 9/7/12 2:42 PM

156 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The MySQL replication landscape has significantly changed with addi-
tional third-party providers. In this chapter we will discuss some of these
providers and the features they offer, specifically:

•	Supporting synchronous replication

•	Active/active multi-master replication supporting bidirectional
replication

•	Complex topologies, including circular, star, and fan, in support of
multiple masters for a given slave

Highly Requested Replication Features
Without a doubt, the ability for synchronous replication ranks as one of the
top requests for improvements with native MySQL replication functional-
ity. The asynchronous nature provides several benefits, especially in WAN
or network limiting environments; however, this also causes a lack of guar-
anteed data consistency between all servers, and depending on the needs
of the application, that can introduce additional complexity. Many scale-
out environments use native replication successfully to support hundreds
and thousands of MySQL instances. New features from other providers
can add value to these existing environments.

Providing a mixed topology that includes active master/master replication
and supporting multiple masters for a given slave is also a common need for
ensuring high availability and reducing latency in a global deployment.

Another key feature request is that of automatic sharding and partitioning,
especially for cloud-based deployments.

Combining all these features with the need for adequate disaster recov-
ery management and ongoing growth in data storage, throughput, and
performance are the key feature areas for using MySQL at scale.

MySQL Cluster
MySQL Cluster, which is a different product than the MySQL database
server, provides several of these features natively. Synchronous replication
and automatic partitioning are standard features in MySQL Cluster; how-
ever, this is a very different product than the MySQL server. The name is
appropriate for features, yet deceiving when compared with MySQL.

06-ch06.indd 156 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 157

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

While this product includes a SQL interface, data access for high through-
put environments can be achieved from an Application Programming In-
terface (API). The strengths and features of MySQL Cluster are not always
applicable to an Online Transaction Processing (OLTP) application using
traditional MySQL replication. There are also additional limitations, in-
cluding the database size with available memory. This product is ideal in
certain situations and is widely used in the telecommunications and gam-
ing industries. The use, understanding, and benefits of MySQL Cluster are
topics for an entire book.

It should be noted that MySQL Cluster mainly differs from a regular
MySQL server for the following additional reasons:

•	There is currently no referential integrity. Foreign keys are being
developed for a future version.

•	You can only use the NDB storage engine and are then limited to
READ-COMMITTED transaction level.

•	While primary key lookups are fast and concurrent access is faster
than a regular MySQL server, more complex queries, including table
joins and group by operations, are more expensive.

For more information about MySQL Cluster, refer to http://www.mysql
.com/products/cluster/.

Galera Cluster for MySQL
Galera Cluster for MySQL provides synchronous replication and multi-
master features when using InnoDB. This means a Galera Cluster supports
reads and writes to any node, and provides a true multi-master experience
with no lag and no loss of transactions.

Galera Cluster is built on a more generic replication API called wsrep
(Write Set REPlication). The wsrep API defines an interface between the
database server and the replication plugin and is a separate open source
project by Codership. MySQL-wsrep is a patch for MySQL to implement
the wsrep API in the database server. This patch will enable the MySQL
server to use a wsrep provider plugin, for example, Galera. Galera is the
wsrep provider including synchronous multi-master replication.

06-ch06.indd 157 9/7/12 2:42 PM

http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

158 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Galera 2.x is the currently supported version available with MySQL 5.1
GA and MySQL 5.5 GA. Galera is an open source project available under
the GPL v3 license, with integration components available under the GPL
v2 license to be compatible with MySQL.

Current Limitations
When comparing Galera with a traditional MySQL server, there are some
limitations; however, these are not serious roadblocks to trying and using
Galera effectively:

•	Only InnoDB tables are supported in replication.

•	LOCK and UNLOCK statements, GET_LOCK() and RELEASE_LOCK()
functions are not supported.

•	Log output to TABLE using log_output is not supported. Logging
must be to FILE.

•	XA (eXtended Architecture) transactions are not currently supported.

References
For more information see:

•	Product Home  http://www.codership.com/content/using-galera-
cluster/

•	Downloads  http://www.codership.com/downloads/download-
mysqlgalera

•	Documentation  http://www.codership.com/wiki

•	Details of wsrep can be found at https://launchpad.net/wsrep

Terminology
When using Galera Cluster, a number of terms are used and referenced in
online documentation. These include the following:

•	Galera Cluster  This refers to the operational nodes that constitute
the cluster.

•	Node  This refers to an individual server instance that is part of a
Galera Cluster.

•	Joiner  This refers to a new node that wishes to join a Galera Cluster.

06-ch06.indd 158 9/7/12 2:42 PM

http://www.codership.com/content/using-galera-cluster/
http://www.codership.com/content/using-galera-cluster/
http://www.codership.com/downloads/download-mysqlgalera
http://www.codership.com/downloads/download-mysqlgalera
http://www.codership.com/wiki
https://launchpad.net/wsrep

	 Extending Replication for Practical Needs 	 159

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	Donor  This refers to a Galera node that is used for synchronizing
the Joiner.

•	Group  This is a layer of communication between an individual
node and a Galera Cluster.

Installation
Galera provides RedHat/CentOS/Oracle Linux .rpm packaging, Ubuntu/
Debian .deb packaging, and Linux binary .tar.gz installation options.
The following installation steps will install the binaries on an Ubuntu/
Debian Linux system that is defined in the virtual environments from the
appendix.

The following steps use specific Galera and MySQL binary versions.
Please refer to the downloads link for the most current versions available.
For this installation we will be using three servers:

•	alpha  192.168.1.51

•	beta  192.168.1.52

•	gamma  192.168.1.53

Install Galera
The wsrep implementation (i.e., Galera) must be installed first. This is
demonstrated on the alpha server:

$ cd /tmp
$ wget https://launchpad.net/galera/2.x/23.2.1/+download/galera-23.2.1-amd64.deb
$ sudo apt-get install libssl0.9.8
$ sudo dpkg -i galera-*.deb
$ rm -f galera*.deb

The following library is installed with the Galera package. This specific
file path is required later during configuration:

$ ls -l /usr/lib/galera/
total 2104
-rwxr-xr-x 1 root root 2153064 May 18 18:02 libgalera_smm.so

The Galera package contains the following files for reference:

$ dpkg --contents galera-23.2.1-amd64.deb
drwxr-xr-x root/root 0 2012-05-18 18:02 ./
drwxr-xr-x root/root 0 2012-05-18 18:02 ./etc/

06-ch06.indd 159 9/7/12 2:42 PM

160 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

drwxr-xr-x root/root 0 2012-05-18 18:02 ./etc/init.d/
-rwxr-xr-x root/root 3132 2012-05-18 18:02 ./etc/init.d/garb
drwxr-xr-x root/root 0 2012-05-18 18:02 ./etc/default/
-rw-r--r-- root/root 502 2012-05-18 18:02 ./etc/default/garb
drwxr-xr-x root/root 0 2012-05-18 18:02 ./etc/ld.so.conf.d/
-rw-r--r-- root/root 0 2012-05-18 18:02 ./etc/ld.so.conf.d/galera.conf
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/share/
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/share/doc/
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/share/doc/galera/
-rw-r--r-- root/root 35147 2012-05-18 18:02 ./usr/share/doc/galera/COPYING
-rw-r--r-- root/root 5900 2012-05-18 18:02 ./usr/share/doc/galera/
README-MySQL
-rw-r--r-- root/root 21740 2012-05-18 18:02 ./usr/share/doc/galera/README
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/lib/
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/lib/galera/
-rwxr-xr-x root/root 2153064 2012-05-18 18:02 ./usr/lib/galera/
libgalera_smm.so
drwxr-xr-x root/root 0 2012-05-18 18:02 ./usr/bin/
-rwxr-xr-x root/root 1345448 2012-05-18 18:02 ./usr/bin/garbd

Install MySQL 5.5 with wsrep Patch
The patched MySQL version with the wsrep connector from Codership
can now be installed with the following commands:

$ cd
$ sudo apt-get install libaio1 # MySQL 5.5 dependency
$ wget https://launchpad.net/codership-mysql/5.5/5.5.23-23.6/+download/mysql-
5.5.23_wsrep_23.6-linux-x86_64.tar.gz
$ tar xvfz mysql-5.5.23_wsrep_23.6-linux-x86_64.tar.gz
$ mv mysql-5.5.23_wsrep_23.6-linux-x86_64 mysql
$ cd mysql

The installation and verification of MySQL is the same as normal
MySQL procedures that are also described in the appendix:

$./scripts/mysql_install_db
Installing MySQL system tables...
120606 15:02:01 [Note] WSREP: Read nil XID from storage engines,
skipping position init
120606 15:02:01 [Note] WSREP: wsrep_load(): loading provider library 'none'
120606 15:02:05 [Note] WSREP: Service disconnected.
120606 15:02:06 [Note] WSREP: Some threads may fail to exit.
OK
Filling help tables...
120606 15:02:06 [Note] WSREP: Read nil XID from storage engines,
skipping position init
120606 15:02:06 [Note] WSREP: wsrep_load(): loading provider library 'none'
120606 15:02:06 [Note] WSREP: Service disconnected.
120606 15:02:07 [Note] WSREP: Some threads may fail to exit.
OK
...

06-ch06.indd 160 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 161

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$./bin/mysqld_safe &
$ tail -20 data/`hostname`.err
$./bin/mysql_secure_installation
$ HOSTNAME=`hostname`
$ echo "[client]
user=root
password=passwd
[mysql]
prompt='${HOSTNAME}> '" > $HOME/.my.cnf
$./bin/mysql -e "SELECT version()";
+-----------+
| version() |
+-----------+
| 5.5.23 |
+-----------+

We can confirm the wsrep deployment by reviewing the new default
variables available with:

$ bin/mysql -e "SHOW GLOBAL VARIABLES LIKE 'ws%'"
+--------------------------------+-------
| Variable_name | Value
+--------------------------------+-------
| wsrep_OSU_method | TOI
| wsrep_auto_increment_control | ON
| wsrep_causal_reads | OFF
| wsrep_certify_nonPK | ON
| wsrep_cluster_address |
| wsrep_cluster_name | my_wsrep_cluster
| wsrep_convert_LOCK_to_trx | OFF
| wsrep_data_home_dir | /home/user/mysql/data/
| wsrep_dbug_option |
| wsrep_debug | OFF
| wsrep_drupal_282555_workaround | OFF
| wsrep_forced_binlog_format | NONE
| wsrep_max_ws_rows | 131072
| wsrep_max_ws_size | 1073741824
| wsrep_node_address |
| wsrep_node_incoming_address | AUTO
| wsrep_node_name | alpha
| wsrep_notify_cmd |
| wsrep_on | OFF
| wsrep_provider | none
| wsrep_provider_options |
| wsrep_recover | OFF
| wsrep_replicate_myisam | OFF
| wsrep_retry_autocommit | 1
| wsrep_slave_threads | 1
| wsrep_sst_auth |
| wsrep_sst_donor |
| wsrep_sst_method | mysqldump
| wsrep_sst_receive_address | AUTO
| wsrep_start_position | 00000000-0000-0000-0000-000000000000:-1
+--------------------------------+------

06-ch06.indd 161 9/7/12 2:42 PM

162 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Configuring MySQL with wsrep
MySQL will operate as a normal traditional server by default. Galera usage
requires a number of MySQL configuration settings. The following are the
minimum recommended settings:

$ cd $HOME/mysql
$ mkdir etc
$ echo "[mysqld]
wsrep_provider=/usr/lib/galera/libgalera_smm.so
binlog_format=ROW
default_storage_engine=InnoDB
innodb_autoinc_lock_mode=2
innodb_locks_unsafe_for_binlog=1
optional
innodb_flush_log_at_trx_commit=0
innodb_doublewrite=0" > etc/my.cnf

As you can see, there is no replication-specific configuration necessary.
Binary logging is not required, nor is a server ID to use within a Galera
Cluster. To define a Galera Cluster you must specify a cluster address.
Restarting the MySQL instance with the new configuration and specifying
a new empty cluster address with the wsrep_cluster_address configu-
ration parameter enables Galera for this instance:

$./bin/mysqladmin -uroot shutdown
$./bin/mysqld_safe --defaults-file=etc/my.cnf --wsrep_cluster_address=gcomm:// &

As you can see from the MySQL error log output, a lot of additional
information is now provided:

mysqld_safe Starting mysqld daemon with databases from /home/user/mysql/data
InnoDB: The InnoDB memory heap is disabled
InnoDB: Mutexes and rw_locks use GCC atomic builtins
InnoDB: Compressed tables use zlib 1.2.3
InnoDB: Using Linux native AIO
InnoDB: Initializing buffer pool, size = 128.0M
InnoDB: Completed initialization of buffer pool
InnoDB: highest supported file format is Barracuda.
InnoDB: Waiting for the background threads to start
InnoDB: 1.1.8 started; log sequence number 1595843
[Note] Event Scheduler: Loaded 0 events
[Note] WSREP: Read nil XID from storage engines, skipping position init
[Note] WSREP: wsrep_load(): loading provider library
 '/usr/lib/galera/libgalera_smm.so'
[Note] WSREP: wsrep_load(): Galera 23.2.1(r129) by Codership Oy
 <info@codership.com> loaded successfully.
[Warning] WSREP: Could not open saved state file for reading: /home/user/mysql/
data//grastate.dat

06-ch06.indd 162 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 163

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[Note] WSREP: Found saved state: 00000000-0000-0000-0000-000000000000:-1
[Note] WSREP: Preallocating 134219048/134219048 bytes in '/home/user/mysql/
data//galera.cache'...
[Note] WSREP: Passing config to GCS: base_host = 192.168.1.51;
gcache.dir = /home/user/mysql/data/; gcache.keep_pages_size = 0;
gcache.mem_size = 0; gcache.name = /home/user/mysql/data//galera.cache;
gcache.page_size = 128M; gcache.size = 128M; gcs.fc_debug = 0;
gcs.fc_factor = 0.5; gcs.fc_limit = 16; gcs.fc_master_slave = NO; gcs.max_
packet_size = 64500; gcs.max_throttle = 0.25;
gcs.recv_q_hard_limit = 9223372036854775807; gcs.recv_q_soft_limit = 0.25;
gcs.sync_donor = NO; replicator.causal_read_timeout = PT30S; replicator.commit_
order = 3
[Note] WSREP: Assign initial position for certification: -1, protocol version:
-1
[Note] WSREP: Start replication
[Note] WSREP: Setting initial position to 00000000-0000-0000-0000-000000000000:-
1
[Note] WSREP: protonet asio version 0
[Note] WSREP: backend: asio
[Note] WSREP: GMCast version 0
[Note] WSREP: (c3300902-b991-11e1-0800-040d7f7e9e14, 'tcp://0.0.0.0:4567')
 listening at tcp://0.0.0.0:4567
[Note] WSREP: (c3300902-b991-11e1-0800-040d7f7e9e14, 'tcp://0.0.0.0:4567')
 multicast: , ttl: 1
[Note] WSREP: EVS version 0
[Note] WSREP: PC version 0
[Note] WSREP: gcomm: connecting to group 'my_wsrep_cluster', peer ''
[Note] WSREP: view(view_id(PRIM,c3300902-b991-11e1-0800-040d7f7e9e14,1) memb {
 c3300902-b991-11e1-0800-040d7f7e9e14,
} joined {
} left {
} partitioned {
})
[Note] WSREP: gcomm: connected
[Note] WSREP: Changing maximum packet size to 64500, resulting msg size: 32636
[Note] WSREP: Shifting CLOSED -> OPEN (TO: 0)
[Note] WSREP: Opened channel 'my_wsrep_cluster'
[Note] /home/user/mysql/bin/mysqld: ready for connections.
Version: '5.5.23' socket: '/tmp/mysql.sock' port: 3306 Source distribution,
wsrep_23.6.r3755
[Note] WSREP: New COMPONENT: primary = yes, bootstrap = no, my_idx = 0,
memb_num = 1
[Note] WSREP: Starting new group from scratch:
c3315364-b991-11e1-0800-59a14f938404
[Note] WSREP: STATE_EXCHANGE: sent state UUID:
c3317547-b991-11e1-0800-4da9e025adff
[Note] WSREP: STATE EXCHANGE: sent state msg:
c3317547-b991-11e1-0800-4da9e025adff
[Note] WSREP: STATE EXCHANGE: got state msg:
c3317547-b991-11e1-0800-4da9e025adff from 0 (alpha)
[Note] WSREP: Quorum results:
 version = 2,
 component = PRIMARY,
 conf_id = 0,

06-ch06.indd 163 9/7/12 2:42 PM

tcp://0.0.0.0:4567
tcp://0.0.0.0:4567
tcp://0.0.0.0:4567

164 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 members = 1/1 (joined/total),
 act_id = 0,
 last_appl. = -1,
 protocols = 0/4/2 (gcs/repl/appl),
 group UUID = c3315364-b991-11e1-0800-59a14f938404
[Note] WSREP: Flow-control interval: [8, 16]
[Note] WSREP: Restored state OPEN -> JOINED (0)
[Note] WSREP: Member 0 (alpha) synced with group.
[Note] WSREP: Shifting JOINED -> SYNCED (TO: 0)
[Note] WSREP: New cluster view: global state:
c3315364-b991-11e1-0800-59a14f938404:0,
view# 1: Primary, number of nodes: 1, my index: 0, protocol version 2
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.
[Note] WSREP: Assign initial position for certification: 0, protocol version: 2
[Note] WSREP: Synchronized with group, ready for connections
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.

A further confirmation of the wsrep process in operation is the use of
port 4567 on the server. In a production environment, if there are specific
firewall rules for the MySQL port (e.g., 3306), then additional appropriate
rules will be necessary for Galera Cluster communication.

$ netstat -tulpn | grep -e 4567 -e 3306
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 29329/mysqld
tcp 0 0 0.0.0.0:4567 0.0.0.0:* LISTEN 29329/mysqld

Incorrect MySQL Configuration  Even with a defined wsrep_cluster_
address, without the wsrep_provider argument, MySQL will start
without any issues; however, the expected features are not operational, and
there is no indication of any problems. The MySQL error log will look like
this:

$ bin/mysqld_safe --defaults-file=etc/my.cnf --wsrep_cluster_address=gcomm:// &
$ tail -20 data/`hostname`.err
mysqld_safe Starting mysqld daemon with databases from ...
...
[Note] WSREP: Read nil XID from storage engines, skipping position init
[Note] WSREP: wsrep_load(): loading provider library 'none'
[Note] /home/user/mysql/bin/mysqld: ready for connections.
Version: '5.5.23' socket: '/tmp/mysql.sock' port: 3306
Source distribution, wsrep_23.6.r3755

State Snapshot Transfer (SST)
While the initial configuration provides a minimum viable single MySQL
instance running with Galera, this serves no real purpose and is not suffi-
cient when adding Galera nodes to the cluster. The wsrep_sst_method
variable is defined to ensure that when a new node is added (i.e., the

06-ch06.indd 164 9/7/12 2:42 PM

gcomm://&

	 Extending Replication for Practical Needs 	 165

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

joiner), this can be initially synchronized with the known cluster (i.e., one
node known as the donor).

The diagram at http://www.codership.com/wiki/doku.php?id=state_
transfer_protocol provides a great overview of the complexity of performing
this initial snapshot and then synchronizing with the cluster.

There are five possible values for the wsrep_sst_method configura-
tion variable. These are rsync, rsync_wan, xtrabackup, mysqldump,
and skip. The current default is mysqldump; however, this may change in
future releases.

The mysqldump, rsync, and rsync_wan options are blocking opera-
tions during the data acquisition stage on a joiner node and the donor. The
rsync_wan option has further optimization for WAN transfers. The xtra-
backup option provides the most flexibility; however, it requires addition-
al software installation and configuration.

Galera will, by default, use the IP address of eth0 for SST operations. In
the example virtual environment being demonstrated, the correct IP is on
eth1. The IP can be configured on all Galera nodes with the wsrep_sst_
receive_address variable. For example:

#$HOME/mysql/etc/my.cnf (on alpha)
[mysqld]
wsrep_sst_receive_address=192.168.1.51

rsync and rsync_wan  The rsync option is the easiest of the options
available for SST. When set, and when applicable SSH keys are defined, a
new joiner node can be easily synchronized:

#$HOME/mysql/etc/my.cnf
[mysqld]
wsrep_sst_method=rsync

mysqldump  When using the mysqldump method (the current default),
the additional wsrep_sst_auth option is required on both the joiner and
donor nodes. This is a MySQL user account that must exist on all nodes.
For example:

#$HOME/mysql/etc/my.cnf
[mysqld]
wsrep_sst_method=mysqldump
wsrep_sst_auth=galera:passwd

06-ch06.indd 165 9/7/12 2:42 PM

http://www.codership.com/wiki/doku.php?id=state_transfer_protocol
http://www.codership.com/wiki/doku.php?id=state_transfer_protocol

166 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

This introduces additional security issues. A new MySQL user is recom-
mended because this requires network-level access (i.e., more than localhost)
for the connection from the executed wsrep_sst_mysqldump command:

mysql> GRANT ALL ON *.* TO galera@'192.168.1.%' IDENTIFIED BY PASSWORD
 '*59C70DA2F3E3A5BDF46B68F5C8B8F25762BCCEF0';

This user requires the ability to remove and create the mysql schema
for the joining node. For security purposes this account could be removed
or disabled following use; however, SST may be required at any time if a
new node is added or a level of corruption occurs and a resynchronization
is necessary. This variable can technically be different between nodes, but
would be an unnecessary complexity.

NOTE  While it would appear that rsync is a more practical method for SST,
rsync works on a physical level while mysqldump works on a logical level. If
the individual nodes have a different MySQL layout and options, for example,
the datadir or innodb_log_file_size, mysqldump is necessary.

TIP  Using identical MySQL configuration for all Galera Cluster nodes (aka the
KISS principle) will remove unnecessary complexities, especially when trying
to diagnose problems.

Adding a Galera Node
In order to add a second server to operate in a Galera Cluster, the installa-
tion and configuration is identical. That is, install Galera, install MySQL
with wsrep, install the MySQL starter database, and configure MySQL,
including the definition of the applicable SST method.

The only difference is the instantiation of the mysqld process, which
requires a connection to one of the other known nodes in the cluster with
the wsrep_cluster_address configuration option, in this example, the
initial server, alpha:

$./bin/mysqld_safe --defaults-file=etc/my.cnf \
 --wsrep_cluster_address=gcomm://alpha &

The initial handshake and SST transfer can be seen by viewing the re-
spective error logs on both the joiner node (i.e., beta) and the selected
donor node (i.e., alpha).

06-ch06.indd 166 9/7/12 2:42 PM

gcomm://alpha

	 Extending Replication for Practical Needs 	 167

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SST via rsync  On the donor node (e.g., alpha), the following error log
information confirms a successful SST request:

[Note] WSREP: New cluster view: global state: c3315364-b991-11e1-0800-
59a14f938404:4, view# 100: Primary, number of nodes: 2, my index: 0,
protocol version 2
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.
[Note] WSREP: Assign initial position for certification: 4, protocol version: 2
[Note] WSREP: Node 1 (beta) requested state transfer from '*any*'.
Selected 0 (alpha)(SYNCED) as donor.
[Note] WSREP: Shifting SYNCED -> DONOR/DESYNCED (TO: 4)
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.
[Note] WSREP: Running: 'wsrep_sst_rsync 'donor' '192.168.1.52:4444/rsync_sst'
 'galera:passwd' '/home/user/mysql/data/' '/home/user/mysql/etc/my.cnf'
 'c3315364-b991-11e1-0800-59a14f938404' '4' '0''
[Note] WSREP: sst_donor_thread signaled with 0
[Note] WSREP: Flushing tables for SST...
[Note] WSREP: Provider paused at c3315364-b991-11e1-0800-59a14f938404:4
[Note] WSREP: Tables flushed.
[Note] WSREP: Provider resumed.
[Note] WSREP: 0 (alpha): State transfer to 1 (beta) complete.
[Note] WSREP: Shifting DONOR/DESYNCED -> JOINED (TO: 4)
[Note] WSREP: Member 0 (alpha) synced with group.
[Note] WSREP: Shifting JOINED -> SYNCED (TO: 4)
[Note] WSREP: Synchronized with group, ready for connections
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.
[Note] WSREP: 1 (beta): State transfer from 0 (alpha) complete.
[Note] WSREP: Member 1 (beta) synced with group.

On the joiner node, you can see the following steps in the MySQL error
log:

•	A state difference is identified.

•	An Incremental State Transfer (IST) is first attempted but not
successful due to a fundamental state difference.

•	A node is selected to operate in a donor role and a full SST is
initiated on that node.

•	An InnoDB crash recovery is performed on retrieved state.

•	The node is recognized as in sync.

[Note] WSREP: Shifting OPEN -> PRIMARY (TO: 4)
[Note] WSREP: State transfer required:
 Group state: c3315364-b991-11e1-0800-59a14f938404:4
 Local state: 00000000-0000-0000-0000-000000000000:-1
[Note] WSREP: New cluster view: global state:
c3315364-b991-11e1-0800-59a14f938404:4,
view# 100: Primary, number of nodes: 2, my index: 1, protocol version 2
[Warning] WSREP: Gap in state sequence. Need state transfer.

06-ch06.indd 167 9/7/12 2:42 PM

168 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[Note] WSREP: Running: 'wsrep_sst_rsync 'joiner' '192.168.1.52' ''
'/home/user/mysql/data/' '/home/user/mysql/etc/my.cnf' '7285' 2>sst.err'
[Note] WSREP: Prepared SST request: rsync|192.168.1.52:4444/rsync_sst
[Note] WSREP: wsrep_notify_cmd is not defined, skipping notification.
[Note] WSREP: Assign initial position for certification: 4, protocol version: 2
[Warning] WSREP: Failed to prepare for incremental state transfer:
Local state UUID (00000000-0000-0000-0000-000000000000)
does not match group state UUID (c3315364-b991-11e1-0800-59a14f938404): 1
(Operation not permitted)
at galera/src/replicator_str.cpp:prepare_for_IST():439. IST will be unavailable.
[Note] WSREP: Node 1 (beta) requested state transfer from '*any*'.
Selected 0 (alpha)(SYNCED) as donor.
[Note] WSREP: Shifting PRIMARY -> JOINER (TO: 4)
[Note] WSREP: Requesting state transfer: success, donor: 0
[Note] WSREP: 0 (alpha): State transfer to 1 (beta) complete.
[Note] WSREP: Member 0 (alpha) synced with group.
[Note] WSREP: SST complete, seqno: 4
InnoDB: The InnoDB memory heap is disabled
InnoDB: Mutexes and rw_locks use GCC atomic builtins
InnoDB: Compressed tables use zlib 1.2.3
InnoDB: Using Linux native AIO
InnoDB: Initializing buffer pool, size = 128.0M
InnoDB: Completed initialization of buffer pool
InnoDB: highest supported file format is Barracuda.
InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
InnoDB: Waiting for the background threads to start
InnoDB: 1.1.8 started; log sequence number 1596023
[Note] Event Scheduler: Loaded 0 events
[Note] WSREP: Signalling provider to continue.
[Note] WSREP: Received SST: c3315364-b991-11e1-0800-59a14f938404:4
[Note] WSREP: SST received: c3315364-b991-11e1-0800-59a14f938404:4
[Note] /home/user/mysql/bin/mysqld: ready for connections.
Version: '5.5.23' socket: '/tmp/mysql.sock' port: 3306 Source distribution,
 wsrep_23.6.r3755
[Note] WSREP: 1 (beta): State transfer from 0 (alpha) complete.
[Note] WSREP: Shifting JOINER -> JOINED (TO: 4)
[Note] WSREP: Member 1 (beta) synced with group.
[Note] WSREP: Shifting JOINED -> SYNCED (TO: 4)
[Note] WSREP: Synchronized with group, ready for connections

Operation Confirmation
Galera provides a number of MySQL status variables to view the running op-
eration of the cluster. Following this initial cluster creation and adding a sec-
ond node, the values in this example are as shown in the following sections.

06-ch06.indd 168 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 169

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

alpha Status

alpha> SHOW GLOBAL STATUS LIKE 'wsrep%';
+----------------------------+--------------------------------------+
| Variable_name | Value |
+----------------------------+--------------------------------------+
wsrep_local_state_uuid	88bdf845-b0a4-11e1-0800-4db1faf4581b
wsrep_protocol_version	4
wsrep_last_committed	0
wsrep_replicated	0
wsrep_replicated_bytes	0
wsrep_received	6
wsrep_received_bytes	376
wsrep_local_commits	0
wsrep_local_cert_failures	0
wsrep_local_bf_aborts	0
wsrep_local_replays	0
wsrep_local_send_queue	0
wsrep_local_send_queue_avg	0.500000
wsrep_local_recv_queue	0
wsrep_local_recv_queue_avg	0.000000
wsrep_flow_control_paused	0.000000
wsrep_flow_control_sent	0
wsrep_flow_control_recv	0
wsrep_cert_deps_distance	0.000000
wsrep_apply_oooe	0.000000
wsrep_apply_oool	0.000000
wsrep_apply_window	0.000000
wsrep_commit_oooe	0.000000
wsrep_commit_oool	0.000000
wsrep_commit_window	0.000000
wsrep_local_state	4
wsrep_local_state_comment	Synced (6)
wsrep_cert_index_size	0
wsrep_causal_reads	0
wsrep_cluster_conf_id	2
wsrep_cluster_size	2
wsrep_cluster_state_uuid	88bdf845-b0a4-11e1-0800-4db1faf4581b
wsrep_cluster_status	Primary
wsrep_connected	ON
wsrep_local_index	0
wsrep_provider_name	Galera
wsrep_provider_vendor	Codership Oy <info@codership.com>
wsrep_provider_version	23.2.1(r129)
wsrep_ready	ON
+----------------------------+--------------------------------------+
39 rows in set (0.00 sec)

beta Status

beta> SHOW GLOBAL STATUS LIKE 'wsrep%';
+----------------------------+--------------------------------------+
| Variable_name | Value |

06-ch06.indd 169 9/7/12 2:42 PM

170 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

+----------------------------+--------------------------------------+
wsrep_local_state_uuid	88bdf845-b0a4-11e1-0800-4db1faf4581b
wsrep_protocol_version	4
wsrep_last_committed	0
wsrep_replicated	0
wsrep_replicated_bytes	0
wsrep_received	3
wsrep_received_bytes	198
wsrep_local_commits	0
wsrep_local_cert_failures	0
wsrep_local_bf_aborts	0
wsrep_local_replays	0
wsrep_local_send_queue	0
wsrep_local_send_queue_avg	0.333333
wsrep_local_recv_queue	0
wsrep_local_recv_queue_avg	0.000000
wsrep_flow_control_paused	0.000000
wsrep_flow_control_sent	0
wsrep_flow_control_recv	0
wsrep_cert_deps_distance	0.000000
wsrep_apply_oooe	0.000000
wsrep_apply_oool	0.000000
wsrep_apply_window	0.000000
wsrep_commit_oooe	0.000000
wsrep_commit_oool	0.000000
wsrep_commit_window	0.000000
wsrep_local_state	4
wsrep_local_state_comment	Synced (6)
wsrep_cert_index_size	0
wsrep_causal_reads	0
wsrep_cluster_conf_id	2
wsrep_cluster_size	2
wsrep_cluster_state_uuid	88bdf845-b0a4-11e1-0800-4db1faf4581b
wsrep_cluster_status	Primary
wsrep_connected	ON
wsrep_local_index	1
wsrep_provider_name	Galera
wsrep_provider_vendor	Codership Oy <info@codership.com>
wsrep_provider_version	23.2.1(r129)
wsrep_ready	ON
+----------------------------+--------------------------------------+

The Galera Wiki at http://www.codership.com/wiki/doku.php?id=
monitoring provides more information on important status variables and
their respective values for checking the cluster integrity, node status, repli-
cation health, and slow performance bottlenecks.

We can now run a simple test, using the same test steps as described in
the appendix, for testing replication. This will create a table and use a sim-
ple stored procedure to simulate some load. We can confirm the data is
consistent in the table with the following simple test:

06-ch06.indd 170 9/7/12 2:42 PM

http://www.codership.com/wiki/doku.php?id=

	 Extending Replication for Practical Needs 	 171

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

alpha> PAGER md5sum
alpha> SELECT * FROM numbers ORDER BY id;
bb39b97bfe7e28b8abdbf9b943b0cd3a -
1048576 rows in set (0.31 sec)
alpha> NOPAGER
beta> PAGER md5sum
beta> SELECT * FROM numbers ORDER BY id;
bb39b97bfe7e28b8abdbf9b943b0cd3a -
1048576 rows in set (0.40 sec)
beta> NOPAGER

In addition we can now see changes in the MySQL Status variables:

beta> SHOW GLOBAL STATUS LIKE 'wsrep%';
+----------------------------+--------------------------------------+
| Variable_name | Value |
+----------------------------+--------------------------------------+
wsrep_local_state_uuid	88bdf845-b0a4-11e1-0800-4db1faf4581b
wsrep_protocol_version	4
wsrep_last_committed	47
wsrep_replicated	0
wsrep_replicated_bytes	0
wsrep_received	69
wsrep_received_bytes	42700075
...

Under these normal testing procedures, no addition wsrep information
is written to the MySQL error log. In general, after the initial creation and
SST-related log messaging in the error log, any later wsrep messages
should be considered an error to investigate.

Multi-Master Replication
Galera provides true active multi-master replication by default. There is no
additional configuration necessary. We can repeat the same test in a differ-
ent schema for verification:

beta> CREATE SCHEMA IF NOT EXISTS test2;
beta> USE test2;
beta> SOURCE fill_numbers.sql

We can also verify several different status variable changes to indicate
the local operations. For example:

beta> SHOW GLOBAL STATUS LIKE 'wsrep%';
..
wsrep_replicated	27
wsrep_replicated_bytes	29514748
wsrep_received	81

06-ch06.indd 171 9/7/12 2:42 PM

172 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

| wsrep_received_bytes | 56931329 |
| wsrep_local_commits | 21 |
..

In comparison, the before values were:

wsrep_replicated	0
wsrep_replicated_bytes	0
wsrep_received	69
wsrep_received_bytes	42700075
wsrep_local_commits	0

Optimal MySQL Configuration
There are several recommended configuration settings in addition to those
that have already been discussed. The full list of recommendations includes

•	wsrep_provider  This is a path and filename of the Galera library.
This is a required parameter.

•	wsrep_cluster_address  This is a gcomm:// specific address to
one node of the cluster. This is a required parameter.

•	wsrep_cluster_name  This is a name given to the cluster in use.

•	wsrep_sst_method  This parameter defines the method to
perform an initial state snapshot transfer (SST). The current default
value when not specified is mysqldump. The recommended setting is
rsync or xtrabackup.

•	wsrep_node_address  This is the IP address of the node. When
not specified, this will default to the first retrievable IP address. This
may not be ideal for various network configurations that have
multiple network connections.

•	wsrep_node_name  This is the human readable name of the node.
This defaults to the hostname if not specified.

•	wsrep_slave_threads  This specifies the number of parallel slave
threads. The recommended value is 4 * cores.

•	wsrep_provider_options  This option specifies various other
options. It is recommended that the gcache_size is set
appropriately to maximize throughput.

A default installation shows a large number of possible values for
wsrep_provider_options. These currently include

06-ch06.indd 172 9/7/12 2:42 PM

gcomm://specific

	 Extending Replication for Practical Needs 	 173

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

mysql> SHOW GLOBAL VARIABLES LIKE 'wsrep_provider_options'\G
base_host = 192.168.1.51;
base_port = 4567;
evs.debug_log_mask = 0x1;
evs.inactive_check_period = PT0.5S;
evs.inactive_timeout = PT15S;
evs.info_log_mask = 0;
evs.install_timeout = PT15S;
evs.join_retrans_period = PT0.3S;
evs.keepalive_period = PT1S;
evs.max_install_timeouts = 1;
evs.send_window = 4;
evs.stats_report_period = PT1M;
evs.suspect_timeout = PT5S;
evs.use_aggregate = true;
evs.user_send_window = 2;
evs.version = 0;
evs.view_forget_timeout = PT5M;
gcache.dir = /home/user/mysql/data/;
gcache.keep_pages_size = 0;
gcache.mem_size = 0;
gcache.name = /home/user/mysql/data//galera.cache;
gcache.page_size = 128M;
gcache.size = 128M;
gcs.fc_debug = 0;
gcs.fc_factor = 0.5;
gcs.fc_limit = 16;
gcs.fc_master_slave = NO;
gcs.max_packet_size = 64500;
gcs.max_throttle = 0.25;
gcs.recv_q_hard_limit = 9223372036854775807;
gcs.recv_q_soft_limit = 0.25;
gcs.sync_donor = NO;
gmcast.listen_addr = tcp://0.0.0.0:4567;
gmcast.mcast_addr = ;
gmcast.mcast_ttl = 1;
gmcast.peer_timeout = PT3S;
gmcast.time_wait = PT5S;
gmcast.version = 0;
ist.recv_addr = 192.168.1.51;
pc.checksum = true;
pc.ignore_quorum = false;
pc.ignore_sb = false;
pc.linger = PT2S;
pc.npvo = false;
pc.version = 0;
protonet.backend = asio;
protonet.version = 0;
replicator.causal_read_timeout = PT30S;
replicator.commit_order = 3

Adding Nodes
To show the true strengths of this technology, we can add a third node to
the cluster following the same steps when adding a second node (e.g.,

06-ch06.indd 173 9/7/12 2:42 PM

tcp://0.0.0.0:4567

174 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

gamma). After confirmation in the error log that the node is correctly syn-
chronized, schema and data are confirmed:

$ cd mysql
$ tail data/`hostname`.err
120607 16:19:02 [Note] WSREP: 2 (gamma): State transfer from 0 (alpha) complete.
120607 16:19:02 [Note] WSREP: Shifting JOINER -> JOINED (TO: 75)
120607 16:19:02 [Note] WSREP: Member 2 (gamma) synced with group.
120607 16:19:02 [Note] WSREP: Shifting JOINED -> SYNCED (TO: 75)
120607 16:19:02 [Note] WSREP: Synchronized with group, ready for connections
$ bin/mysql -uroot -e "SHOW SCHEMAS"
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
| test2 |
+--------------------+
5 rows in set (0.00 sec)
$ bin/mysql -uroot
gamma> PAGER md5sum
gamma> SELECT * FROM book3.numbers ORDER BY id;
bb39b97bfe7e28b8abdbf9b943b0cd3a -
1048576 rows in set (0.34 sec)
gamma> NOPAGER

We can complete the test by repeating our example procedure and data
in a new test3 schema and confirming that the first two nodes receive all
data.

Additional Features
In addition to the already discussed features, several other features are
important for production use and implementation. These include the
following:

•	Galera provides an independent arbitrator (garbd daemon) that
operates as a dataless Galera node. The garbd node can help in
detecting and dealing with network splits in an optimal way. A
well-positioned garbd node can prevent split-brain situations.

•	Galera supports SSL communications, which is important for added
security, especially in cloud deployments. This is defined with
the options socket.ssl_cert and socket.ssl_key. For the
initial SST, additional precautions are necessary depending on the
applicable method used.

06-ch06.indd 174 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 175

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	SST enables customizable methods for obtaining the initial dataset
for a new node.

•	Online rolling schema upgrades are possible by altering execution
method from Total Order Isolation (TOI) to Rolling Schema Upgrade
(RSU). While the default TOI method is predictable and guarantees
data consistency, it does limit the cluster’s high availability, e.g., during
long running ALTER statements. There are several caveats for effective
operation with this feature as the result of a blocking ALTER statement
under normal MySQL operations.

Galera Cluster Implementation Recommendations
It is highly recommended that you run more than two Galera nodes in a
production environment, or that you ensure you use a separate Galera
Arbitrator. The garbd daemon is designed to avoid a split-brain situation
with a minimum of two servers. More information can be found at http://
www.codership.com/wiki/doku.php?id=galera_arbitrator.

The mysqld_safe wrapper daemon is not the ideal manager for handing
an automatic MySQL restart in a cluster situation. Future work is necessary
here with your production environment to support various disaster situations.

Installation of MySQL and Galera should not be in a /home/user account
on a production system as demonstrated in this working example. Applicable
software release procedures and appropriate service startup and shutdown
steps are also needed.

The FromDual Performance Monitor for MySQL (MPM) written by Oli
Sennhauser provides monitoring and graphing of the important triggers of
Galera Cluster for MySQL. These monitors are available with Zabbix, an
open source monitoring tool. More information about MPM can be found
at http://fromdual.com/mpm-0-9-is-out.

There is no information on when MySQL monitoring plugins for other
available common monitoring will become available. Every production
system should include adequate monitoring and alerting.

Percona XtraDB Cluster
Percona offers a MySQL server deployment with Galera automatically in-
cluded. This provides the Percona Server software that includes additional
instrumentation and performance patches and the XtraDB storage engine,

06-ch06.indd 175 9/7/12 2:42 PM

http://www.codership.com/wiki/doku.php?id=galera_arbitrator
http://www.codership.com/wiki/doku.php?id=galera_arbitrator
http://fromdual.com/mpm-0-9-is-out

176 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

which is a Percona variant of InnoDB. More details can be found at http://
www.percona.com/software/percona-xtradb-cluster.

MariaDB Galera Cluster
Work is occurring to have support for Galera in MariaDB. More informa-
tion can be found at the Monty Program Knowledge Base found at http://
kb.askmonty.org/en/what-is-mariadb-galera-cluster/.

Galera Wrap-Up
The information in this chapter is only an introduction to Galera Cluster by
the team at Codership. Details of server monitoring, performance analysis
and tuning, arbitration management and handling node failures, recovery,
and provisioning are important areas that require far greater explanation
to appreciate the available features of this product. Additional information,
including benchmarks, new features, presentations, and blogs, can be
found at http://www.codership.com/.

Getting More Help
Galera provides a discussion mailing list for any questions or issues.
Details can be found at http://codership.com/info/mailing-list.

Tungsten Replicator
Tungsten Replicator provides an extensive list of additional replication fea-
tures to MySQL, including supporting seamless failover of MySQL serv-
ers, flexible filtering of operations, multi-master and multi-master to slave
support (i.e., fan in), parallel replication, and much more.

In addition to MySQL replication, Tungsten Replicator can provide het-
erogeneous data management with other RDBMS and noSQL products,
including data synchronization between MySQL and Oracle and vice versa.

Tungsten Replicator is available under the open source GNU GPL v2
license. Continuent, the creators of Tungsten Replicator, also provide com-
mercial support with an enterprise offering. More information can be found
at http://www.continuent.com/solutions/overview.

06-ch06.indd 176 9/7/12 2:42 PM

http://www.percona.com/software/percona-xtradb-cluster
http://www.percona.com/software/percona-xtradb-cluster
http://kb.askmonty.org/en/what-is-mariadb-galera-cluster/
http://kb.askmonty.org/en/what-is-mariadb-galera-cluster/
http://www.codership.com/
http://codership.com/info/mailing-list
http://www.continuent.com/solutions/overview

	 Extending Replication for Practical Needs 	 177

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Features
There is a long list of possible features that can be discussed. In this sec-
tion, which is an introduction to Tungsten Replicator, the following will be
discussed and demonstrated:

•	Master failover via slave promotion

•	Bidirectional replication (e.g., active/active multi-master)

•	Parallelization and replication prefetching for improved performance

•	Complex topologies

With traditional MySQL replication, the version of a MySQL slave
should be the same or greater than that of the master. With Tungsten Rep-
licator, this limitation does not exist. It is possible to replicate from MySQL
5.5 to MySQL 5.0, for example. There are limitations to any features that are
in the newer version of MySQL; however, Tungsten can handle the error
condition gracefully and not interrupt replication from continuing.

NOTE  Tungsten Replicator has one significant benefit over other products.
There is no change to the standard MySQL installation necessary. There are no
custom or patched MySQL binaries to install or maintain. Tungsten Replicator
works with your existing MySQL environment and can replicate between
MySQL 4.11

*, 5.0, 5.1, 5.5, and 5.6 as well as different flavors, including
MySQL Community, MySQL Enterprise, MariaDB, and Percona Server.

References
The current version of Tungsten Replicator available at the time of this
publication is 2.0.5. You can find additional information, including the most
current version, at the following sites:

•	Product Page  http://www.continuent.com/solutions/tungsten-
replicator

•	Downloads  http://tungsten-replicator.org

•	Documentation  http://code.google.com/p/tungsten-replicator/w

* Tungsten supports replicating to MySQL 4.1, but not from it.

06-ch06.indd 177 9/7/12 2:42 PM

http://www.continuent.com/solutions/tungsten-replicator
http://www.continuent.com/solutions/tungsten-replicator
http://tungsten-replicator.org
http://code.google.com/p/tungsten-replicator/w

178 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Prerequisites
Tungsten Replicator has a number of operating system, network, software,
and MySQL prerequisites. These must be installed on all servers that will
be used in the Tungsten cluster. The following steps are applicable for an
Ubuntu/Debian operating system. Similar statements are available for Red
Hat/CentOS/Oracle Linux distributions.

$ sudo apt-get install -y ruby
$ which ruby
$ ruby --version
$ which rsync
$ echo "p 'hello'" | ruby -ropenssl
$ sudo apt-get install openjdk-6-jre
$ java -version
$ uname -n
$ hostname --ip-address

CAUTION  An important prerequisite is that all hosts resolve to a correct
IP address and not a 127.X.X.X loopback address. The hostname --ip-
address command can be used to confirm this.

If Tungsten is used for backup and restore management, sudo access
without a password is also necessary.

More information on these prerequisites can be found at https://docs
.continuent.com/wiki/display/TEDOC/System+Requirements.

Installation with Tungsten Sandbox
The easiest way to demonstrate the features of Tungsten Replicator is in a
MySQL Sandbox environment. Refer to the MySQL Sandbox installation
instructions in the appendix to configure the necessary Sandbox software
first. The following steps will then install Tungsten Replicator and Tungsten
Sandbox.

TIP  Tungsten Replicator is a complex product with several administration tools.
The Tungsten Sandbox provides an easy way to evaluate and review these tools
and the respective output. You can find a good cheat sheet for understanding
the tungsten operations in comparison to MySQL replication. Details can be
found at http://code.google.com/p/tungsten-replicator/wiki/Cheat_Sheet.

06-ch06.indd 178 9/7/12 2:42 PM

https://docs.continuent.com/wiki/display/TEDOC/System+Requirements
https://docs.continuent.com/wiki/display/TEDOC/System+Requirements

	 Extending Replication for Practical Needs 	 179

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$ cd $HOME/sandboxes
Get Current version from http://bit.ly/tr20_builds
$ curl --silent -o tungsten-replicator.tar.gz https://s3.amazonaws.
com/files.continuent.com/builds/nightly/
tungsten-2.0-snapshots/tungsten-replicator-2.0.6-683.tar.gz
$ tar xvfz tungsten-replicator.tar.gz
$ rm -f tungsten-replicator.tar.gz
$ mv tungsten-replicator-* tungsten-replicator
$ cd tungsten-replicator
$ curl --silent -o tungsten-sandbox
 http://tungsten-toolbox.googlecode.com/files/tungsten-sandbox-2.0.11
$ chmod +x tungsten-sandbox
$./tungsten-sandbox --help
$ mkdir $HOME/tsb2

Finally, you can create a Tungsten cluster in a Tungsten Sandbox envi-
ronment with a single command. The following command will create a
master-master cluster:

$ cd $HOME/sandboxes/tungsten-replicator
$ mkdir -p $HOME/tsandboxes/master-master
$./tungsten-sandbox --topology bi-dir -l 12300 -r 10300
-t $HOME/tsandboxes/master-master -m 5.5.24 -p 7300 -d tsb-mm

The options specified relate to:

•	--topology  The type of Tungsten topology. This includes bi-dir,
direct, star, all-masters, fan-in, and master-slave.

•	-l  The THL service port number.

•	-r  The RMI service port number.

•	-t  The full path to the Tungsten Replicator administration
directory.

•	-m  Refers to the MySQL version to be used.

•	-p  Refers to the base port number for the MySQL nodes.

•	-d  The relative path to the MySQL Sandbox installed MySQL
topology.

TIP  If you add the --verbose option for Tungsten Sandbox, you will get more
detailed information on the commands used to install the cluster.

You can get a full list of Tungsten Sandbox options with the help option:

$./tungsten-sandbox -h

06-ch06.indd 179 9/7/12 2:42 PM

180 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

There are two installed components of the new Tungsten Sandbox. The
first are MySQL nodes, which are installed in $HOME/sandboxes/tsb-mm
directory and operate like a regular sandbox environment having applica-
ble tools to start, stop, and access MySQL. The second component is the
Tungsten Replicator configuration, which is installed in $HOME/tsandbox-
es/master-master as specified by -t.

TIP  If you receive an error when creating a Tungsten Sandbox, you may have
created a port conflict with another MySQL Sandbox or Tungsten Sandbox
installation. This can be easily confirmed by looking for any existing MySQL
and Java processes that are running with $ ps -ef | grep -e mysql
-e java.

Reviewing a Tungsten Replicator Environment
The following administration steps will give you an overview of some of
the Tungsten Replicator functionality that can be used to review and ad-
minister a Tungsten cluster.

Overall Status of Cluster Services

$ cd $HOME/tsandboxes/master-master
./replicator_all status
#1
Tungsten Replicator Service is running (PID:31805).
#2
Tungsten Replicator Service is running (PID:32717).

The available options for replicator_all (a wrapper to the repli-
cator command) are start, stop, restart, condrestart, status,
dump, and console.

Important File Locations  You can find the configuration files for each
Tungsten node in the respective db1 and db2 sub-directories. For example,
with db1:

$ cd $HOME/tsandboxes/master-master
$ cat db1/configs/tungsten.cfg

The tungsten.cfg file contains a JavaScript Object Notation (JSON)
representation of the topology installed. This is also used by the installer
tools to perform updates to the cluster configuration.

06-ch06.indd 180 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 181

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Additional configuration files can be found in db1/releases/tung-
sten-replicator/tungsten-replicator/conf. The important files are

•	wrapper.conf  This is the configuration for the Java instance and
is used to assign resources or enable debugging.

•	static-SERVICE-NAME.properties  This contains information
for each service that is configured. There are currently over 200
settings.

Tungsten Sandbox provides a shortcut to examine the node configura-
tion files:

$ cd $HOME/tsandboxes/master-master
$./db1/show_conf

Tungsten Replication supports three types of logs. These are the Master
Relay Logs (MRL), the Transaction History Logs (THL), and the Service
Logs. The Master Relay Logs are used when the master is extracting events
from the MySQL server. The Transaction History Logs are used to store
events after they are extracted. Finally the service logs are the replicator
operating logs.

A very important feature of the THL is that Tungsten adds a global trans-
action ID when it extracts data from binary logs. This is a fundamental differ-
ence from native replication, as it allows seamless failover without manual
inspection of the binary logs.

The service logs are:

$ cat db1/releases/tungsten-replicator/tungsten-replicator/log/trepsvc.log
$ cat db1/releases/tungsten-replicator/tungsten-replicator/log/user.log

When using Tungsten Sandbox there is also a shortcut to viewing the
logs easily:

$ cd $HOME/tsandboxes/master-master
$./db1/show_log

It is important to understand and monitor all of these logs (MRL, THL,
and Service) as they are one cause of additional diskspace usage. For ex-
ample, to simulate an expire_logs_days=4 you would set replica-
tor.store.thl.log_file_retention=4d in the configuration file.
More information on these logs and how to manage and configure usage

06-ch06.indd 181 9/7/12 2:42 PM

182 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

can be found at http://code.google.com/p/tungsten-replicator/wiki/
TRCAdministration#Managing_replicator_log_space.

Testing the Tungsten Sandbox  Generally, you would first use the
various administration tools to check and verify the operation of the cluster
as later documented. Running the following included test script helps
provide the following command examples with meaningful results to
display:

$ cd $HOME/tsandboxes/master-master
./test_topology
Testing topology bi-dir with 2 nodes.
Master nodes: [1 2] - Slave nodes: [1 2]
node 1
ok - Tables from all masters
ok - Views from all masters
ok - Records from master #1
ok - Records from master #2
ok - Node #1-alpha online
ok - Node #1-bravo online
node 2
ok - Tables from all masters
ok - Views from all masters
ok - Records from master #1
ok - Records from master #2
ok - Node #2-alpha online
ok - Node #2-bravo online
1..12

Details of Individual Node Servers  You can view more information
about the node servers in the given Tungsten cluster by looking at the
services:

$./trepctl_all services (also executed with ./services_all)
#1
Processing services command...
NAME VALUE
---- -----
appliedLastSeqno: 8
appliedLatency : 0.303
role : master
serviceName : alpha
serviceType : local
started : true
state : ONLINE
NAME VALUE

06-ch06.indd 182 9/7/12 2:42 PM

http://code.google.com/p/tungsten-replicator/wiki/TRCAdministration#Managing_replicator_log_space
http://code.google.com/p/tungsten-replicator/wiki/TRCAdministration#Managing_replicator_log_space

	 Extending Replication for Practical Needs 	 183

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

---- -----
appliedLastSeqno: 8
appliedLatency : 1.211
role : slave
serviceName : bravo
serviceType : remote
started : true
state : ONLINE
Finished services command...
#2
...

The Tungsten Toolbox (http://code.google.com/p/tungsten-toolbox/)
also provides the following additional tools to help interpret the Tungsten
status output:

•	simple_services  This filters the output of trepctl services to
produce a compact summary.

•	trepctl-progress  Shows how much work a replicator has done
and how much it needs to do to process its THL files.

To delve into more specifics for a given Tungsten node you can execute
the following trepctl on an individual given node:

$ db1/trepctl -service alpha status
Processing status command...
NAME VALUE
---- -----
appliedLastEventId : mysql-bin.000002:0000000000001551;0
appliedLastSeqno : 8
appliedLatency : 0.303
clusterName : default
currentEventId : mysql-bin.000002:0000000000001551
currentTimeMillis : 1340401306138
dataServerHost : 127.0.0.1
extensions :
latestEpochNumber : 0
masterConnectUri : thl://:/
masterListenUri : thl://127.0.0.1:12300/
maximumStoredSeqNo : 8
minimumStoredSeqNo : 0
offlineRequests : NONE
pendingError : NONE
pendingErrorCode : NONE
pendingErrorEventId : NONE
pendingErrorSeqno : -1
pendingExceptionMessage: NONE
resourcePrecedence : 99
rmiPort : 10300
role : master
seqnoType : java.lang.Long

06-ch06.indd 183 9/7/12 2:42 PM

http://code.google.com/p/tungsten-toolbox/
thl://127.0.0.1:12300/

184 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

serviceName : alpha
serviceType : local
simpleServiceName : alpha
siteName : default
sourceId : 127.0.0.1
state : ONLINE
timeInStateSeconds : 2035.975
uptimeSeconds : 2040.584
Finished status command...

Other syntax that should be reviewed includes

$ db1/trepctl -service alpha status -name tasks
$ db1/trepctl -service alpha status -name shards
$ db1/trepctl -service alpha status -name stores

The -name variants are best used to provide information for parallel
replication or to provide information for huge row-based replication (RBR)
transactions by providing details of the chunks processed. The output is
not shown here due to space limitations. To see the full options of the
Tungsten Replicator Control Utility, you can view the command help with:

$ db1/trepctl help

More information on the Tungsten Replicator Control Utility can be
found at https://docs.continuent.com/wiki/display/TEDOC/The+Tungsten
+Replicator+Control+Utility+%28trepctl%29.

Transaction History Logs (THL)  The Transaction History Logs (THL)
hold all the data that is taken from the MySQL master binary logs and used
by all Tungsten Replicators. The thl command can provide information
about these logs, including:

db1/thl -service alpha info
INFO thl.log.DiskLog Using directory '/home/user/tsandboxes/master-
master/db1/tlogs/alpha/' for replicator logs
INFO thl.log.DiskLog Checksums enabled for log records: true
INFO thl.log.DiskLog Using read-only log connection
INFO thl.log.DiskLog Loaded event serializer class:
 com.continuent.tungsten.replicator.thl.serializer.ProtobufSerializer
INFO thl.log.LogIndex Building file index on log directory:
 /home/user/tsandboxes/master-master/db1/tlogs/alpha
[- main] INFO thl.log.LogIndex Constructed index; total log files added=1
[- main] INFO thl.log.DiskLog Validating last log file:
 /home/user/tsandboxes/master-master/db1/tlogs/alpha/thl.data.0000000001
[- main] INFO thl.log.DiskLog Setting up log flush policy:
fsyncIntervalMillis=0 fsyncOnFlush=false
[- main] INFO thl.log.DiskLog Idle log connection timeout: 28800000ms

06-ch06.indd 184 9/7/12 2:42 PM

https://docs.continuent.com/wiki/display/TEDOC/The+Tungsten+Replicator+Control+Utility+%28trepctl%29
https://docs.continuent.com/wiki/display/TEDOC/The+Tungsten+Replicator+Control+Utility+%28trepctl%29

	 Extending Replication for Practical Needs 	 185

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

[- main] INFO thl.log.DiskLog Log preparation is complete
min seq# = 0
max seq# = 8
events = 8

The following option will list the details within the given log:

$ db1/thl -service alpha list -seqno 5
SEQ# = 5 / FRAG# = 0 (last frag)
- TIME = 2012-06-22 17:10:17.0
- EPOCH# = 0
- EVENTID = mysql-bin.000002:0000000000001003;0
- SOURCEID = 127.0.0.1
- METADATA = [mysql_server_id=101;unsafe_for_block_commit;
service=alpha;shard=test]
- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent
- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null = 0,
foreign_key_checks = 1, unique_checks = 1, sql_mode = '', character_set_client =
 33, collation_connection = 33, collation_server = 8]
- SCHEMA =
- SQL(0) = DROP TABLE IF EXISTS TUNGSTEN_INFO.alpha, `test`.`v1` /* ... */

$ db1/thl -service alpha list -seqno 6
SEQ# = 6 / FRAG# = 0 (last frag)
- TIME = 2012-06-22 17:10:17.0
- EPOCH# = 0
- EVENTID = mysql-bin.000002:0000000000001137;0
- SOURCEID = 127.0.0.1
- METADATA = [mysql_server_id=101;unsafe_for_block_commit;
service=alpha;shard=test]
- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent
- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null = 0,
foreign_key_checks = 1, unique_checks = 1, sql_mode = '',
character_set_client = 33, collation_connection = 33, collation_server = 8]
- SCHEMA =
- SQL(0) = create table test.t1(i int not null primary key, c char(20))
engine= innodb /* ___SERVICE___ = [alpha] */
...

The commands that can be performed with thl include list, index,
purge, and info. More information about the Transaction History Log
Utility can be found at https://docs.continuent.com/wiki/display/TEDOC/
The+Transaction+History+Log+Utility+%28thl%29.

Tungsten Sandbox Cleanup  The Tungsten Sandbox includes a number
of working components. You can easily clean up all installed software with
a single command. For example:

$ cd $HOME/tsandboxes/master-master
$./erase_tsandbox

06-ch06.indd 185 9/7/12 2:42 PM

https://docs.continuent.com/wiki/display/TEDOC/The+Transaction+History+Log+Utility+%28thl%29
https://docs.continuent.com/wiki/display/TEDOC/The+Transaction+History+Log+Utility+%28thl%29

186 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Other Documentation  Additional documentation can be found at http://
code.google.com/p/tungsten-toolbox/wiki/TungstenSandbox. Detailed docu-
mentation for explaining how to install many different topologies of Tungsten
Replicator can be found at http://code.google.com/p/tungsten-replicator/
wiki/TungstenReplicatorCookbook. Details of administrative functions can
be found at http://code.google.com/p/tungsten-replicator/wiki/TRCAdmin
istration#Administration.

Other Tungsten Sandbox Examples
The following command will create a star Tungsten cluster:

$ mkdir -p $HOME/tsandboxes/star
$ cd $HOME/sandboxes/tungsten-replicator
$./tungsten-sandbox --topology star -l 12400 -r 10400 -n 5 --hub 3
-t $HOME/tsandboxes/star -m 5.5.24 -p 7400 -d tsb-star --verbose

The following command will create a fan-in cluster:

$ mkdir -p $HOME/tsandboxes/fan-in
$ cd $HOME/sandboxes/tungsten-replicator
$./tungsten-sandbox --topology fan-in -l 12500 -r 10500 -n 3 --fan-in
3 -t $HOME/tsandboxes/fan-in -m 5.5.24 -p 7500 -d tsb-fi --verbose

Be sure to repeat the Tungsten Replicator administration commands
shown here to observe the difference in the various configurations.

Manual Tungsten Installation
The following steps will install a Tungsten Replicator configuration in the
test virtual environment that is defined in the appendix. For the following
examples the alpha, beta, and gamma servers will be used.

MySQL Setup
MySQL must first be installed and operating. Refer to the appendix for the
basic installation of MySQL on the given server.

MySQL Configuration
Tungsten Replicator requires and recommends the following additional
MySQL configuration settings:

$HOME/mysql/etc/my.cnf
[mysqld]
server-id=51

06-ch06.indd 186 9/7/12 2:42 PM

http://code.google.com/p/tungsten-toolbox/wiki/TungstenSandbox
http://code.google.com/p/tungsten-toolbox/wiki/TungstenSandbox
http://code.google.com/p/tungsten-replicator/wiki/TungstenReplicatorCookbook
http://code.google.com/p/tungsten-replicator/wiki/TungstenReplicatorCookbook
http://code.google.com/p/tungsten-replicator/wiki/TRCAdministration#Administration
http://code.google.com/p/tungsten-replicator/wiki/TRCAdministration#Administration

	 Extending Replication for Practical Needs 	 187

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

log-bin=mysql-bin
default-storage-engine=InnoDB
Recommended
innodb_flush_log_at_trx_commit=2
max_allowed_packet=48M

NOTE  Tungsten relies on the MySQL binary log for replication. You should use
the appropriate practices that best suit your business continuity needs and
hardware capabilities, including configuring sync_binlog and innodb_
flush_log_at_trx_commit appropriately.

The MySQL instance can now be restarted:

$ cd $HOME/mysql
$./bin/mysqladmin shutdown
$./bin/mysqld_safe --defaults-file=etc/my.cnf &
$ tail –f data/`hostname`.err

These steps should be completed on all servers that you wish to include
in the Tungsten cluster. In addition, a MySQL user with root-level privi-
leges is necessary. This should be appropriately secured to minimize unau-
thorized access. There are no naming requirements on the username, i.e.,
tungsten is used here only for reference.

mysql> GRANT ALL ON *.* TO tungsten@'192.168.1.%' IDENTIFIED BY 'continuent'
 -> WITH GRANT OPTION;

Failure to do so will cause errors in installation, including:

ERROR >> alpha >> Unable to connect to the MySQL server using
root@alpha:3306 (WITH PASSWORD)

or

ERROR >> alpha >> The database user is missing some privileges or
the grant option.
Run 'mysql -u -p -h -e "GRANT ALL ON *.* to tungsten@alpha WITH GRANT OPTION"'

Tungsten Replicator Installation
The following steps will download Tungsten Replicator. Refer to the down-
load link for the most current version available. You can also download
regular daily builds from http://bit.ly/tr20_builds.

$ cd /tmp
$ wget http://tungsten-replicator.googlecode.com/files/
tungsten-replicator-2.0.5.tar.gz

06-ch06.indd 187 9/7/12 2:42 PM

http://bit.ly/tr20_builds

188 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$ tar xvfz tungsten-replicator*.tar.gz
$ rm -f tungsten-replicator*.tar.gz
$ mv tungsten-replicator-* tungsten-replicator
$ cd tungsten-replicator

Tungsten Replicator Master/Slave Setup
With the installation and operation of MySQL on the necessary servers,
and the installation of Tungsten Replicator on the server, the following sin-
gle command will configure the specified MySQL topology:

$ TUNGSTEN_HOME=$HOME/tungsten
$ MASTER=alpha
$ SLAVE1=beta
$ SLAVE2=gamma
$./tools/tungsten-installer \
 --master-slave --master-host=$MASTER \
 --datasource-user=tungsten --datasource-password=continuent \
 --datasource-log-directory=$HOME/mysql/data \
 --datasource-mysql-conf=$HOME/mysql/etc/my.cnf \
 --service-name=effectivemysql \
 --home-directory=$TUNGSTEN_HOME \
 --cluster-hosts=$MASTER,$SLAVE1,$SLAVE2 \
 --start-and-report

This takes a few moments to do all the necessary checking and verification:

INFO >> alpha >> Getting services list
INFO >> alpha >>
Processing services command...
NAME VALUE
---- -----
appliedLastSeqno: 0
appliedLatency : 0.832
role : master
serviceName : effectivemysql
serviceType : local
started : true
state : ONLINE
Finished services command...
INFO >> beta >> Getting services list
INFO >> beta >> ..
Processing services command...
NAME VALUE
---- -----
appliedLastSeqno: 0
appliedLatency : 9.995
role : slave

06-ch06.indd 188 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 189

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

serviceName : effectivemysql
serviceType : local
started : true
state : ONLINE
Finished services command...
INFO >> gamma >> Getting services list
INFO >> gamma >> ..
Processing services command...
NAME VALUE
---- -----
appliedLastSeqno: 0
appliedLatency : 21.113
role : slave
serviceName : effectivemysql
serviceType : local
started : true
state : ONLINE
Finished services command...

At this time you can delete the files downloaded for Tungsten Replicator,
as these are now included at TUNGSTEN_HOME/tungsten/tungsten-
replicator.

NOTE  In this example, Tungsten was used to configure three servers with
master/slave replication. Tungsten can also be installed in direct mode
alongside existing MySQL replication, and a simple command can be used to
take over from native replication on a running system.

Tungsten Replicator Status Check
This is a MySQL master/slave topology managed by Tungsten Replicator.
You can perform a few simple checks on the master:

$ export PATH=$HOME/tungsten/tungsten/tungsten-replicator/bin:$PATH
$ replicator status
Tungsten Replicator Service is running (PID:5843).
$ trepctl services
Processing services command...
NAME VALUE
---- -----
appliedLastSeqno: 0
appliedLatency : 1.024
role : master
serviceName : effectivemysql
serviceType : local
started : true
state : ONLINE

06-ch06.indd 189 9/7/12 2:42 PM

190 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Finished services command...
$ for H in `echo "alpha beta gamma"`; do echo "*** $H ***"; \
 trepctl -host $H status | grep applied; done

At this time we can repeat the replication example from the appendix.
For example:

alpha> CREATE SCHEMA IF NOT EXISTS book3;
alpha> USE book3;
alpha> SOURCE fill_numbers.sql

While only a litmus test, we can confirm nothing obvious is wrong with
the two slaves by comparing table results:

$ mysql -utungsten -p -halpha book3 -e "SELECT COUNT(*), SUM(id) FROM numbers"
+----------+--------------+
| COUNT(*) | SUM(id) |
+----------+--------------+
| 1048576 | 549756338176 |
+----------+--------------+
$ mysql -utungsten -p -hbeta book3 -e "SELECT COUNT(*), SUM(id) FROM numbers"
+----------+--------------+
| COUNT(*) | SUM(id) |
+----------+--------------+
| 1048576 | 549756338176 |
+----------+--------------+
$ mysql -utungsten -p -hgamma book3 -e "SELECT COUNT(*), SUM(id) FROM numbers"
+----------+--------------+
| COUNT(*) | SUM(id) |
+----------+--------------+
| 1048576 | 549756338176 |
+----------+--------------+

Tungsten Replicator Testing
In order to show replication in various states of operation and verification
and have a little fun, we can run an additional stored procedure that is a
little more random and has a much longer execution time:

alpha> CREATE SCHEMA IF NOT EXISTS book3;
alpha> USE book3;
alpha> SOURCE rand_fill_numbers.sql

This will perform a modified version of the simple test case, randomiz-
ing data that is inserted and performing a large number of iterations:

$ for H in `echo "alpha beta gamma"`; do echo "*** $H ***";
 trepctl -host $H status | grep -e applied -e role -e stat; done
*** alpha ***
Processing status command...

06-ch06.indd 190 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 191

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

appliedLastEventId : mysql-bin.000002:0000000002402714;0
appliedLastSeqno : 10638
appliedLatency : 0.185
role : master
state : ONLINE
Finished status command...
*** beta ***
Processing status command...
appliedLastEventId : mysql-bin.000002:0000000002403150;0
appliedLastSeqno : 10640	
appliedLatency : 0.859	
role : slave
state : ONLINE
Finished status command...
*** gamma ***
Processing status command...
appliedLastEventId : mysql-bin.000002:0000000002403585;0
appliedLastSeqno : 10642	
appliedLatency : 0.0	
role : slave
state : ONLINE
Finished status command...

As you can see, the appliedLastSeqno shows work is occurring on the
slaves that are online. The appliedLatency is an indication of slave lag.
We can delve into the THL to identify the two SQL statements between the
sequence numbers on the slaves by using the sequence number shown:

$ thl list -seqno 10641
SEQ# = 10641 / FRAG# = 0 (last frag)
- TIME = 2012-06-22 12:53:47.0
- EPOCH# = 0
- EVENTID = mysql-bin.000002:0000000002403395;0
- SOURCEID = alpha
- METADATA = [mysql_server_id=51;service=effectivemysql;shard=book3]
- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent
- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null = 0,
foreign_key_checks = 1, unique_checks = 1, sql_mode = '',

character_set_client = 33, collation_connection = 33, collation_server = 8]
- SCHEMA = book3
- SQL(0) = INSERT INTO numbers (id)
 SELECT id + NAME_CONST('counter',66148) FROM numbers 	
/* ___SERVICE___ = [effectivemysql] */

$ thl list -seqno 10642
SEQ# = 10642 / FRAG# = 0 (last frag)
- TIME = 2012-06-22 12:53:48.0
- EPOCH# = 0
- EVENTID = mysql-bin.000002:0000000002403585;0
- SOURCEID = alpha
- METADATA = [mysql_server_id=51;service=effectivemysql;shard=book3]

06-ch06.indd 191 9/7/12 2:42 PM

192 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

- TYPE = com.continuent.tungsten.replicator.event.ReplDBMSEvent
- OPTIONS = [##charset = UTF-8, autocommit = 1, sql_auto_is_null = 0,
foreign_key_checks = 1, unique_checks = 1, sql_mode = '',
character_set_client = 33, collation_connection = 33, collation_server = 8]
- SCHEMA = book3
- SQL(0) = DELETE FROM numbers LIMIT 6371 /* ___SERVICE___ = [effectivemysql] */

Replication Stoppage Verification
You can easily stop replication on a slave with:

$ trepctl -host gamma offline

The following verifies the stoppage:

$ trepctl -host gamma status
NAME VALUE
---- -----
appliedLastEventId : NONE
appliedLastSeqno : -1
appliedLatency : -1.0
pendingError : NONE
pendingErrorCode : NONE
...
state : OFFLINE:NORMAL
...

And to restart:

$ trepctl -host gamma online

Replication Failure Verification
We can simulate looking into a replication error on a slave with the follow-
ing destructive command:

$ mysql -utungsten -p -hgamma book3 -e "DROP TABLE numbers";

A review of the Tungsten slave status shows:

$ trepctl -host gamma status
Processing status command...
NAME VALUE
---- -----
appliedLastEventId : NONE	
appliedLastSeqno : -1	
appliedLatency : -1.0	
...
pendingError : Event application failed: seqno=16268 fragno=0 	
message=java.sql.SQLException: Statement failed on slave but succeeded on master	
pendingErrorCode : NONE	
pendingErrorEventId : mysql-bin.000002:0000000003609171;0	
pendingErrorSeqno : 16268	

06-ch06.indd 192 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 193

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

pendingExceptionMessage: java.sql.SQLException: Statement failed on slave but 	
succeeded on master	
 TRUNCATE TABLE numbers /* ___SERVICE___ = 	
[effectivemysql] */	
...
state : OFFLINE:ERROR	
timeInStateSeconds : 43.215
uptimeSeconds : 168578.375
Finished status command...

As you can see, the state indicates an error and the pendingError
related columns provide details of the failure. Following correction of the
situation causing the error, you can restart the slave and verify the new
state situation:

$ mysql -utungsten -p -hgamma book3 -e "CREATE TABLE numbers(id INT NOT NULL);"
$ trepctl -host gamma online
$ for H in `echo "gamma"`; do trepctl -host $H status | \
 grep -e applied -e role -e stat; done
Processing status command...
appliedLastEventId : NONE
appliedLastSeqno : -1
appliedLatency : -1.0
role : slave
state : OFFLINE:ERROR	
Finished status command...
Processing status command...
appliedLastEventId : mysql-bin.000002:0000000003620196;0
appliedLastSeqno : 16319
appliedLatency : 0.0
role : slave
state : ONLINE

Replication Failover
The following steps are used to perform a failover in the example Tungsten
Replicator environment:

•	Confirm an operational cluster.

•	Simulate a master failure.

•	Verify the remaining cluster status.

•	Select a new master.

•	Fail over to new master.

•	Verify cluster operations.

06-ch06.indd 193 9/7/12 2:42 PM

194 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Verify Cluster  First, verify the state of the current master/slave cluster:

$ trepctl -host alpha heartbeat
$ for NODE in alpha beta gamma
do
 echo "#${NODE}"
 trepctl -host ${NODE} services | simple_services
done
#alpha
effectivemysql [master]
seqno: 2 - latency: 0.101 - ONLINE
#beta
effectivemysql [slave]
seqno: 2 - latency: 0.625 - ONLINE
#gamma
effectivemysql [slave]
seqno: 2 - latency: 0.994 - ONLINE

Simulate a Master Failure  The next step is to simulate some load on the
master server with:

alpha> SOURCE rand_fill_numbers.sql

You can simulate a master server failure by taking the master server
offline:

$ trepctl -host alpha offline

Verify Cluster  The next step is to confirm replication on the attached
slaves is up to date based on the transaction logs stored on the slaves:

$ for NODE in beta gamma
do
 MAXSTORED=`trepctl -host $NODE status | grep maximumStoredSeqNo | \
 awk '{print $3}'`
 trepctl -host $NODE wait -applied $MAXSTORED
done

Identify New Master  Check the status of the remaining slave nodes to
identify the most up-to-date server:

$ for NODE in beta gamma
do
 echo "#$NODE"
 trepctl -host $NODE services | simple_services
done

06-ch06.indd 194 9/7/12 2:42 PM

	 Extending Replication for Practical Needs 	 195

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

#beta
effectivemysql [slave]
seqno: 620 - latency: 33.582 - GOING-ONLINE:SYNCHRONIZING
#gamma
effectivemysql [slave]
seqno: 650 - latency: 25.289 - GOING-ONLINE:SYNCHRONIZING

From this output we can determine that the gamma server has the most
current transaction sequence number and is the best candidate for the new
master.

Perform Master Failover  The master failover involves isolating the
cluster nodes from operations, setting the role of the new master, and
defining the new master for any slaves:

$ trepctl -host beta offline
$ trepctl -host gamma offline
$ trepctl -host gamma setrole -role master
$ trepctl -host gamma online
$ trepctl -host gamma services
$ trepctl -host beta setrole -role slave -uri thl://gamma
$ trepctl -host beta online

Verify Operational Cluster  The final step of the failover process is to
verify the state of the new cluster:

$ trepctl -host $node3 heartbeat
$ for NODE in beta gamma
do
 echo "#$NODE"
 trepctl -host $NODE services | simple_services
done
#beta
effectivemysql [slave]
seqno: 651 - latency: 0.969 - ONLINE
#gamma
effectivemysql [master]
seqno: 651 - latency: 0.427 - ONLINE

Recommended Configuration
Tungsten is a Java process, so understanding and managing the Java Virtual
Machine (JVM) memory usage is important for optimal performance. Be
sure to review the appropriate documentation and monitor JVM memory in

06-ch06.indd 195 9/7/12 2:43 PM

thl://gamma

196 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

your environment. It is recommended the JVM be configured with 1GB of
RAM. The following are recommended THL settings:

•	bufferSize=128KB  This is used for reads and writes from/to storage.
This should never be less than the size of pages in persistent storage.

•	doCheckSum=true  This enables checksums on records. This can
have an impact on log performance but allows unambiguous
detection of log record corruption.

•	fsyncOnFlush=true  This performs a true fsync on disk write.
This can be slow on storage with no battery backed write cache
(BBWC) but required for crash-safe slaves.

•	logFileSize=100B  This is the maximum number of bytes to
write before rotating to a new log file.

•	Ensure at least 1GB in page cache.

•	Use innodb_flush_method=O_DIRECT if onboard with MySQL.

•	You should have 500M to 2GB free memory on the system for the
OS page cache to improve parallel replication.

Alternative Tungsten Deployments
Tungsten Replicator provides for a variety of replication topologies that are
not possible with native MySQL replication. One of these is the ability for
a slave to have multiple masters, also referred to as fan-in replication.

Fan-In Replication
Fan-in replication, as shown in Figure 6-1, allows a MySQL instance to
receive replication requests from multiple masters. When combined with
appropriate filtering, this configuration can provide a centralized data ware-
house of distribution data with no additional data manipulation or the com-
mon Extract, Transform, Load (ETL) step. With the advanced capabilities of
Tungsten Replicator supporting different RDBMS and NoSQL products, it is
possible for the fan-in instance to support data from varying sources.

Tungsten Sandbox includes a fan-in example that can be configured
with a single command. The presentation at http://www.percona.com/live/
mysql-conference-2012/sessions/build-simple-and-complex-replication-
clusters-tungsten-replicator and blog post at http://mysql-replication-
blog.blogspot.com/2011/12/testing-tungsten-fan-in-replication.html

06-ch06.indd 196 9/7/12 2:43 PM

http://www.percona.com/live/mysql-conference-2012/sessions/build-simple-and-complex-replication-clusters-tungsten-replicator
http://www.percona.com/live/mysql-conference-2012/sessions/build-simple-and-complex-replication-clusters-tungsten-replicator
http://www.percona.com/live/mysql-conference-2012/sessions/build-simple-and-complex-replication-clusters-tungsten-replicator
http://mysql-replication-blog.blogspot.com/2011/12/testing-tungsten-fan-in-replication.html
http://mysql-replication-blog.blogspot.com/2011/12/testing-tungsten-fan-in-replication.html

	 Extending Replication for Practical Needs 	 197

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

provide additional references for this type of deployment. The following
script provides a skeleton example.

#!/bin/bash

MASTER_HOSTS=(alpha beta)
FAN_IN_HOST=gamma
FAN_IN_DATASOURCE=${FAN_IN_HOST}
SERVICES=(alpha beta gamma)
SLAVE_SERVICES=(alpha beta)
TUNGSTEN_BASE=$HOME/installs/fan_in
TREPCTL=$TUNGSTEN_BASE/tungsten/tungsten-replicator/bin/trepctl
##
First, we create a master service in each server
##
N=0
for HOST in ${MASTER_HOSTS[*]} ${FAN_IN_HOST}
do
./tools/tungsten-installer \
 --master-slave \
 --master-host=${HOST} \
 --cluster-hosts=${HOST} \
 --datasource-port=3306 \
 --datasource-user=tungsten \
 --datasource-password=secret \
 --home-directory=${TUNGSTEN_BASE} \
 --datasource-log-directory=/var/lib/mysql \
 --datasource-mysql-conf=/etc/my.cnf \
 --service-name=${SERVICES[$N]} \
 --start
 N=$(($N+1))
done

##
After the remote masters are created,
we create the corresponding slave services in the fan-in host
##
N=0

Figure 6-1  Fan-in replication

Master 1 Master 2

Fan in Slave

Master 3

06-ch06.indd 197 9/7/12 2:43 PM

198 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

for HOST in ${MASTER_HOSTS[*]}
do
$TUNGSTEN_BASE/tungsten/tools/configure-service \
 -C \
 --quiet \
 --host=${FAN_IN_HOST} \
 --datasource=${FAN_IN_DATASOURCE} \
 --role=slave \
 --service-type=remote \
 --master-thl-host=${HOST} \
 --svc-start \
 --skip-validation-check=THLStorageCheck \
 --local-service-name=delta \
 --log-slave-updates=true \
 ${SERVICES[$N]}
 N=$(($N+1))
done

##
Next, we test replication,
by creating a different schema in each remote
master, and collecting the results from the fan-in slave
##
N=0
for HOST in ${MASTER_HOSTS[*]}
do
 mysql -h${HOST} -utungsten -psecret -e \
 "DROP SCHEMA IF EXISTS ${SERVICES[$N]};" \
 "CREATE SCHEMA ${SERVICES[$N]};" \
 "USE ${SERVICES[$N]};" \
 "CREATE TABLE test_${SERVICES[$N]}(i int)" \
 "INSERT INTO test_${SERVICES[$N]} VALUES($N)"
 N=$(($N+1))
done
sleep 3

for SCHEMA in ${SLAVE_SERVICES[*]}
do
 mysql -v -h${FAN_IN_HOST} -utungsten -psecret ${SCHEMA} \
 -e "SELECT * FROM test_$SCHEMA"
done

##
Finally, we show the replication summary using trepctl
##

for HOST in ${MASTER_HOSTS[*]} ${FAN_IN_HOST}
do
 $TREPCTL -host $HOST services | simple_services
done
exit 0

06-ch06.indd 198 9/7/12 2:43 PM

	 Extending Replication for Practical Needs 	 199

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The following output is produced when run.

select * from test_alpha

+------+
| i |
+------+
| 0 |
+------+

select * from test_beta

+------+
| i |
+------+
| 1 |
+------+
alpha [master]
seqno: 8 - latency: 0.232 - ONLINE
beta [master]
seqno: 8 - latency: 0.316 - ONLINE
alpha [slave]
seqno: 8 - latency: 1.279 - ONLINE
beta [slave]
seqno: 8 - latency: 1.617 - ONLINE
delta [master]
seqno: 90 - latency: 1.629 - ONLINE

Direct Replication Mode
Tungsten Replicator can be used in conjunction with MySQL replication in
a production environment. The following script shows how a MySQL mas-
ter/slave replication topology can use native MySQL replication, then have
Tungsten Replicator take over for a period of time to reduce lag with paral-
lel replication capabilities, and revert back to native MySQL replication.

#!/bin/sh
TUNGSTEN_BASE=$HOME/installs/direct
[! -d $TUNGSTEN_BASE] && mkdir -p $TUNGSTEN_BASE
HOW_MANY_CHANNELS=$1
[-z $HOW_MANY_CHANNELS] && HOW_MANY_CHANNELS=5
TREPCTL=${TUNGSTEN_BASE}/tungsten/tungsten-replicator/bin/trepctl

MASTER="alpha"
SLAVE1="beta"
SLAVE2="gamma"
NUM_SLAVES="2"

06-ch06.indd 199 9/7/12 2:43 PM

200 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

##
Installing native MySQL replication on the slaves
##
i=1
while [$i -le ${NUM_SLAVES}]
do
 SLAVE="slave${i}"
 mysql -h${SLAVE} -e "STOP SLAVE; " \
 "CHANGE MASTER TO MASTER_HOST='${MASTER}'," \
 "MASTER_PORT=3306, MASTER_USER='tungsten', MASTER_PASSWORD='secret'; " \
 "START SLAVE"
 i=`expr $i + 1`
done

##
To test a direct slave with parallel replication, you should:
* create several database schemas
* start several dozen threads that update those databases concurrently
* stop the slaves for a few minutes, to accumulate some lag
* restart the slaves
* finally, let Tungsten Replicator take over on slave, with the command

./tools/tungsten-installer \
 --direct \
 --master-host=${MASTER} \
 --slave-host=${SLAVE2} \
 --master-user=tungsten \
 --master-mysql-conf=/etc/my.cnf \
 --slave-mysql-conf=/etc/my.cnf \
 --slave-user=tungsten \
 --master-password=secret \
 --slave-password=secret \
 --service-name=effectivemysql \
 --channels=${HOW_MANY_CHANNELS} \
 --home-directory=${TUNGSTEN_BASE} \
 --buffer-size=100 \
 --native-slave-takeover \
 --start-and-report

$TREPCTL status
$TREPCTL status -name shards
$TREPCTL status -name stores

mysql -h ${SLAVE2} -e 'SELECT * FROM tungsten_effectivemysql.trep_commit_seqno'

##
To hand over replication back to MySQL native replication,
do the following:
* check 'SHOW SLAVE STATUS\G' Should be stopped at the point where Tungsten
took over
* put the replicator offline (trepctl offline)
* check 'SHOW SLAVE STATUS\G' again. Should be updated to the latest

06-ch06.indd 200 9/7/12 2:43 PM

	 Extending Replication for Practical Needs 	 201

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

position used by Tungsten
* run 'START SLAVE', and the native replication will resume.

If you then put the replicator back online, it will take over again.

For more information see http://code.google.com/p/tungsten-replicator/
wiki/TRCBasicInstallation#Taking_over_replication_from_a_MySQL_
slave_in_direct_mode.

Unique Characteristics
You may not consider replication to be a disruptive technology; however,
features of replication that can influence and support the changes occur-
ring in the database and data store space, especially with managing larger
and varying amounts of data, are disruptive.

Tungsten has some characteristics that set it apart uniquely from both
MySQL and other third-party vendors, versions, flavors, patches, add-
ons, etc.

1.	 Tungsten can replicate data to and from different disparate data
sources, including Oracle, MongoDB, Postgres, and Vertica. That
list, I am sure, will grow.

2.	 Tungsten runs on stock standard MySQL; no installation of modified
MySQL necessary, no change to running software, installation
procedures, monitoring, etc. Tungsten is an additional product that
simply extends MySQL. Tungsten, of course, requires installation,
management, monitoring, etc.

3.	 Tungsten allows for the fan in architecture. That is where a slave
server can receive and manage information from multiple masters,
including different products. This has just simplified the data
warehouse process to a software installation and configuration
process; no additional transformation or export/import necessary.

4.	 Tungsten Replicator can be installed in an existing MySQL
replication environment and can be used to take over native
replication with a simple command.

06-ch06.indd 201 9/7/12 2:43 PM

http://code.google.com/p/tungsten-replicator/wiki/TRCBasicInstallation#Taking_over_replication_from_a_MySQL_slave_in_direct_mode
http://code.google.com/p/tungsten-replicator/wiki/TRCBasicInstallation#Taking_over_replication_from_a_MySQL_slave_in_direct_mode
http://code.google.com/p/tungsten-replicator/wiki/TRCBasicInstallation#Taking_over_replication_from_a_MySQL_slave_in_direct_mode

202 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Continuent Tungsten
The commercial offering of Tungsten Replicator is called Continuent Tung-
sten. Some of the additional features in the enterprise version include

•	Advanced installation for regular master/slave and multisite
topologies.

•	Database virtualization. A Tungsten cluster is seen and administered
as a single database.

•	Automatic failover (or manual failover with a single command when
automatic is disabled).

•	Automatic and manual recovery of failed slaves.

•	Centralized management tool that includes backup and restore
automation.

•	Single command master switch with zero downtime.

•	Transparent routing and connectivity that allow applications to see
the cluster as a single server. No virtual IPs are necessary, even for
cross-site switches.

Continuent also provides commercial 24/7 support for Tungsten. You can
view a feature matrix at http://continuent.com/solutions/featurematrix.

Continuent Wrap-Up
This section only scratches the surface of the features and functionality of
Tungsten Replicator. Indeed this product could easily have a full book for
readers to understand and appreciate the depth. These examples are in-
cluded to teach you to walk before learning to run with Tungsten. One of the
true benefits and complexities of Tungsten is the amount of custom options
for huge environments that replicate efficiently across global locations, pro-
viding parallelizing data flow and hot failovers of entire Tungsten clusters
seamlessly. These features are available for a startup to the largest web
properties around.

Get More Help
You can join the discussion group, and view and log any issues at http://
tungsten-replicator.org.

06-ch06.indd 202 9/7/12 2:43 PM

http://continuent.com/solutions/featurematrix
http://tungsten-replicator.org
http://tungsten-replicator.org

	 Extending Replication for Practical Needs 	 203

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

SchoonerSQL
SchoonerSQL by Schooner Information Technology (recently acquired by
SanDisk) provides a commercial synchronous MySQL replication solution
using a modified version of InnoDB. The documented features include no
loss of data, instance failover, and automated recovery capabilities. A
SchoonerSQL solution can also include traditional MySQL replication for
additional slaves. As a commerical product, there is no access to the soft-
ware without a formal pre-sales process. A request to review the software
for this book was not granted.

MySQL Replication Listener
The MySQL Replication Listener, available from https://launchpad.net/
mysql-replication-listener, is an open source C++ library that can process
a replication stream. This is a MySQL binary log API for capturing any
data changes in MySQL. This can be used to read and decode information,
and then custom code that can apply the data manipulation based on
need, for example, populating a dedicated full text tool or synchronizing
with a caching system. This tool can also be used to read and analyze the
binary log.

This is a simple and extensible API that can use the network transport
(i.e., a master server) or a file transport (i.e., a binary log file) to read and
decode the replication events. Dr. Lars Thalmann and Dr. Mats Kindahl,
two key members of the Oracle/MySQL replication team and co-authors of
MySQL High Availability (O’Reilly, 2010), provide a more detailed explana-
tion in the presentation “Binary Log API: A Library for Change Data Cap-
ture Using MySQL,” obtained at http://www.oscon.com/oscon2011/public/
schedule/detail/18785. A detailed example of how to use the API can be
found at http://intuitive-search.blogspot.se/2011/07/binary-log-api-and-
replication-listener.html.

MySQL in the Cloud
Two existing cloud product offerings extend traditional MySQL replication
with synchronous replication options.

06-ch06.indd 203 9/7/12 2:43 PM

https://launchpad.net/mysql-replication-listener
https://launchpad.net/mysql-replication-listener
http://www.oscon.com/oscon2011/public/schedule/detail/18785
http://www.oscon.com/oscon2011/public/schedule/detail/18785
http://intuitive-search.blogspot.se/2011/07/binary-log-api-and-replication-listener.html
http://intuitive-search.blogspot.se/2011/07/binary-log-api-and-replication-listener.html

204 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Amazon RDS for MySQL
Amazon RDS for MySQL provides for read replicas, which are traditional
MySQL slaves using replication. RDS also provides a multi-AZ deployment
where proprietary synchronous replication is used to provide a standby
replica. Amazon RDS is also documented to automatically failover; however,
this has not been tested for confirmation. While a read replica is available for
general read access, a multi-AZ replica is not accessible before a failover.
The Effective MySQL: Backup and Recovery book (McGraw-Hill, 2012) has a
detailed section on the features and use of Amazon RDS for MySQL.
Amazon RDS for MySQL is an established product offering with several
years of general availability. More information is available at http://aws
.amazon.com/rds/mysql/.

Google Cloud SQL
The Google cloud offering provides a proprietary synchronous replication
configuration by default. There is no traditional asynchronous option.
Google Cloud SQL does not provide any access to the synchronous copy
and will also automatically manage failover without any need for human
intervention. The Effective MySQL: Backup and Recovery book has a detailed
section on the features and use of Google Cloud SQL. More information is
available at https://developers.google.com/cloud-sql/.

Other Offerings
The MySQL ecosystem has included its share of new product offerings that
pop up and claim to solve MySQL replication and scale out issues with
various features. Many simply simulate the MySQL protocol, i.e., the com-
munication that MySQL uses between client connectors and the MySQL
kernel. This book is specifically designed for MySQL replication that is part
of the core (and well established and stable) MySQL product. Reading
about the problems these products are trying to solve is applicable when
discussing replication. A few include (in alphabetical order) Clustrix (http://
www.clustrix.com/), ScaleARC (http://www.scalearc.com/), ScaleDB (http://
www.scaledb.com/), and Xeround (http://xeround.com/). No evaluation has
been made for comparison with MySQL and what is stated at these respec-
tive company websites.

06-ch06.indd 204 9/7/12 4:07 PM

http://aws.amazon.com/rds/mysql/
https://developers.google.com/cloud-sql/
http://www.clustrix.com/
http://www.clustrix.com/
http://www.scalearc.com/
http://www.scaledb.com/
http://www.scaledb.com/
http://xeround.com/
http://aws.amazon.com/rds/mysql/

	 Extending Replication for Practical Needs 	 205

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Conclusion
MySQL replication is a core component for designing scale out replication
architectures. In this chapter we have discussed several commercial strength
products and other features that extend traditional MySQL replication with
many enterprise class features. As with many options, appropriate testing
and verification in your unique environment are important to make an
informed decision on what is most applicable in any given situation.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

06-ch06.indd 205 9/7/12 2:43 PM

http://EffectiveMySQL.com/book/replication-techniques

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

207

7
MySQL Configuration

Options

MySQL 5.6 now supports almost 400*
1 configurable system variables. A

number of these variables have a direct effect on how MySQL will operate
when using replication. Understanding what system variables do and how
they change the behavior of the MySQL server will help ensure that MySQL
replication operates as expected.

* 391 in 5.6.5-m8, 319 in 5.5.24, 276 in 5.1.63, and just 239 in 5.0.95 for master servers. The count
also changes depending on compile and startup options and if replication or plugins are
enabled.

07-ch07.indd 207 9/5/12 3:58 PM

208 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we will discuss

•	Binary logging variables

•	Replication system variables

•	Replication security variables

•	New MySQL 5.6 variables

•	Replication-specific grants, commands, and functions

About MySQL System Variables
Unless otherwise specified, all variables are available in MySQL 5.5, the
current GA version. While every attempt has been made to document im-
portant and relevant MySQL 5.6 configuration variables, as a development
release of MySQL these are subject to change. Always refer to the MySQL
5.6 documentation for current information at http://dev.mysql.com/doc/
refman/5.6/en/server-system-variables.html.

This chapter does not discuss any variables that are part of any third-party
products or MySQL variants mentioned during this book. The applicable
sections describe references to the respective product documentation.

The MySQL reference manual is the best resource of information available.
All replication-specific variables can be found at http://dev.mysql.com/
doc/refman/5.5/en/replication-options-table.html.

Binary Logging
These initial variables are required settings for the configuration of
MySQL binary logging, and are essential components when using MySQL
replication:

•	server_id  This mandatory variable is a unique number for the
server within the current MySQL topology.

•	log_bin  This enables the binary log and is mandatory for
replication on the master host. This variable also defines the
basename of the binary log files. The default file path is the data
directory with a filename of the hostname + ‘-bin’.

07-ch07.indd 208 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-table.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-table.html

	 MySQL Configuration Options	 209

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	log_bin_index  This variable defines the name of the index that
holds a list of all current binary logs. This will default to the log_bin
basename with an .index extension.

•	binlog_format  This variable controls the type of binary logging.
The value of STATEMENT, the default, logs the actual SQL statement
to the binary log. The value of ROW will log changed data blocks to
the binary log. The value of MIXED will choose the most applicable
method for the given statement necessary to ensure data consistency.
This option can be specified on a per session level, for example, with
SET SESSION.binlog_format = ROW.

•	binlog_row_image (5.6)  This variable alters the amount of data
block information that is used when binlog_format is ROW. The
value of full, the default, logs full before and after row images. The
values of minimal and blob alter the columns used in the before
and after images to reduce disk space and network bandwidth.

•	binlog_do_db & binlog_ignore_db  These variables on the
master host limit which statements are logged to the binary log
based on the specified database name, preceded by a USE qualifier.
Multiple database values can be specified using multiple lines in the
my.cnf. For example:

#my.cnf
[mysqld]
binlog_do_db = book3
binlog_do_db = mysql

CAUTION  Use of binlog_do_db and binlog_ingnore_db can make a
binary log unusable in a point in time recovery of a full primary database.
These options are also incomplete, as they require all SQL to be preceded by an
applicable USE, and do not handle cross-schema joins as you would expect.

•	binlog_cache_size  This cache is used to hold changes that are
to be written to the binary log during a transaction. Increasing this
value for very large transactions can possibly increase performance.

•	binlog_stmt_cache_size  This variable specifies the size of the
cache for the binary log to hold non-transactional statements during
transactions on a per client basis. There may be a benefit to
increasing this value using large non-transactional statements.

07-ch07.indd 209 9/5/12 3:58 PM

210 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	binlog_row_event_max_size  This variable represents the
maximum size of a row-based binary log event.

•	max_binlog_size  This is the maximum size of the binary log file
before a new file is created. This defaults to and can be a maximum
of 1GB. It is possible the resulting file may be larger, as binary logs
contain completed transactions. The FLUSH BINARY LOGS
command will also dynamically close the current binary log and
create a new file.

•	expire_logs_days  This variable defines the number of days
binary log files are retained. Files older than the number of days are
removed (similar in operation to a PURGE MASTER LOGS
command) when a new binary log file is created. A check is
performed to confirm no connected slave server is currently using a
binary log that is being purged. There is no check for any slaves that
may not be connected.

•	sync_binlog  This variable defines when the binary log file is
physically synced to disk. The value is the number of statements
executed. The best durability is a value of 1, meaning at the worst case
only one transaction could be lost in a system failure with appropriate
redundancies. The default is 0, which delegates to the operating
system to manage the sync. With an applicable RAID controller card
and Battery Backed Write Cache (BBWC), this hardware feature may
provide the same level of durability as a value of 1.

•	log_bin_basename (5.6)  This new variable defines the complete
path to the binary log. In previous versions the log_bin variable was
used to define the enabling of the binary log (e.g., ON) and an
optional basename in the configuration. This basename was never
visible with SHOW GLOBAL VARIABLES. The following shows the
log-bin variable defined in MySQL Sandbox for versions 5.5 and 5.6,
and shows the corresponding values represented by SHOW GLOBAL
VARIABLES to demonstrate the new log_bin_basename variable.

For MySQL 5.5:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ grep log-bin master/my.sandbox.cnf
log-bin=mysql-bin
mysql55> SHOW GLOBAL VARIABLES LIKE 'log_bin%'\G

07-ch07.indd 210 9/5/12 3:58 PM

	 MySQL Configuration Options	 211

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

*************************** 1. row ***************************
Variable_name: log_bin
 Value: ON
*************************** 2. row ***************************
Variable_name: log_bin_trust_function_creators
 Value: OFF

For MySQL 5.6

$ cd $HOME/sandboxes/rsandbox_5_6_5
$ grep log-bin master/my.sandbox.cnf
log-bin=mysql-bin

	  Note that the configuration is identical to MySQL 5.5; however,
there is now the log_bin_basename variable:

mysql56> SHOW GLOBAL VARIABLES LIKE 'log_bin%'\G
*************************** 1. row ***************************
Variable_name: log_bin
 Value: ON
*************************** 2. row ***************************
Variable_name: log_bin_basename	
 Value: /home/user/sandboxes/rsandbox_5_6_5/master/data/mysql-bin	
*************************** 3. row ***************************
Variable_name: log_bin_index
 Value: /home/user/sandboxes/rsandbox_5_6_5/master/data/mysql-bin.index
*************************** 4. row ***************************
Variable_name: log_bin_trust_function_creators
 Value: OFF

•	binlog_rows_query_log_events (5.6)  This new variable is used
to provide additional row-based logging information with the binary
log and can be used for debugging purposes. One example is the
representation of the actual SQL statement when using row-based
replication:

master> CREATE SCHEMA IF NOT EXISTS book3;
master> USE book3;
master> DROP TABLE IF EXISTS bl_events;
master> CREATE TABLE bl_events (ID INT NOT NULL);
master> SET SESSION binlog_format=ROW;
master> FLUSH BINARY LOGS;
master> SHOW BINARY LOGS;
master> SET SESSION binlog_rows_query_log_events=ON;
master> INSERT INTO bl_events VALUES(1),(2),(3);
master> SET SESSION binlog_rows_query_log_events=OFF;
master> INSERT INTO bl_events VALUES(1),(2),(3);
master> SHOW BINLOG EVENTS IN 'mysql-bin.000009';
+-----+----------------+---
| Pos | Event_type |Info
+-----+----------------+---
| 4 | Format_desc |Server ver: 5.6.5-m8-log, Binlog ver: 4
| 120 | Previous_gtids |B9A8FDE1-B4A3-11E1-921D-B499BAF75D68:1-9

07-ch07.indd 211 9/5/12 3:58 PM

212 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

| 187 | Gtid |SET @@SESSION.GTID_NEXT= 'B9A8FDE1-B4A3-11E1-
| 231 | Query |BEGIN
| 300 | Rows_query |# INSERT INTO bl_events VALUES(1),(2),(3)
| 359 | Table_map |table_id: 72 (book3.bl_events)
| 408 | Write_rows |table_id: 72 flags: STMT_END_F
| 452 | Xid |COMMIT /* xid=75 */
| 479 | Gtid |SET @@SESSION.GTID_NEXT= 'B9A8FDE1-B4A3-11E1-
| 523 | Query |BEGIN
| 592 | Table_map |table_id: 72 (book3.bl_events)
| 641 | Write_rows |table_id: 72 flags: STMT_END_F
| 685 | Xid |COMMIT /* xid=77 */
+-----+----------------+---

	 The previous example also shows the GTID-specific binary log entries.
If gtid_mode is not enabled, this output will not be displayed. The full
list of columns for SHOW BINLOG EVENTS can be seen with \G. For
example:

master> SHOW BINLOG EVENTS IN 'mysql-bin.000009'\G
*************************** 1. row ***************************
 Log_name: mysql-bin.000009
 Pos: 4
 Event_type: Format_desc
 Server_id: 1
End_log_pos: 120
 Info: Server ver: 5.6.5-m8-log, Binlog ver: 4
...

•	binlog_order_commits (5.6)  This group commit variable
determines the order of committed transactions to support parallel
operations.

•	binlog_max_flush_queue_time (5.6)  This group commit
variable determines how many milliseconds to keep reading
transactions from the flush queue before proceeding.

•	binlog_flush_log_at_timeout (5.6)  This variable determines
when to flush the binary log every N seconds.

This is not a complete list of possible variables for binary logs. See http://
dev.mysql.com/doc/refman/5.6/en/replication-options.html for detailed
information of these replication options.

MySQL Replication
These variables affect the way MySQL replication behaves. Whether a slave
host is set to only replicate certain databases, skip certain errors, and/or is

07-ch07.indd 212 9/7/12 2:46 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options.html
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html

	 MySQL Configuration Options	 213

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

set up in a unique chain topology, it is important to know how the following
will affect your setup:

•	relay_log  The relay logs hold replicated database changes
retrieved from the master binary log and written with the I/O thread.
If not specified, this file path will default to the MySQL data directory,
the server hostname, and the MySQL port.

•	relay_log_index  This variable defines the name of the relay log
index that holds the names of all the relay logs available. The default
filename is the relay_log variable value with the extension .index.

•	replicate_do_db & replicate_ignore_db  These variables
are used to filter which recorded master binary log statements are
applied on the slave. Their use is much like binlog_do_db and
binlog_ignore_db options on the master host. For multiple
database values, specify the options multiple times. There are similar
replicate- options for tables and for wildcard database/table
matching.

CAUTION  The replicate_do_db and replicate_ingnore_db can
cause errors, as they require all SQL to be preceded by an applicable USE and
do not handle cross-schema joins as you would expect.

•	slave_skip_errors  Replication error codes can be skipped
automatically when specified with this variable. Normally, replication
will stop when the SQL thread encounters an error; however, this
variable will cause the SQL thread to skip those errors listed in the
variable value. It is rarely a good idea to specify a value for slave_
skip_errors, because there is no accountability of the occurrences
of these silent errors, which will generally lead to data drift and/or
loss of data integrity. The format of the value for this variable is a
comma separated list of MySQL error numbers.

•	slave_exec_mode  There are two valid values for slave_exec_
mode, IDEMPOTENT and STRICT. This variable is used for replication
conflict resolution and error checking. If the value is set to
IDEMPOTENT (default for NDB), the slave will not error out during
duplicate key or no key found errors. The IDEMPOTENT value is
useful with a system that is set up in a multi-master or circular

07-ch07.indd 213 9/5/12 3:58 PM

214 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

replication fashion. When the value is set to STRICT, the default,
replication will stop on duplicate key and no key found errors.

•	log_slave_updates  When defined and binary logging is
enabled on a slave, all replicated changes from the SQL thread are
also written to the slave server binary log. This option is used to
chain multiple nodes together through replication. For example, if
you have three servers (A, B, and C) and want to connect them in a
chain you would use log_slave_updates on B. B would replicate
from A, and C from B, forming a chain, (A -> B -> C).

•	relay_log_purge  This variable controls how the relay log files
are purged. The default of 1 specifies that the relay log files are
removed when they are no longer needed for applying replication
events. A value of 0 retains the log files.

•	read_only  This variable defines that the slave will not accept
DML or DDL statements other than those applied by the replication
slave SQL thread. The exception is a user with SUPER privilege will
override this setting.

•	skip_slave_start  By default, when a slave server starts, an
implied SLAVE START occurs. With this variable specified, the slave
is not automatically started and must be performed manually with
START SLAVE.

•	sync_relay_log, sync_relay_log_info  These variables
control how frequently a file sync is performed on the respective
relay log and relay log info file. The number represents the name of
executed SQL statements to apply before action. The default is 0; the
safest durability setting is 1.

•	report_host  This optional variable provides a string for the slave
that is reported with SHOW SLAVE HOSTS on the master.

•	slave-max-allowed-packet (5.6)  This new variable defines the
maximum allowed packet size for the slave SQL and I/O threads.

•	relay-log-recovery (5.6)  This new variable, when enabled
(disabled by default), will discard any unprocessed slave relay log
events that have not been applied and will initiate obtaining the
events from the master.

07-ch07.indd 214 9/5/12 3:58 PM

	 MySQL Configuration Options	 215

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

This is not an exhaustive list of all replication-related variables. Full
details can be found at http://dev.mysql.com/doc/refman/5.6/en/replication-
options-slave.html.

Semisynchronous Replication
A new feature in MySQL 5.5 is the ability to define semisynchronous repli-
cation. This is an improvement on classic asynchronous replication, as the
master server waits for a confirmation from a slave that the event has been
received and recorded on a different server before returning a success indi-
cator to the calling client. The following semisynchronous variables will only
be visible following the installation of the necessary plugins as described in
Chapter 3. These variables control master/slave semisynchronous operation.

On the master:

•	rpl_semi_sync_master_enabled  When set to ON, semisyn-
chronous replication may be initiated by the master. At least one
slave must also have the corresponding variable set to ON for
semisynchronous replication to become operational. The SHOW
GLOBAL VARIABLES LIKE ‘rpl_semi%’ can be used to confirm and
monitor semisynchronous replication.

•	rpl_semi_sync_master_timeout  The master will wait a default
of 10,000 milliseconds for a response from any slave configured to
use semisynchronous replication before the master will revert to
asynchronous replication and return a response to the client. This
can be set to a lower value if applicable.

•	rpl_semi_sync_master_wait_no_slave  This value controls
how the master will wait for a timeout from one or more slaves before
reverting to asynchronous replication. The default value is ON.

•	rpl_semi_sync_master_trace_level  This defines the level of
debugging logging. The allowed values are 1 (general level logging),
16 (detailed level logging), 32 (network wait logging), and 64
(function level logging).

On the slave:

•	rpl_semi_sync_slave_enabled  When set to ON,
semisynchronous replication on the slave is possible.

07-ch07.indd 215 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html
http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html

216 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	rpl_semi_sync_slave_trace_level  This defines the level of
debugging logging. The allowed values are 1, 16, 32, and 64.

NOTE  MySQL will disable semisynchronous replication and revert
automatically to asynchronous replication when any error occurs or slow
network overhead exceeds the timeout, so slave servers can continue to operate.
This may lessen your high availability requirements. Adequate monitoring of
MySQL status variables and the MySQL error log is very important to
determine this situation and rectify accordingly.

Refer to Chapter 3 for the use and demonstration of these variables in
conjunction with loading the necessary plugins. More information can also
be found in the MySQL Reference Manual at http://dev.mysql.com/doc/
refman/5.5/en/replication-semisync.html.

Security
Support for SSL communication with MySQL has been around since ver-
sion 4.0.0 (October 2001). In a recent survey of over 1000 people at the 2012
Percona Live MySQL conference keynote, less than 1 percent indicated using
SSL. The need to use SSL is more prevalent today with the use of cloud
services. To improve the future adoption of improved security, starting
with MySQL 5.6, starting a slave without SSL will produce a warning. These
variables define SSL usage for securing client/server and replication
stream communications:

•	ssl  This variable states that the MySQL server permits SSL
connections. This option does not state that connections require SSL.
See the GRANT command described later.

•	ssl-ca  This variable is used to identify the Certificate Authority
(CA) certificate file.

•	ssl-cert  This identifies the server public key file. This is used in
client authentication with the CA certificate.

•	ssl-key  This identifies the server private key file that is used for
confirmation of provided security credentials from the client.

TIP  Ensure that you also adequately secure on the file system appropriate access
to the SSL certificate files defined with these options.

07-ch07.indd 216 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.5/en/replication-semisync.html
http://dev.mysql.com/doc/refman/5.5/en/replication-semisync.html

	 MySQL Configuration Options	 217

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

The GRANT command is used to ensure user connections requiring se-
cure communication using SSL are defined with the REQUIRE SSL syntax.
This syntax also enables additional SSL attributes, including X509, ISSUER,
SUBJECT, and CIPHER, to further limit SSL authorization. See http://dev
.mysql.com/doc/refman/5.5/en/grant.html for the full range of syntax
options.

Chapter 3 provides a detailed example of the setup and use of SSL in
MySQL.

Related SSL variables not described here include skip-ssl, ssl-
capath, ssl-cipher, and ssl-verify-server-cert. For more infor-
mation see http://dev.mysql.com/doc/refman/5.5/en/secure-basics.html.

MySQL Server Variables
The MySQL server has a number of general variables that can affect
MySQL replication or are recommended with certain tools that are associ-
ated with MySQL replication:

•	have_dynamic_loading  This variable defines if the dynamic
execution of plugins is supported, for example, when using the
semisynchronous plugin.

•	auto_increment_increment  This variable defines the increment
value that is used for an AUTO_INCREMENT column in a table. The
default value is 1. This is applicable in a multi-master environment
when it is beneficial to change (for example, to 2). When combined
with auto_increment_offset, this can ensure no possible collision
detection for an auto increment primary key if writing to multiple
servers. This is a global setting for all tables in a given instance. More
information can be found in Chapter 4.

•	auto_increment_offset  This variable defines the starting value
of an AUTO_INCREMENT column for a table. The default value is 1.
As described with auto_increment_increment, this variable is
used in multi-master environments to manage uniqueness in
MySQL topology of auto incrementing primary key value.

•	default_storage_engine  This variable defines the storage
engine that is used when not specified with the CREATE TABLE

07-ch07.indd 217 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/secure-basics.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

218 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

statement. The default (from MySQL 5.5) and recommended value is
InnoDB, which is a transactional storage engine. The historical value
is MyISAM. For more information about MySQL storage engines,
see http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html.

•	max_allowed_packet  This defines the maximum size of a
communication packet of MySQL information that can be sent from
a client to a MySQL server.

•	bind_address  By default, MySQL will accept network TCP/IP
communication on the defined port for all system IP addresses. Use
bind_address to limit communications to an individual IP address.
When set to localhost, or the loopback address (e.g., 127.0.0.1),
communication to the database is only possible on the server. This
option accepts any IPv4 or IPv6 address.

InnoDB Variables
•	innodb_flush_log_at_trx_commit  This variable defines the

level of durability for InnoDB log transactions when they are written.
The default value of 1 will write and flush every log transaction to
disk. This is the safest method for durability. A common setting
based on business needs and an appropriate RAID controller is a
value of 2. This writes all transactions to disk; however, it only flushes
to disk approximately once per second. The final permissible value is
0, which will only write and flush approximately once per second.

•	innodb_locks_unsafe_for_binlog  This variable controls how
InnoDB manages row level locking for operations on a range of rows.
The default value is 0 (or disabled), which means the normal algorithm
involves setting appropriate exclusive index-row and gap locking for
operations. This is a difficult concept to describe in a few words. For
a detailed description and examples refer to http://dev.mysql.com/
doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_locks_
unsafe_for_binlog.

•	innodb_autoinc_lock_mode  This value controls the locking mode
that is used for generating auto increment values in InnoDB tables.
This option supports three values: 0, which represents traditional
mode; 1, the default, which represents consecutive mode; and 2,

07-ch07.indd 218 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_locks_unsafe_for_binlog
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_locks_unsafe_for_binlog
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_locks_unsafe_for_binlog

	 MySQL Configuration Options	 219

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

which represents interleaved mode. A detailed description is at
http://dev.mysql.com/doc/refman/5.5/en/innodb-auto-increment-
handling.html.

•	innodb_doublewrite  This variable defines if the InnoDB
doublewrite buffer is enabled. The default is ON. This provides a
level of crash recovery as updated data pages are first written to disk
sequentially before they are applied in place. Setting this value to
OFF can affect durability in a disaster recovery situation.

•	innodb_support_xa  This variable, which is enabled by default,
provides support for an XA two-phase commit with InnoDB. If
disabled, this can result in a different order of transactions being
written to the binary log than the commit order. It is recommended
that you disable this for a slave due to the single threaded nature of
replication to improve performance.

MySQL 5.6 Features
In addition to some of the mentioned 5.6 variables in common replication
sections already described, these variables are new for various 5.6 replica-
tion features.

Universally Unique Identifier (UUID)
•	server_uuid (5.6)  This is a server generated unique identifier.

This is maintained in a separate configuration file, auto.cnf, in the
MySQL datadir. This value is automatically generated by the
MySQL server and should not be modified. This information is used
by MySQL slaves to identify the master.

More information can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options.html#sysvar_server_uuid.

Crash-Safe Slaves
•	master-info-repository  When defined as TABLE, this variable

will move logging of the slave log’s master status from the master
.info file to the mysql.slave_master_info table.

07-ch07.indd 219 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.5/en/innodb-auto-increment-handling.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-auto-increment-handling.html
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid
http://dev.mysql.com/doc/refman/5.6/en/replication-options.html#sysvar_server_uuid

220 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	relay-log-info-repository  When defined as TABLE, this
variable will move logging of the slave relay log information from the
relay-log.info file to the mysql.slave_relay_log_info table.

Additional details can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options-binary-log.html#option_mysqld_master-info-
repository.

Replication Checksums
•	binlog_checksum  When this option is set to CRC32 (currently

the only possible value), the master will write a checksum for each
event into the binary log.

•	master_verify_checksum  When set to ON the master host will
examine checksums that were written to the binary log when
reading from the binary log to send events to a slave.

•	slave_sql_verify_checksum  When set to ON the slave host
will examine and verify checksums when reading the relay log.

Additional details can be found at http://dev.mysql.com/doc/refman/5.6/
en/replication-options-binary-log.html#option_mysqld_binlog-checksum.

Multi-Threaded Slaves
•	slave_parallel_workers  This is the number of slave worker

threads that can be used for parallel execution of replication events
on the slave. This requires that relay_log_info_repository has
a value of TABLE.

Global Transaction Identifier (GTID)
•	gtid-mode  When set to ON, this option defines that GTIDs are

enabled on the server. GTID operations are only possible when this
option is enabled on all master and slave servers.

•	disable-gtid-unsafe-statements  When enabled, this option
will prevent any SQL statements that cannot be logged safely in a
transaction. This includes using non-transactional storage engine
tables CREATE TEMPORARY TABLE and CREATE TABLE ...
SELECT at this time.

07-ch07.indd 220 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_master-info-repository
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_master-info-repository
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_master-info-repository
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_binlog-checksum
http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_binlog-checksum

	 MySQL Configuration Options	 221

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Additional variables not discussed include gtid_done, gtid_owned,
gtid_lost, and gtid_next. You can find more information on these vari-
ables at http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids
.html.

User Privileges
In addition to the available MySQL configuration variables, there are
some replication-specific privileges that can be specified with the GRANT
command:

•	GRANT REPLICATION SLAVE is required for retrieving binary log
events to be applied in replication. This is the user specified in the
CHANGE MASTER TO command.

•	GRANT REPLICATION CLIENT is required for using SHOW
MASTER STATUS, SHOW SLAVE STATUS, and SHOW BINARY
LOGS (statement privilege since 5.6).

The SUPER privilege is required for SET SQL_LOG_BIN and SET SQL_
SLAVE_SKIP_COUNTER commands. A user that has the SUPER privilege
will also bypass the read_only variable that is used for MySQL slave data
integrity.

TIP  Application users should only ever have SELECT, INSERT, UPDATE, and
DELETE on database objects in the respective application database only. Some
other privileges for views and routines may be necessary if required; however,
CREATE, DROP, ALTER, and SUPER should never be assigned to an
application user accessing MySQL. That is the role of a different and separate
DBA account with restricted host access.

More information on the individual GRANT command options can be
found at http://dev.mysql.com/doc/refman/5.6/en/grant.html.

SQL Commands and Functions
Throughout this book there have been a large number of SQL statements
specifically for MySQL replication use in addition to the common DDL and
DML SQL commands. These have included the following.

07-ch07.indd 221 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html
http://dev.mysql.com/doc/refman/5.6/en/grant.html
http://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html

222 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Binary Log Statements
•	SHOW MASTER STATUS

•	SHOW MASTER | BINARY LOGS

•	SHOW BINLOG EVENTS

•	PURGE MASTER | BINARY LOGS

•	FLUSH BINARY LOGS

•	FLUSH [MASTER] LOGS (deprecated and removed in 5.6; use
RESET MASTER)

•	RESET MASTER

•	SHOW PLUGINS (5.1)

•	SET SESSION SQL_LOG_BIN

CAUTION  While MASTER or BINARY keywords can be interchanged in
SHOW LOGS and PURGE LOGS, FLUSH BINARY LOGS and FLUSH
MASTER LOGS perform two very different options, the latter being very
destructive.

Replication Statements
•	CHANGE MASTER TO

•	START SLAVE [SQL THREAD | IO_THREAD] [UNTIL ...]

•	STOP SLAVE [SQL THREAD | IO_THREAD]

•	FLUSH SLAVE (deprecated and removed in 5.6; use RESET SLAVE)

•	RESET SLAVE

•	SHOW SLAVE STATUS

•	SHOW SLAVE HOSTS

•	SHOW RELAYLOG EVENTS (5.5)

•	SET GLOBAL SLAVE_SKIP_SQL_COUNTER

For more information see http://dev.mysql.com/doc/refman/5.6/en/sql-
syntax-replication.html and http://dev.mysql.com/doc/refman/5.6/en/
show.html.

07-ch07.indd 222 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/sql-syntax-replication.html
http://dev.mysql.com/doc/refman/5.6/en/sql-syntax-replication.html
http://dev.mysql.com/doc/refman/5.6/en/show.html
http://dev.mysql.com/doc/refman/5.6/en/show.html

	 MySQL Configuration Options	 223

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Replication Related Functions
In addition, there are some replication-specific functions that can be used
in SQL statements:

•	MASTER_POS_WAIT() (since 3.23)

•	UUID() (5.6)

•	UUID_SHORT() (5.6)

•	GTID_SUBSET() (5.6)

•	GTID_SUBSTRACT() (5.6)

For more information see http://dev.mysql.com/doc/refman/5.6/en/
miscellaneous-functions.html.

Conclusion
As stated at the beginning of the chapter, there are a large number of differ-
ent MySQL configuration variables. The number of configurable MySQL
variables has increased with new versions. It is important to know how a
MySQL server has been configured and load tested in order to provide the
best performance, reliability, and data integrity, especially with new ver-
sions. The correct settings for your individual system can only be determined
by understanding the load and business needs of your unique system.
Benchmarking should be an integral part of system management and evalu-
ation for new MySQL versions.

07-ch07.indd 223 9/5/12 3:58 PM

http://dev.mysql.com/doc/refman/5.6/en/miscellaneous-functions.html
http://dev.mysql.com/doc/refman/5.6/en/miscellaneous-functions.html

This page intentionally left blank

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

225

8
Monitoring Replication

Monitoring MySQL is an essential requirement for a functioning pro-
duction environment, and replication is a key component to most situations.
Knowing if a replication server has failed is a crucial part of database admin-
istration. A MySQL administrator should have the right tools in place to help
identify replication issues, both proactive and reactively. In this chapter we
will discuss the following:

•	The types of monitoring needed

•	 Important information to monitor

•	Available monitoring products

08-ch08.indd 225 9/5/12 2:55 PM

226 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Types of Monitoring
Traditional monitoring tools provide common features, including a graph-
ical interface recording historical information and providing comparative
analysis between servers for a given timeframe. Alerting capabilities may
be part of monitoring software or an additional product. The following sec-
tions will discuss many of the common tools available.

MySQL Configuration
Any level of monitoring should also record important configuration infor-
mation, both via the MySQL configuration file and current runtime con-
figuration that can be modified dynamically. Monitoring a change of state
is often overlooked and is important to provide additional information
when understanding some observed condition. The following is an exam-
ple script that monitors these conditions and reports any detected changes:

$ cat check_mysql_config.sh
#!/bin/sh

Name: check_mysql_config
Purpose: Check the current MySQL my.cnf and runtime configuration
for any changes.
Author: Effective MySQL http://effectivemysql.com

LOG_DIR="${HOME}/log" # Change appropriately
MY_CNF="/etc/my.cnf"

SCRIPT_NAME=`basename $0 | sed -e "s/.sh$//"`

[-z `which mysqladmin 2>/dev/null`] && \
 echo "ERROR: mysqladmin not in PATH." && exit 1
[! -s "${HOME}/.my.cnf"] && \
 echo "ERROR: No MySQL authentication available." && exit 1
[-z "${LOG_DIR}"] && echo "ERROR: LOG_DIR is not defined." && exit 1
[! -d "${LOG_DIR}"] && mkdir -p ${LOG_FILE}
[-z "${MY_CNF}"] && echo "ERROR: MY_CNF is not defined." && exit 1
[! -s "${MY_CNF}"] && echo "ERROR: MySQL Configuration file '${MY_CNF}' not
found." \
 && exit 1
[-z "${TMP_DIR}"] && TMP_DIR="/tmp"

LOG_FILE="${LOG_DIR}/${SCRIPT_NAME}.log"
CURRENT_CNF="${LOG_DIR}/my.cnf.runtime"
CURRENT_CNF_FILE="${LOG_DIR}/my.cnf.current"

TMP_FILE="${TMP_DIR}/${SCRIPT_NAME}.tmp.$$"

08-ch08.indd 226 9/5/12 2:55 PM

	 Monitoring Replication	 227

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

DIFF_FILE="${TMP_DIR}/${SCRIPT_NAME}.diff.$$"

DATE_TIME=`date +%Y%m%d.%H%M%S`
mysqladmin variables > ${TMP_FILE}

[! -s "${CURRENT_CNF}"] && \
 echo "${DATE_TIME} No running configuration recorded, creating." \
>> ${LOG_FILE} && cp ${TMP_FILE} ${CURRENT_CNF}
[! -s "${CURRENT_CNF_FILE}"] && \
 echo "${DATE_TIME} No my.cnf recorded, creating." >> ${LOG_FILE} && \
 cp ${MY_CNF} ${CURRENT_CNF_FILE}

diff -U 0 ${CURRENT_CNF_FILE} ${MY_CNF} > ${DIFF_FILE}
if [-s "${DIFF_FILE}"]
then
 echo "${DATE_TIME} WARN: A difference has been detected" >> ${LOG_FILE}
 cat ${DIFF_FILE} >> ${LOG_FILE}
 cp ${MY_CNF} ${CURRENT_CNF_FILE}
 CHANGES="Y"
fi

diff -U 0 ${CURRENT_CNF} ${TMP_FILE} > ${DIFF_FILE}
if [-s "${DIFF_FILE}"]
then
 CHANGES="Y"
 echo "${DATE_TIME} WARN: A difference in config has been detected" \
>> ${LOG_FILE}
 cat ${DIFF_FILE} >> ${LOG_FILE}
 cp ${TMP_FILE} ${CURRENT_CNF}
fi

[-z "${CHANGES}"] && \
 echo "${DATE_TIME} INFO: No changes detected" >> ${LOG_FILE}
#[! -z "${CHANGES}"] && \
echo "Do something to alert a change has occurred"
rm -f ${TMP_FILE} ${DIFF_FILE}
exit 0

This script should be modified to include an appropriate alert, for ex-
ample, an email when a change is detected. This should be defined as a
scheduled job run with a regular frequency.

TIP  A common mistake is to make a dynamic change to a MySQL global
variable and not record this change in the MySQL configuration file that is
read during a MySQL restart.

Applying the same principle of detecting change, the MySQL error log
and other system configuration files that can affect MySQL operations
should also be monitored appropriately.

08-ch08.indd 227 9/5/12 2:55 PM

228 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Monitoring Granularity
In a production environment the information recorded with general moni-
toring does not identify issues that occur with a much finer granularity. In
many situations, replication monitoring requires a granularity of a few sec-
onds to detect important conditions, including replication lag or failed rep-
lication threads. For example, if replication lag was monitored every five
minutes, then the reported value may always be zero (0) or a smaller num-
ber. By using the example procedure defined in the appendix, lag can easily
be more; however, if this all occurred within the five minute period there
would be no indication. There is no maximum lag for the last five minutes
available unless it is captured with a more real-time monitoring implemen-
tation. Also waiting up to five minutes to know if a MySQL slave has stopped
processing may be unacceptable. Developing a simple dashboard to display
information is an important feature for proactive administration.

Important MySQL Information
This section does not contain any new information that has not already
been discussed in previous chapters. It is important to combine informa-
tion from various primary sources and from all MySQL instances in a giv-
en topology to get a complete picture of an operational environment. This
section outlines what information should be included in your applicable
system and database monitoring.

MySQL Error Log
The MySQL error log will report information about the state of replication,
including when this started, stopped, or produced an error. The following
is a sample of the information, warning, and error messages possible:

120709 11:32:27 [Note] Start binlog_dump to master_thread_id(1)
 slave_server(101), pos(mysql-bin.000009, 712)
120709 11:32:27 [Note] Start binlog_dump to master_thread_id(2)
 slave_server(102), pos(mysql-bin.000009, 712)
120709 11:32:27 [Note] Semi-sync replication initialized for transactions.
120709 11:32:27 [Note] Semi-sync replication enabled on the master.
120709 11:32:27 [Note] Slave I/O thread: connected to master 'rsandbox@127.0.0.1
:12630',replication started in log 'mysql-bin.000009'
at position 712
120709 11:32:28 [Warning] Slave SQL: If a crash happens this configuration

08-ch08.indd 228 9/5/12 2:55 PM

	 Monitoring Replication	 229

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

does not guarantee that the relay log info will be consistent, Error_code: 0
120709 11:32:28 [Note] Slave SQL thread initialized, starting replication in
log 'mysql-bin.000008' at position 446, relay log './mysql_sandbox12631-
relay-bin.000019' position: 648
120709 11:32:28 [ERROR] Slave SQL: Error executing row event: 'Cannot
execute statement: impossible to write to binary log since statement is in
row format and BINLOG_FORMAT = STATEMENT.', Error_code: 1666
120709 11:32:28 [Warning] Slave SQL: ... The slave coordinator and worker
threads are stopped, possibly leaving data in inconsistent state. A restart
should restore consistency automatically, although using non-transactional
storage for data or info tables or DDL queries could lead to problems. In
such cases you have to examine your data (see documentation for details).
Error_code: 1753

Chapter 2 provides more information on the different types of error
messages you may encounter and suitable resolution techniques.

Detecting a change of the MySQL error log size is a basic monitoring
step that should be implemented, regardless if you are using replication.

SHOW MASTER STATUS
MySQL replication requires a master with binary logging enabled. Details
of the current binary log file and position are obtained with the SHOW
MASTER STATUS command. Additional information on the underlying
binary logs used and available on the master can be found with the SHOW
BINARY LOGS command. Combined with the log_bin and log_bin_
basename (5.6) variables, the underlying filesystem files defined by these
variables can be verified independently from any SQL statements.

TIP  Detecting no change in the binary log size, or a change significantly greater
or less than the average expected (generally for the given time of day) over a
short sampling period is an additional monitoring step that can preempt a
problem. The monitoring for a lack of volume change is just important to
indicate a potential problem in a production system.

SHOW SLAVE STATUS
This SQL command is the primary source of slave replication information.
As discussed in several chapters, the thread status via Slave_IO_Run-
ning and Slave_SQL_Running are the most important columns of infor-
mation to monitor. The Seconds_Behind_Master is also important to
monitor if replication is lagging, or is improving or worsening over time.
These slave status variables were detailed in Chapter 2.

08-ch08.indd 229 9/5/12 2:55 PM

230 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

It is important to understand that in some situations, these threads may
not be running for a reason, for example, a backup process or a schema
change that has stopped a thread intentionally. Applicable monitoring
needs to account for these situations and not automatically report an error.

SHOW GLOBAL STATUS
Certain replication information can be obtained via SHOW GLOBAL STA-
TUS. This includes information about binary log settings and usage, in-
cluding replication heartbeat. Commencing in MySQL 5.5, semisynchro-
nous replication information is obtained from SHOW GLOBAL STATUS.

NOTE  The information from SHOW GLOBAL STATUS can also be retrieved
via the INFORMATION_SCHEMA.GLOBAL_STATUS table.

Semisynchronous Replication (5.5)
A new feature with MySQL 5.5, semisynchronous replication can only be
monitored via MySQL status variables. MySQL can also elect to move be-
tween asynchronous and semisynchronous replication without any addi-
tional notification. The status value to monitor is different between the
master and the slave:

master> SHOW STATUS LIKE 'Rpl_semi_sync_master_status';
+--+----------+
| Variable_name | Value |
+--+----------+
| Rpl_semi_sync_master_status | ON |
+--+----------+

CAUTION  This is a new MySQL status variable that may not be included in
many of the monitoring products available.

slave> SHOW STATUS LIKE 'Rpl_semi_sync_slave_status';
+--+-------+
| Variable_name | Value |
+--+-------+
| Rpl_semi_sync_slave_status | ON |
+--+-------+

The full list of status variables on the master for semisynchronous
replication is

master> SHOW STATUS LIKE 'Rpl_semi_sync%';

08-ch08.indd 230 9/5/12 2:55 PM

	 Monitoring Replication	 231

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

+--+----------+
| Variable_name | Value |
+--+----------+
Rpl_semi_sync_master_clients	1
Rpl_semi_sync_master_net_avg_wait_time	321
Rpl_semi_sync_master_net_wait_time	58540232
Rpl_semi_sync_master_net_waits	182303
Rpl_semi_sync_master_no_times	2
Rpl_semi_sync_master_no_tx	3106
Rpl_semi_sync_master_status	ON
Rpl_semi_sync_master_timefunc_failures	0
Rpl_semi_sync_master_tx_avg_wait_time	377
Rpl_semi_sync_master_tx_wait_time	65273713
Rpl_semi_sync_master_tx_waits	172914
Rpl_semi_sync_master_wait_pos_backtraverse	11
Rpl_semi_sync_master_wait_sessions	0
Rpl_semi_sync_master_yes_tx	182306
+--+----------+

TIP  If you use semisynchronous replication with multiple slaves, a change of the
Rpl_semi_sync_master_clients status variable can detect a potential
problem within the replication topology.

Meta Files
MySQL includes a number of files that contain important information
about the configuration and operation of slave replication. These are

•	datadir/master.info

•	datadir/relay_log.info

master.info
The contents of master.info for MySQL 5.6 using the MySQL Sandbox
example defined in the appendix are

$ more master.info
23
mysql-bin.000009
712
127.0.0.1
rsandbox
rsandbox
12630
60
0

08-ch08.indd 231 9/5/12 2:55 PM

232 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

0
1800.000

0
b9a8fde1-b4a3-11e1-921d-b499baf75d68
86400

0

These lines are

1.	 Number of lines in file

2.	 Current master binary log file

3.	 Current master binary log position

4.	 Master host

5.	 Master username

6.	 Master password

7.	 Master port

8.	 Master connection retry time

9.	 SSL enabled

10.	 SSL CA

11.	 SSL CA Path

12.	 SSL Certificate

13.	 SSL Cipher

14.	 SSL Key

15.	 SSL Verify Certificate

16.	 Heartbeat

17.	 Master Bind Address

18.	 Replicate Ignore Server IDs

19.	 Master UUID

20.	 Master Retry Count

21.	 SSL Certificate Revocation List (CRL)

22.	 SSL CRL Path

23.	 GTID Position enabled

08-ch08.indd 232 9/5/12 2:55 PM

	 Monitoring Replication	 233

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

This is similar to the information set with the CHANGE MASTER TO
statement.

relay_log.info
The contents of relay_log.info for MySQL 5.6 using the MySQL Sand-
box example defined in the appendix are

$ cat relay-log.info
6
./mysql_sandbox12631-relay-bin.000019
648
mysql-bin.000008
446
0
3
3
3

These lines are

1.	 Master ID

2.	 Current relay log file

3.	 Current relay log position

4.	 Current master binary log

5.	 Current master binary log position

6.	 SQL Delay

7.	 Number of slave workers

Meta Tables
Starting with MySQL 5.6, important replication information can be record-
ed in meta tables rather than underlying files. As mentioned in Chapter 3,
the new server variables master-info-repository and relay-log-
info-repository can be used to control the location of information. A
value to TABLE instead of the default FILE will store replication metadata
in two tables instead of the traditional files (master.info and relay-
log.info). For example:

slave> SELECT * FROM mysql.slave_master_info\G
************************ 1. row ************************
 Master_id: 2

08-ch08.indd 233 9/5/12 2:55 PM

234 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

 Number_of_lines: 22
 Master_log_name: bin-log.000005
 Master_log_pos: 317
 Host: master
 User_name: repl
 User_password: clearpassword
 Port: 3306
 Connect_retry: 10
 Enabled_ssl: 0
 Ssl_ca:
 Ssl_capath:
 Ssl_cert:
 Ssl_cipher:
 Ssl_key:
Ssl_verify_server_cert: 0
 Heartbeat: 1800
 Bind:
 Ignored_server_ids: 0
 Uuid: b1467eac-b431-11e1-8f35-001b245c2ae9
 Retry_count: 86400
 Ssl_crl:
 Ssl_crlpath:
slave> SELECT * FROM mysql.slave_relay_log_info\G
************************ 1. row ************************
 Master_id: 2
 Number_of_lines: 6
 Relay_log_name: /var/lib/mysql/relay-bin.000009
 Relay_log_pos: 273
 Master_log_name: bin-log.000005
 Master_log_pos: 317
 Sql_delay: 0
Number_of_workers: 0

These tables contain information that matches the results of informa-
tion found with SHOW MASTER STATUS and SHOW SLAVE STATUS. The
use of tables enables easier manipulation using standard SQL commands.

Monitoring Products
As you saw in the previous section, the type of replication information that
can be monitored will assist you in determining which type of monitoring
product is the right one for your environment. A number of technologies
listed in this section are generic monitoring products and include the abil-
ity, either natively or with additional plugins, to monitor MySQL. An exist-
ing monitoring product may already exist in your organization, requiring
only the addition of MySQL specific metrics and alerts.

The following tables list the common monitoring tools used in the in-
dustry for MySQL monitoring.

08-ch08.indd 234 9/5/12 2:55 PM

	 Monitoring Replication	 235

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Dedicated Monitoring Products
MySQL Enterprise Monitor http://www.mysql.com/products/enterprise/monitor.html

MySQL Performance Monitor http://www.fromdual.ch/mysql-performance-monitor

Kontrolbase http://kontrollsoft.com/software-kontrollbase

MONyog MySQL Monitor http://www.webyog.com/

Jet Profiler for MySQL http://www.jetprofiler.com/

System Monitoring Products
Cacti http://www.cacti.net/

Plugin: http://www.percona.com/downloads/percona-monitoring-plugins/

Nagios http://www.nagios.org/

Zenoss http://www.zenoss.com/
Plugin: http://community.zenoss.org/docs/DOC-3501

Munin http://munin-monitoring.org/
Plugin: https://github.com/kjellm/munin-mysql/

Hyperic http://www.hyperic.com/
Plugin: http://support.hyperic.com/display/hyperforge/MySQL

Ganglia http://ganglia.sourceforge.net/

Zabbix http://www.zabbix.com/

Big Brother http://bb4.com/

DBTuna http://www.dbtuna.com/

Oracle
Enterprise
Manager

http://oracle.com/enterprisemanager
Plugin: http://www.pythian.com/news/mysql-plugin-for-oracle-grid-
control/

Other Commercial System Monitoring Products
IBM Tivoli Monitoring http://www-01.ibm.com/software/tivoli/products/monitor/

Plugin: https://www-304.ibm.com/software/brandcatalog/
ismlibrary/details?catalog.label=1TW10TM2S

HP Openview http://www.openview.hp.com/

CA Unicenter http://www.ca.com/us/infrastructure-management.aspx

Many monitoring products require a working Linux/Apache/MySQL/
PHP (LAMP) stack to correctly operate. It is recommended to use a differ-
ent system for monitoring MySQL severs. There are several client GUI de-
velopment tools that can perform some level of real-time monitoring, for
example, MySQL Workbench; however, this is impractical in a production

08-ch08.indd 235 9/5/12 2:55 PM

http://www.mysql.com/products/enterprise/monitor.html
http://www.fromdual.ch/mysql-performance-monitor
http://kontrollsoft.com/software-kontrollbase
http://www.webyog.com/
http://www.jetprofiler.com/
http://www.cacti.net/
http://www.percona.com/downloads/percona-monitoring-plugins/
http://www.nagios.org/
http://www.zenoss.com/
http://community.zenoss.org/docs/DOC-3501
http://munin-monitoring.org/
https://github.com/kjellm/munin-mysql/
http://www.hyperic.com/
http://support.hyperic.com/display/hyperforge/MySQL
http://ganglia.sourceforge.net/
http://www.zabbix.com/
http://bb4.com/
http://www.dbtuna.com/
http://oracle.com/enterprisemanager
http://www.pythian.com/news/mysql-plugin-for-oracle-grid-control/
http://www.pythian.com/news/mysql-plugin-for-oracle-grid-control/
http://www-01.ibm.com/software/tivoli/products/monitor/
https://www-304.ibm.com/software/brandcatalog/ismlibrary/details?catalog.label=1TW10TM2S
http://www.openview.hp.com/
http://www.ca.com/us/infrastructure-management.aspx
https://www-304.ibm.com/software/brandcatalog/ismlibrary/details?catalog.label=1TW10TM2S

236 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

situation. Additional runtime graphical display commands that can be
useful include

•	Mytop http://jeremy.zawodny.com/mysql/mytop/

•	mtop http://mtop.sourceforge.net/

•	 InnoTop http://code.google.com/p/innotop/

The Implementation of Monitoring
An important decision when choosing a monitoring product may be due to
how information is collected. There are two implementations, using an
agent or agentless. When a product uses an agent, a version of software is
installed and configured on every MySQL server. When configured, the
agent will communicate with a central repository of information that is
used for the graphical display of information. The agent may retain infor-
mation when the central repository is unavailable for later processing. An
agentless monitoring product uses a centralized mechanism to poll the
necessary MySQL servers for information and records the results at that
time. There are advantages and disadvantages with both methods.

MySQL Enterprise Monitor
MySQL Enterprise Monitor (MEM) is the commercial MySQL monitoring
product that is included with a MySQL subscription. With this solution
you can continuously monitor your MySQL instances and be alerted to
potential problems before a higher impact event occurs. All threshold lim-
its within each monitor are configurable, but have a specified default value
associated to monitoring types. This means you can toggle a threshold on
an alert to fit into the expected behavior of your system.

Replication Advisors Within MEM
MEM comprises the Enterprise Dashboard web interface and the MEM
agent for each MySQL instance. After you have installed the Enterprise serv-
er and the agent(s) you will be able to assign advisors to a particular server
or group of servers within the Enterprise Dashboard. The following is a list
of replication-related advisors that are available with MEM version 2.3:

08-ch08.indd 236 9/5/12 2:55 PM

http://jeremy.zawodny.com/mysql/mytop/
http://mtop.sourceforge.net/
http://code.google.com/p/innotop/

	 Monitoring Replication	 237

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	Binary Log File Count Exceeds Specified Limit

•	Binary Log Space Exceeds Specified Limit

•	 INSERT ON DUPLICATE KEY UPDATE Bug May Break Replication

•	Slave Detection of Network Outages Too High

•	Slave Error: Unknown or Incorrect Time Zone

•	Slave Execution Position Too Far Behind Read Position

•	Slave Has Been Stopped

•	Slave Has Experienced a Replication Error

•	Slave Has Login Accounts with Inappropriate Privileges

•	Slave Has Problem Communicating with Master

•	Slave Has Stopped Replicating

•	Slave I/O Thread Not Running

•	Slave Not Configured as Read Only

•	Slave Relay Log Space Is Very Large

•	Slave Relay Logs Not Automatically Purged

•	Slave SQL Thread Not Running

•	Slave SQL Thread Reading from Older Relay Log Than I/O Thread

•	Slave Too Far Behind Master

•	Slave Waiting to Free Relay Log Space

•	Slave Without REPLICATION SLAVE Accounts

As you can see there are advisors that include information on perfor-
mance, errors, lag, security, and optimal configuration. You can also devel-
op your own custom advisors.

In addition to these replication advisors you will be able to see all replica-
tion topologies, what server is replicating from where, and other replication
metadata like binary log and position. Replication topologies are automati-
cally mapped out for you when the agent reports information to MEM. All
servers in a replicated set are assigned to a default group name within the
Dashboard. The group name can be changed to something more meaningful
in your environment.

08-ch08.indd 237 9/5/12 2:55 PM

238 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Cacti
Cacti is an open source graphing system that uses the common Round Robin
Database (RRD) format for data storage and graphing functionality. Cacti is a
polling-based monitoring system, not agent based like MySQL Enterprise
Monitor. Polling a system is accomplished when the poller.php script is
run. This script is included in the default Cacti installation. This script will
gather SNMP and connectivity information for all of the servers configured
within Cacti and then send out SNMP requests to those servers. The response
back from your servers is then recorded and graphed within Cacti. This can
lead to scaling problems depending on the quantity of servers you are moni-
toring and the number of data points you are trying to graph.

By default Cacti does not have alerting capabilities, but is very useful for
visualizing the current and past state of your system. This means that you
will be able to see system activity after it is polled within the Cacti GUI but
will not be able to receive alerts. To harness the true power of Cacti you will
need to use the Plugin Architecture. There are many plugins for Cacti that
could be addressed here; however, one of the most important is thold.
More information about Cacti can be found at http://cacti.net.

Alerting with thold
If you require alerting for your system the thold plugin for Cacti offers
threshold alerts based off Cacti graphs. Adding this plugin previously re-
quired the installation of the Plugin Architecture (PIA). Starting with Cacti
version 0.8.8a, the PIA is included in the default Cacti code base, making it
easier to work with all of the Cacti plugins. More information on the thold
plugin can be found at http://docs.cacti.net/plugin:thold. This plugin has a
prerequisite of the settings plugin to also be installed. More information
can be found at http://docs.cacti.net/plugin:settings.

NOTE  A full list of plugins can be found at http://docs.cacti.net/plugins.

Cacti Graph Templates
Cacti comes with 33 default graph templates. These templates are for mon-
itoring server characteristics like CPU, disk, memory, network, process
count, and logged in user count. This system information is good when
monitoring MySQL servers; however, it does not provide detailed behavior
of mysqld itself. Graphing information specifically related to MySQL can
be gathered by installing additional cacti graphing templates. Percona

08-ch08.indd 238 9/5/12 2:55 PM

http://cacti.net
http://docs.cacti.net/plugin:thold
http://docs.cacti.net/plugin:settings
http://docs.cacti.net/plugins

	 Monitoring Replication	 239

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

provides a popular version of MySQL monitoring plugins. These are avail-
able from http://www.percona.com/downloads/percona-monitoring-pl-
ugins/.

First you will need to download the latest version of the templates and
make sure they are on your computer and also on the Cacti server. The Cacti
server will need to access the scripts, while you will need to import the tem-
plates through your web browser by selecting the file from your computer:

$ wget http://www.percona.com/redir/downloads/percona-monitoring-
plugins/percona-monitoring-plugins-1.0.1.tar.gz
$ tar xzvf percona-monitoring-plugins-1.0.1.tar.gz
$ cd percona-monitoring-plugins-1.0.1/

Notice there are two directories: one for the Cacti templates and the
other for Nagios plugins. We are interested in the cacti directory for this
example.

$ ls -l
COPYING
Changelog
cacti
nagios

There are multiple templates in the cacti directory you can install, in-
cluding mysql, mongo, redis, and apache just to name a few. The general
process for installation is to copy the data-gathering script into the scripts
directory of Cacti and then import the templates via the web interface.

On the server that hosts the Cacti installation you will need to copy the
PHP scripts into the Cacti installation script directory. In this case Cacti has
been installed in /var/www/html/cacti/ and the cacti scripts directory
is /var/www/html/cacti/scripts.

$ sudo cp percona-monitoring-plugins-1.0.1/cacti/scripts/ss_get_mysql_stats.php \
/var/www/html/cacti/scripts/

Now that the scripts are in place on the Cacti server you will need to log
into the Cacti Console and import the MySQL templates by navigating to
Console | Import Templates in your browser. In the “Import Template from
Local File” section of the page, you can choose a file from your local computer.
In this case we want to import the MySQL template file named cacti_host_
template_percona_mysql_server_ht_0.8.6i-sver1.0.1.xml.

NOTE  Full details about how to install and configure the templates can be
found at http://www.percona.com/doc/percona-monitoring-plugins/cacti/
installing-templates.html.

08-ch08.indd 239 9/5/12 2:55 PM

http://www.percona.com/downloads/percona-monitoring-pl�ugins/
http://www.percona.com/doc/percona-monitoring-plugins/cacti/installing-templates.html
http://www.percona.com/doc/percona-monitoring-plugins/cacti/installing-templates.html
http://www.percona.com/downloads/percona-monitoring-pl�ugins/

240 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In this chapter we are most interested in monitoring replication. Con-
tained in the newly imported templates is the Percona MySQL Replication
GT template. The items graphed are

•	slave_lag

•	Slave_open_tmp_tbls

•	Slave_rtd_trnsctns

•	slave_stopped

The MySQL Replication graph displays the status of the SQL replication
thread and replication delay. If you are using pt-heartbeat on the
MySQL topology you will be able to use the information in the heartbeat
table to populate this graph; otherwise, Seconds_Behind_Master from
SHOW SLAVE STATUS is used. If you are using pt-heartbeat and
would like to use that metadata to populate the graph, you will need to
define the $heartbeat variable in the ss_get_mysql_stats.php script.

MySQL Performance Monitor (MPM)
Created and maintained by Oli Sennhauser at FromDual, MPM is an open
source monitoring solution based on Zabbix. This solution provides all the
necessary modules to monitor and report MySQL performance metrics. In
addition, MPM has preconfigured monitoring support for additional third-
party storage engines and Galera for MySQL. FromDual also offers Moni-
toring As A Service (MAAS) to remove the burden from existing resources.

See http://www.fromdual.com/mysql-performance-monitor for more
information and http://www.slideshare.net/shinguz/mysql-monitoring-
with-zabbix for a good presentation on usage.

Poor Man’s Replication Monitor
An extremely inexpensive way to monitor replication would be to use a
simple Linux shell script. Giuseppe Maxia wrote a great article on this titled
“Refactored again: poor man’s MySQL replication monitor.” See http://
datacharmer.blogspot.com/2011/04/refactored-again-poor-mans-mysql
.html. The example script described in the article checks replication is run-
ning, if the slave is replicating from the intended master, and if the slave
host is lagging behind. If there is an error or multiple errors an email is sent
out to a designated recipient reporting the replication issue.

08-ch08.indd 240 9/7/12 2:49 PM

http://www.fromdual.com/mysql-performance-monitor
http://www.slideshare.net/shinguz/mysql-monitoring-with-zabbix
http://www.slideshare.net/shinguz/mysql-monitoring-with-zabbix
http://datacharmer.blogspot.com/2011/04/refactored-again-poor-mans-mysql
http://datacharmer.blogspot.com/2011/04/refactored-again-poor-mans-mysql

	 Monitoring Replication	 241

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Troubleshooting Replication Incidents
A good practice for administrators is to have a checklist when trying to
determine the cause of a replication issue when an alert has been gener-
ated. Table 8-1 shows a list that you can use as an aid when troubleshooting
MySQL replication.

This is not an exhaustive checklist; however, it provides a template to be
used and enhanced accordingly for your environment and business needs.

Step Checked What to Check?

1
Check the MySQL error log on the master for any recent errors, either
related to or not related to replication.

2
Check the master to ensure log_bin is enabled and verify the SHOW
MASTER STATUS information.

3
Ensure the master and all slave hosts have a unique server-id and
server-uuid.

4
Ensure the master replication user has the correct privileges for
replication.

5
Check to see if the slave(s) are connected to the master with the SHOW
PROCESSLIST command.

6
Check the MySQL error log on the slave(s) for any recent errors, either
related to or not related to replication.

7 Check to see if the slave is running with SHOW SLAVE STATUS\G.

8
Ensure you are using the correct master connection information on the
slave. This is set with the CHANGE MASTER TO statement.

9

Ensure you can connect to the master host from the slave using the
mysql CLI and with telnet, for example:
CLI:
$ mysql -urepl -psomepassword -hmaster -P3306
The master information (host, user, and port) can be obtained from the
SHOW SLAVE STATUS command. The password can be obtained from
the master.info file, or all information can be found in the mysql.
slave_master_info table when configured.
You can also confirm MySQL port access with telnet:
$ telnet master 3306

10

Check the firewall rules to ensure the MySQL port is not being filtered.
The nmap command can be used to determine TCP/IP access to the
master. For example:
$ nmap -p 3306 master

11
If a slave is no longer running and has an error caused by a SQL state-
ment, check your data on the slave and determine if you can skip the
error or fix the data on the slave.

Table 8-1  Replication Checklist

08-ch08.indd 241 9/5/12 2:55 PM

242 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Conclusion
There are many ways to manually monitor MySQL replication. This chapter
has outlined some of the tools that a database administrator can use and
implement to provide automation of applicable monitoring. This is a practical
and time-saving requirement for any environment, from one server to
thousands of servers.

Monitoring technologies can help identify performance problems and
provide a history of information monitored for comparison and evaluation.
You should evaluate and test some of the monitoring strategies outlined to
determine which best fits your business. Implementing monitoring should
be a process of continual improvement to minimize the time for regular
maintenance operations.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

08-ch08.indd 242 9/5/12 2:55 PM

http://EffectiveMySQL.com/book/replication-techniques

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

243

Appendix
A MySQL Replication

Test Environment

Throughout this book, Effective MySQL: Replication Techniques in Depth,
many examples require a working environment of a master instance and at
least one slave instance to demonstrate the output shown. There are several
ways to create an appropriate MySQL environment if you do not have access
to the necessary hardware and software. The following setups are used for
the demonstrations in this book and can be easily created to reproduce all
the examples. Some advanced examples in this book do require additional
operating system configuration, for example, dedicated IP addresses.

09-Appendix.indd 243 9/5/12 12:25 PM

244 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Manual Steps to Configure
MySQL Replication
It is very easy to set up MySQL replication, even on a single machine for
testing purposes. In summary, the following steps are needed for replica-
tion configuration between a master server and a slave server:

•	Set up two new MySQL instances. These will be represented as the
master and the slave.

•	Define binary logging with the log-bin configuration option, and a
unique server ID with server-id on the master instance. This will
require a MySQL instance restart.

•	Obtain the master binary log position with the SHOW MASTER
STATUS command.

•	Create a new MySQL user on the master instance with host access
from the second instance and with the REPLICATION SLAVE
privilege.

•	Define a unique server ID with server-id on the slave. This will
require a MySQL instance restart.

•	Configure replication on the slave instance with the CHANGE
MASTER TO command, including the details of the master instance,
the new MySQL user, and the master instance binary log position.

•	Start replication on the slave instance with the SLAVE START
command and verify with the SHOW SLAVE STATUS command.

The MySQL Reference Manual provides detailed instructions on how to
configure replication at http://dev.mysql.com/doc/refman/5.5/en/replication-
howto.html.

When running multiple instances of MySQL on a single machine, the
following configuration information must be different between the
instances:

•	MySQL data directory (datadir)

•	MySQL socket file (socket)

•	Port (port) or IP address (bind-address)

09-Appendix.indd 244 9/5/12 12:25 PM

http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html
http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html

	 A MySQL Replication Test Environment 	 245

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

TIP  It is a common practice to run multiple instances of MySQL on a single
machine by changing the MySQL communication port. Alternatively, by
configuring multiple IP addresses on the server and using the bind-
address configuration option, you can run multiple MySQL instances
on a single server and use the default port of 3306 for all instances, which can
simplify many commands that use the default port.

Using MySQL Sandbox
Created by long time MySQL community advocate and hacker Giuseppe
Maxia, the MySQL Sandbox (http://mysqlsandbox.net/) is an essential tool
for any database administrator. As the name implies, this tool enables you
to create a gated sandbox of MySQL with various versions and replication
topologies all on a single server. This open source tool is written in Perl.
With a single command you can create the following working environ-
ments in a few seconds:

•	Single sandboxes

•	Standard replication

•	Circular replication

•	Multiple sandboxes (same version)

•	Multiple sandboxes (different versions)

Throughout this book we discussed several tools that can be tested and
confirmed in a MySQL Sandbox environment.

MySQL Sandbox Installation
The following steps will install MySQL Sandbox on your Linux or Mac
system:

$ sudo cpan MySQL::Sandbox

This step will install or upgrade MySQL Sandbox. If this is the very first
usage of cpan on this system, you will be prompted for some default con-
figuration that is saved for later usage.

09-Appendix.indd 245 9/5/12 12:25 PM

http://mysqlsandbox.net/

246 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Alternatively, you can install MySQL Sandbox directly from source with
the following:

$ cd /tmp
$ curl --silent -o MySQL-Sandbox.tar.gz \
 https://launchpadlibrarian.net/91596901/MySQL-Sandbox-3.0.25.tar.gz
$ tar xvfz MySQL-Sandbox.tar.gz
$ cd MySQL-Sandbox-*
$ perl Makefile.PL
$ make
$ make test
$ sudo make install
$ make_sandbox --help
$ cd ..
$ rm –rf MySQL-Sandbox* # Optionally cleanup temporary installation files

CAUTION  You should always refer to https://launchpad.net/mysql-sandbox for
the current version of MySQL Sandbox to download with the curl command.

Both of these options for installation require the make command. You can
verify this is on your system and in your current PATH with the command:

$ which make

If this does not return the path to the binary (for example, /Applica-
tions/Xcode.app/Contents/Developer/usr/bin/make on MAC
OS X), you may require additional software to be installed to use MySQL
Sandbox.

TIP  For Mac OS X users, you will need to install Xcode from https://developer
.apple.com/xcode or from your operating system installation DVD for either
installation steps of MySQL Sandbox. Unfortunately, there is no simple
command line interface to obtain and install this software without using the
Apple App Store, which requires an account to log in, even though the software
is free. In addition you need to install the Command Line Utilities to address
various make complication errors. These are installed from within Xcode with
the menu option under Preferences | Downloads | Components.

MySQL Software Releases
MySQL Sandbox does not include the MySQL software it installs. You can
obtain the MySQL software to install from http://dev.mysql.com/down-
loads for many different operating systems and architectures. The follow-
ing steps install MySQL 5.0, 5.1 GA, 5.5 GA, and 5.6 DMR software binaries

09-Appendix.indd 246 9/5/12 12:25 PM

https://developer.apple.com/xcode
https://developer.apple.com/xcode
http://dev.mysql.com/downloads
http://dev.mysql.com/downloads

	 A MySQL Replication Test Environment 	 247

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

for further testing using a generic Linux 64-bit software release. You should
refer to the respective software downloads page at http://dev.mysql.com/
downloads for the current point release of each version. The links provided
here are from the Effective MySQL website only to ensure a level of auto-
mation when repeating these installation steps, because direct download
links from the various mirror sites can easily become unavailable as newer
point releases are released.

$ mkdir -p $HOME/opt/mysql
$ cd $HOME/opt/mysql
$ curl-o mysql-5.0.95-linux-x86_64-glibc23.tar.gz
 http://effectivemysql.com/downloads/mysql-5.0.95-linux-x86_64-glibc23.tar.gz
$ curl-o mysql-5.1.63-linux-x86_64-glibc23.tar.gz
 http://effectivemysql.com/downloads/mysql-5.1.63-linux-x86_64-glibc23.tar.gz
$ curl -o mysql-5.5.24-linux2.6-x86_64.tar.gz
 http://effectivemysql.com/downloads/mysql-5.5.24-linux2.6-x86_64.tar.gz
$ curl -o mysql-5.6.5-m8-linux2.6-x86_64.tar.gz
 http://effectivemysql.com/downloads/mysql-5.6.5-m8-linux2.6-x86_64.tar.gz
$ for F in $HOME/opt/mysql/mysql-5*.tar.gz ; \
 do make_sandbox --export_binaries $F ; done
$ rm -rf */mysql-test */sql-bench */man */docs

TIP  For scripting purposes, add the --silent option to the curl command
to remove the interactive display of the download progress.

The following MD5 values are provided to ensure the software matches
original MySQL download versions:

$ md5sum mysql*.gz
749120f0d9715a387b9dccb552e8c59a mysql-5.0.95-linux-x86_64-glibc23.tar.gz
594ea37fcd9f29a9e3eddf38e7288e3f mysql-5.1.63-linux-x86_64-glibc23.tar.gz
a9364f4c352c92c163b93106d56df463 mysql-5.5.24-linux2.6-x86_64.tar.gz
47404074376165599f8a152f8ed08d97 mysql-5.6.5-m8-linux2.6-x86_64.tar.gz

CAUTION  You should always check the MySQL Downloads page and use the
appropriate mirrors to obtain the current point release of each MySQL
applicable MySQL version you wish to test.

Replication Setup with MySQL Sandbox
There are several different MySQL Sandbox commands to create various
types of configurations. The following simple command will create a
MySQL master and two slaves configuration:

$ make_replication_sandbox 5.5.24
installing and starting master
installing slave 1
installing slave 2

09-Appendix.indd 247 9/5/12 12:25 PM

http://dev.mysql.com/downloads
http://dev.mysql.com/downloads

248 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

starting slave 1
.. sandbox server started
starting slave 2
.. sandbox server started
initializing slave 1
initializing slave 2
replication directory installed in $HOME/sandboxes/rsandbox_5_5_24

This has installed a working MySQL replication topology into the
$HOME/sandboxes/rsandbox_5_5_24 directory. The MySQL instances
are also started by default. A number of files and subdirectories exist here:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ ls -l
total 60
-rwxr-xr-x 1 uid gid 302 May 21 16:33 check_slaves
-rwxr-xr-x 1 uid gid 465 May 21 16:33 clear_all
-rwxr-xr-x 1 uid gid 785 May 21 16:33 initialize_slaves
-rwxr-xr-x 1 uid gid 171 May 21 16:33 m
drwxrwxr-x 4 uid gid 4096 May 21 17:42 master
drwxrwxr-x 4 uid gid 4096 May 21 17:18 node1
drwxrwxr-x 4 uid gid 4096 May 21 20:14 node2
-rwxr-xr-x 1 uid gid 220 May 21 16:33 restart_all
-rwxr-xr-x 1 uid gid 56 May 21 16:33 s1
-rwxr-xr-x 1 uid gid 56 May 21 16:33 s2
-rwxr-xr-x 1 uid gid 420 May 21 16:33 send_kill_all
-rwxr-xr-x 1 uid gid 612 May 21 16:33 start_all
-rwxr-xr-x 1 uid gid 287 May 21 16:33 status_all
-rwxr-xr-x 1 uid gid 390 May 21 16:33 stop_all
-rwxr-xr-x 1 uid gid 405 May 21 16:33 use_all

The MySQL instances and individual configuration can be found in the
master, node1, and node2 directories. All other files are convenience util-
ities for managing the sandbox environment. The individual filenames de-
scribe the different purposes, including starting, stopping, connecting, and
checking the sandbox environment.

NOTE  When creating a new MySQL Sandbox replication environment
the respective MySQL instances will be started. To stop these instances, use
the stop_all command found in the applicable directory. You can use the
start_all command to launch the MySQL instances following a shutdown
or reboot of the host machine.

References
MySQL Sandbox is an open source product released under the GNU GPL
v2. More information is available from the following sites:

09-Appendix.indd 248 9/5/12 12:25 PM

	 A MySQL Replication Test Environment 	 249

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	Product Home  http://mysqlsandbox.net/

•	Code Download  https://launchpad.net/mysql-sandbox/+download

•	Perl CPAN package  http://search.cpan.org/
perldoc?MySQL::Sandbox

•	Cookbook  http://search.cpan.org/~gmax/MySQL-Sandbox-3.0.25/
lib/MySQL/Sandbox/Recipes.pm

Using Virtual Servers
There are many different virtualization products available that can support
running a virtual environment on a single server. The following steps show
how to set up a dedicated MySQL server environment using VirtualBox.

VirtualBox Installation
VirtualBox is an open source product that can be downloaded from https://
www.virtualbox.org/. This runs on multiple operating systems, including
Mac OS X, Microsoft Windows, Linux, and Solaris. Refer to the website for
specific instructions on installation with your operating system at http://
www.virtualbox.org/manual/ch02.html.

Following the installation of the virtualization tool on your machine,
referred to as the host, you also need to install an operating system to oper-
ate a virtual host. This is also known as a guest. For this demonstration we
will be using the Ubuntu Server 12.04 LTS 64-bit operating system available
from http://www.ubuntu.com/download/server. Detailed instructions for
configuration of a virtual server can be found at https://www.virtualbox
.org/manual/ch03.html.

As part of the installation process you will be required to specify a
username. There is no restriction to what this must be. For demonstration
purposes in this book, the username will be “user.”

VirtualBox Configuration
After installing and configuring a new virtual host, one setting is necessary
for use in the examples throughout this book. Under the settings for the
virtual host, select Network and enable Adapter 2, as shown in Figure A-1.
This should be configured to attach to a bridged adapter. The name should

09-Appendix.indd 249 9/5/12 12:25 PM

http://mysqlsandbox.net/
https://launchpad.net/mysql-sandbox/+download
http://search.cpan.org/perldoc?MySQL::Sandbox
http://search.cpan.org/perldoc?MySQL::Sandbox
http://search.cpan.org/~gmax/MySQL-Sandbox-3.0.25/lib/MySQL/Sandbox/Recipes.pm
http://search.cpan.org/~gmax/MySQL-Sandbox-3.0.25/lib/MySQL/Sandbox/Recipes.pm
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.virtualbox.org/manual/ch02.html
http://www.virtualbox.org/manual/ch02.html
http://www.ubuntu.com/download/server
https://www.virtualbox.org/manual/ch03.html
https://www.virtualbox.org/manual/ch03.html

250 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

also match your applicable network device on your host. Adapter 1 should
remain enabled as a NAT Adapter.

MySQL Replication Environment
For this book, the following environment of three servers is used:

•	Server 1 is called alpha, and has an IP address of 192.168.1.51

•	Server 2 is called beta, and has an IP address of 192.168.1.52

•	Server 3 is called gamma, and has an IP address of 192.168.1.53

The IP addresses can be defined at your discretion. It is recommended
you use the same C class as your host machine and internal network, i.e.,
the 192.168.1. portion should be configured to match your own network.
The following configuration is repeated for each new VirtualBox guest host
that is created. VirtualBox also enables you to easily create one guest host
and use the clone option.

Figure A-1  Virtual Box Network Adapter 2 configuration

09-Appendix.indd 250 9/5/12 12:25 PM

	 A MySQL Replication Test Environment 	 251

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Virtual Host Configuration
The following steps are necessary to configure the default Ubuntu Server
installation to match the needs for the examples.

Sudo Privileges

To automate many commands in the examples for this book, removing the
password requirements when executing the sudo command will remove un-
necessary complexity. The following steps will grant the user this privilege:

$ echo `id -un`" ALL=NOPASSWD: ALL" > /tmp/mysql
$ chmod 440 /tmp/mysql
$ sudo chown root:root /tmp/mysql
$ sudo mv /tmp/mysql /etc/sudoers.d

Hostname

For each instance we set the hostname by changing this in the /etc/host-
name file:

$ sudo vi /etc/hostname

The contents of this file should look like:

$ cat /etc/hostname
alpha

The contents of this file should reflect alpha, beta, and gamma,
respectively.

DNS Hosts

In order to refer to the server hostnames in all examples, the following
values are added to each virtual server hosts file:

$ sudo /etc/hosts

The contents of this file should look like this for all virtual servers:

$ cat /etc/hosts
127.0.0.1	 localhost
192.168.1.51 alpha
192.168.1.52 beta
192.168.1.53 gamma

In addition, the default installation will create an entry for the default
hostname at 127.0.[01].1. This line in the hosts file must be removed.

09-Appendix.indd 251 9/5/12 12:25 PM

252 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

TIP  If you use your host machine to execute any commands, it is highly
recommended you add these entries to the host machine’s respective hosts file.
This will vary depending on your operating system.

Server IP Address

In order to be able to reference hosts in a reproducible fashion, each vir-
tual server must be defined with a static IP address rather than a dynamic
DHCP IP address. This is specified in the network interfaces file by adding
entries for eth0 and eth1:

$ sudo vi /etc/network/interfaces

The contents of this file should look like:

$ cat /etc/network/interfaces
The loopback network interface
auto lo
iface lo inet loopback

Adapter 1
auto eth0
iface eth0 inet dhcp

Adapter 2
auto eth1
iface eth1 inet static
address 192.168.1.51
netmask 255.255.255.0
network 192.168.1.1
broadcast 192.168.1.255

The address value should represent the corresponding value for each
virtual server. All other information remains unchanged.

NOTE  If you clone a guest virtual server to create a new virtual server, be sure
to select the option to create a new MAC address for each network device.

The preceding network definition relies on the virtual network adapter
name in the guest server to be eth0 and eth1. These are the default values
for the first two network adapters, and when you create your first guest
instance this should operate without incident.

Adjusting Cloned Virtual Hosts
If you choose to clone your first guest virtual server to avoid repeating
these steps, it is likely the virtual server will not correctly define eth0

09-Appendix.indd 252 9/5/12 12:25 PM

	 A MySQL Replication Test Environment 	 253

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

and eth1. This is due to the change of MAC address, which is necessary to
operate multiple virtual hosts concurrently. To address this problem, you
must correctly reference the MAC address to the virtual adapter name in
the /etc/udev/rules.d/70-persistent-net.rules file. Generally,
this involves removing older entries that match eth0 and eth1, and up-
dating the following entries with the correct name. For reference purposes,
the format of this file follows. The ATTR{address} value should match the
MAC address defined in the Network tab of your guest virtual server for
Adapter 1 (NAT) and Adapter 2 (Bridged Adapter), respectively. The NAME
value should match eth0 and eth1, respectively:

$ cat /etc/udev/rules.d/70-persistent-net.rules
PCI device 0x8086:/sys/devices/pci0000:00/0000:00:03.0 (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
 ATTR{address}=="08:00:27:58:24:dc", ATTR{dev_id}=="0x0",
ATTR{type}=="1",
KERNEL=="eth*", NAME="eth0"
PCI device 0x8086:/sys/devices/pci0000:00/0000:00:08.0 (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
ATTR{address}=="08:00:27:d4:5f:91", ATTR{dev_id}=="0x0",
ATTR{type}=="1",
KERNEL=="eth*", NAME="eth1"

CAUTION  If you clone your guest virtual server, it is likely that internally the
virtual adapter name will not match expectations and networking will not be
correctly configured. A manual change to the mapping on the guest operating
system will be required.

Additional network reference information can be found at https://help
.ubuntu.com/12.04/serverguide/network-configuration.html.

MySQL Installation
The following steps will manually install MySQL 5.6 on each virtual server
that has just been created. Any MySQL version can be installed by chang-
ing the appropriate value on the first line to a matching source MySQL
binary file as described in the MySQL Sandbox section:

$ MYSQL_TAR="mysql-5.6.5-m8-linux2.6-x86_64.tar.gz"
$ cd
$ sudo apt-get update
$ sudo apt-get install libaio1 # This is only needed for MySQL 5.6
$ rm -f $HOME/.my.cnf
$ wget http://effectivemysql.com/downloads/${MYSQL_TAR}
$ md5sum ${MYSQL_TAR}

09-Appendix.indd 253 9/5/12 12:25 PM

https://help.ubuntu.com/12.04/serverguide/network-configuration.html
https://help.ubuntu.com/12.04/serverguide/network-configuration.html

254 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

$ tar xvfz ${MYSQL_TAR}
$ rm -f ${MYSQL_TAR}
$ mv mysql-5* mysql
$ cd mysql
$./scripts/mysql_install_db
$./bin/mysqld_safe &
$ sleep 3
$ tail data/`hostname`.err

The output of the MySQL error log should be verified to confirm that
MySQL successfully started:

120615 12:32:41 [Note] /home/user/mysql/bin/mysqld: ready for connections.
Version: '5.6.5-m8' socket: '/tmp/mysql.sock' port: 3306 MySQL Community
 Server (GPL)

A second sanity check can also be performed:

$./bin/mysql -e "SELECT VERSION()"
+-----------+
| VERSION() |
+-----------+
| 5.6.5-m8 |
+-----------+

NOTE  For demonstration purposes MySQL installation is performed using the
applicable binary tar to easily support multiple MySQL versions. The software
is installed in the home directory of the current user for simplicity only. These
steps are for testing purposes only and do not reflect a suitable practice for a
production deployment.

The following step will help to secure the MySQL installation. During
this step you are asked to specify a root password for the MySQL instance.
This value is also used in a subsequent configuration file. For demonstra-
tion purposes this value is “passwd”; however, any value can be specified if
configured appropriately in the subsequent step:

$./bin/mysql_secure_installation
Follow the prompts
$./bin/mysql -uroot
ERROR 1045 (28000): Access denied for user 'root'@'localhost'
(using password: NO)
$ HOSTNAME=`hostname`
$ echo "[client]
user=root
password=passwd
[mysql]
prompt='${HOSTNAME}> '" > $HOME/.my.cnf
$./bin/mysql -e "SELECT VERSION()"

09-Appendix.indd 254 9/5/12 12:25 PM

	 A MySQL Replication Test Environment 	 255

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

NOTE  For demonstration purposes in this book the root MySQL user is used,
and a configuration file is created for simplicity of password authentication. In
a production environment, appropriate procedures to match your business
needs should be implemented accordingly.

The final steps help in command pathing and basic configuration to en-
able tools and replication configuration happen unaided:

$ echo "export MYSQL_HOME=\$HOME/mysql
export PATH=\$MYSQL_HOME/bin:\$PATH" > /tmp/mysql.sh
sudo mv /tmp/mysql.sh /etc/profile.d/
. /etc/profile.d/mysql.sh
$ mysql -e "GRANT ALL ON *.* TO root@'192.168.1.%' \
 IDENTIFIED BY 'passwd' WITH GRANT OPTION"
$ cd $HOME/mysql
$ mkdir etc
$ SERVER_ID=` grep address /etc/network/interfaces | cut -d. -f4`
$ echo "[mysqld]
server-id=${SERVER_ID}
log-bin" > etc/my.cnf
$ mysqladmin shutdown
$ mysqld_safe --defaults-file=$HOME/mysql/etc/my.cnf &
$ sleep 2
$ tail data/`hostname`.err

These steps have not completed the replication setup. Each virtual server
has MySQL running and configured to support being used in a MySQL
replication topology. The MySQL utilities described in Chapter 4 are used
to complete the necessary steps. Alternatively, the manual instructions de-
fined in this appendix may be used to complete the setup.

Testing and Verifying MySQL Replication
The following simple test can be used to show MySQL replication (and lag)
in operation. Also from Giuseppe, the following simple procedure produces
a repeating and increased statement duration that demonstrates replication
lag using the default MySQL asynchronous replication. This requires two
separate terminal sessions.

In one terminal session perform the following command to monitor
MySQL replication in action using the MySQL Sandbox setup previously
described:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$./restart_all
$ while [:] ; do date; ./s1 -e "SHOW SLAVE STATUS\G" | \
 grep Seconds; sleep 1; done

09-Appendix.indd 255 9/5/12 12:25 PM

256 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

In a different terminal session run the following commands:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$./m
#http://datacharmer.blogspot.com/2006/06/filling-test-tables-quickly.html
CREATE SCHEMA IF NOT EXISTS book3;
USE book3
DROP TABLE IF EXISTS numbers;
CREATE TABLE numbers (id INT NOT NULL PRIMARY KEY);
DELIMITER $$
DROP PROCEDURE IF EXISTS fill_numbers $$
CREATE PROCEDURE fill_numbers()
DETERMINISTIC
BEGIN
 DECLARE counter INT DEFAULT 1;
 TRUNCATE TABLE numbers;
 INSERT INTO numbers VALUES (1);
 WHILE counter < 1000000
 DO
 INSERT INTO numbers (id)
 SELECT id + counter
 FROM numbers;
 SELECT COUNT(*) INTO counter FROM numbers;
 SELECT counter;
 END WHILE;
END $$
DELIMITER ;
CALL fill_numbers();

This SQL statement will produce the following output. Depending on
your hardware this may take 20 seconds or longer to complete:

...
+---------+
| counter |
+---------+
| 131072 |
+---------+
1 row in set (1.11 sec)
+---------+
| counter |
+---------+
| 262144 |
+---------+
1 row in set (2.09 sec)
+---------+
| counter |
+---------+
| 524288 |
+---------+

09-Appendix.indd 256 9/5/12 12:25 PM

	 A MySQL Replication Test Environment 	 257

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

1 row in set (4.10 sec)
+---------+
| counter |
+---------+
| 1048576 |
+---------+
1 row in set (7.83 sec)

The result from the initial monitoring terminal shows MySQL in opera-
tion and that replication lag is present:

...
Sun May 20 20:11:06 EDT 2012
 Seconds_Behind_Master: 0
Sun May 20 20:11:07 EDT 2012
 Seconds_Behind_Master: 1
Sun May 20 20:11:08 EDT 2012
 Seconds_Behind_Master: 1
Sun May 20 20:11:09 EDT 2012
 Seconds_Behind_Master: 2
Sun May 20 20:11:10 EDT 2012
 Seconds_Behind_Master: 3
Sun May 20 20:11:11 EDT 2012
 Seconds_Behind_Master: 4
Sun May 20 20:11:12 EDT 2012
 Seconds_Behind_Master: 5
Sun May 20 20:11:13 EDT 2012
 Seconds_Behind_Master: 0
Sun May 20 20:11:14 EDT 2012
 Seconds_Behind_Master: 6
Sun May 20 20:11:16 EDT 2012
 Seconds_Behind_Master: 8
Sun May 20 20:11:17 EDT 2012
 Seconds_Behind_Master: 9
Sun May 20 20:11:18 EDT 2012
 Seconds_Behind_Master: 10
Sun May 20 20:11:19 EDT 2012
 Seconds_Behind_Master: 0

You can also monitor MySQL replication in real time with the SHOW
SLAVE STATUS command. The following watch syntax provides an online
display that does not translate into print:

$ cd $HOME/sandboxes/rsandbox_5_5_24
$ watch --interval=1 --differences \
'mysql --defaults-file=node1/my.sandbox.cnf -e "SHOW SLAVE STATUS\G"'

09-Appendix.indd 257 9/5/12 12:25 PM

258 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

When using MySQL Sandbox you can simplify this syntax using the
convenience command for connecting to the slave:

$ watch --interval=1 --differences './s1 -e "SHOW SLAVE STATUS\G"'

MySQL Sandbox also provides a quick command for viewing and mon-
itoring a subset of replication information:

$./check_slaves
slave # 1
 Master_Log_File: mysql-bin.000002
 Read_Master_Log_Pos: 5308
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Exec_Master_Log_Pos: 5059
slave # 2
 Master_Log_File: mysql-bin.000002
 Read_Master_Log_Pos: 5308
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Exec_Master_Log_Pos: 5059

NOTE  The true replication delay is not Seconds_Behind_Master. This
value is an indication of the current system time with the time the current
statement was executed on the master. It is possible that no statements have
since physically occurred, and replication will be in sync with the completion of
the running statement, which may be a few seconds, when a value of hundreds
is reported. This value is a good indication that the slave has not yet completed
executing all available statements in the replication stream.

Conclusion
These are just two simple examples of how to create a suitable MySQL
replication environment for testing purposes.

Examples and links in this chapter are available for download from
http://EffectiveMySQL.com/book/replication-techniques.

09-Appendix.indd 258 9/5/12 12:25 PM

http://EffectiveMySQL.com/book/replication-techniques

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

259

A
access management

applications, 91–92
SSH, 135–136
write restrictions, 88–90

active/passive replication, 80–81
active servers, 83–85
Address Resolution Protocol (ARP), 92
alerts

causes, 8–9
notifications, 2–3
problem identification, 4–6
problem rectification, 6–8
thold plugin, 238

ALTER statement, 9, 28, 32
ALTER TABLE statement, 9, 28
Amazon RDS, 50, 204
Amazon Web Services (AWS) cloud

service, 58, 93
Application Programming Interface (API)

binary log, 19, 203

MySQL Cluster, 157
wsrep, 157

applications
access management, 91–92
usage and verification, 87

appliedLastSeqno variable, 191
appliedLatency variable, 191
architecture reviews, 14–15
ARP (Address Resolution Protocol), 92
arp command, 92
arping command, 92
asynchronous behavior, extending,

44–50
auto.cnf file, 71
auto_increment_increment variable,

82, 217
auto_increment_offset variable, 82,

217–218
autocommit variable, 40
automated failover, 102, 141–145
AWS (Amazon Web Services) cloud

service, 58, 93

Index

10-Index.indd 259 9/6/12 5:48 PM

260 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

B
backups

remote binary log, 68–70
and replication, 36

balancing read and write loads, 76–77, 100
base_name setting, 16
.bashrc file, 137
Bazaar version control software, 117
BGC (binlog group commit) addition, 41
binary logs, 16–17

analysis, 17–19
group commits, 75–76
index files, 16
managing, 19–20
remote backups, 68–70
statements, 222
system variables, 208–212

bind_address variable, 218
Binlog API, 19
binlog_cache_size variable, 209
binlog_checksum variable, 62, 220
binlog_do_db variable, 22, 209
binlog_flush_log_at_timeout

variable, 212
binlog_format variable, 27, 209
binlog group commit (BGC) addition, 41
binlog_ignore_db variable, 22, 209
binlog_max_flush_queue_time variable,

75, 212
binlog_order_commits variable, 75, 212
binlog_row_event_max_size

variable, 210
binlog_row_image variable, 66–67, 209
binlog_rows_query_log_events variable,

211–212
binlog_stmt_cache_size variable, 209
BLACKHOLE storage engine, 10, 99–100
bufferSize setting, 196

C
Cacti Console, 239
Cacti graphing system, 238–240
cause analysis, 8–9
certificates, security, 51–53
CHANGE MASTER TO statement, 222

active servers, 84–85
delayed replication, 60–61
GTIDs, 72–75
SSL, 56–57
thread errors, 36

CHANGE MASTER TO MASTER_DELAY
statement, 114

check option, 113
checksums

system variables, 220
working with, 62–63

circular replication, 100–102
cleaning up Tungsten Sandbox, 185
cloned virtual hosts, 252–253
cloud products, 58, 203–204
Cluster Glue, 148
Cluster Resource Manager (CRM), 148
clusters

Galera. See Galera Cluster for
MySQL

management, 147–149
MySQL cluster, 156–157

Clustrix product, 204
Com_alter_ variables, 28–29
commercial organizations, 152
community users, independent, 151
configuration, 207–208

Galera Cluster for MySQL,
172–173

MHA, 136–137
monitoring, 226–227
multi-master replication, 81–83
MySQL Sandbox, 247–248
options and variables, 10–11
SSL, 53–54, 56
system variables. See system

variables
test environment, 244–245
Tungsten Replicator, 186, 195–196
virtual hosts, 251
VirtualBox, 249–250
wsrep, 162–164

Connector/J for Java, 76
consistency

replication, 27–32
schema objects, 9

Continuent Tungsten, 202
controlled failovers, 140–145
cpan command, 245
crash-safe slaves

overview, 58–60
system variables, 219–220

CRC32 checksums, 62
CREATE TABLE statement, 27, 30
CRM (Cluster Resource Manager), 148
curl command, 246

10-Index.indd 260 9/6/12 5:48 PM

	 Index	 261

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

D
data inconsistencies, 28, 32
data integrity improvements, 58
Data Link Layer for application access, 92
DDL statements, 10, 86
default prompt, 8
default_storage_engine variable, 217
delayed replication, 60–62
Development Milestone Release

(DMR), 116
difference_table variable, 112
direct replication mode, 199–201
disable-gtid-unsafe-statements

variable, 220
DML statements, 10, 86
DMR (Development Milestone

Release), 116
DNS hosts, 251
DNS translation, 92
doCheckSum setting, 196
documentation

Tungsten Sandbox, 186
Workbench utilities, 118

donors in MySQL Cluster, 159
duplicate key errors, 4–6
duplicate rows, 34–35

E
Effective MySQL site, 247
elect command, 122, 127
entity relationship (ER) visual modeling

tools, 116
error logs, 37, 228–229
/etc/hostname file, 251
/etc/hosts file, 251
/etc/network/interfaces file, 92
/etc/profile.d/mysql.sh script, 136
eth0 address, 165, 252–253
eth1 address, 252–253
ETL (Extract, Transform, Load) step, 196
Exec_Master_Log_Pos column, 91, 97
Executed_Gtid_set, 22, 25
expire_logs_days variable, 19–20, 108, 210
Extract, Transform, Load (ETL) step, 196

F
Facebook, 151–152
failover

automated, 141–145
high availability, 102

multi-master replication, 80,
88–93, 95

slave servers, 96–97
Tungsten Replicator, 193–195

failover command, 122, 129
failover_console table, 130
failover managers, 132–133

MHA. See Master High Availability
(MHA) manager

MMM, 146–147
failure verification, 192–193
fan-in replication, 196–199
file locations in Tungsten

Replicator, 180
5.6 system variables, 219–221
Flipper tool, 102, 147
FLUSH BINARY LOGS statement,

210, 222
FLUSH LOGS statement, 18, 222
FLUSH MASTER statement, 222
FLUSH SLAVE statement, 222
FLUSH STATUS command, 29
fsyncOnFlush setting, 196

G
Galera Cluster for MySQL, 157–158

features, 174–175
help and information for, 176
implementation, 175
installation, 159–161
limitations, 158
MariaDB Galera Cluster, 176
multi-master replication,

171–172
MySQL configuration, 172–173
nodes, 166–168, 173–174
operation confirmation,

168–171
Percona XtraDB Cluster,

175–176
references, 158
state snapshot transfer, 164–168
synchronous replication, 49
terminology, 158–159
wsrep configuration, 162–164

Galera Wiki, 170
garbd daemon, 174–175
general_log option, 16
general_log_file option, 16
GET_LOCK statement, 158

10-Index.indd 261 9/6/12 5:48 PM

262 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

global transaction identifiers (GTIDs)
mysqlfailover, 130
mysqlrpladmin, 122–126
overview, 71–75
system variables, 220–221

Google Cloud SQL, 50, 204
GRANT statement, 54–56, 217
GRANT ALL ON statement, 10
GRANT REPLICATION CLIENT

statement, 221
GRANT REPLICATION SLAVE statement,

84, 221
GRANT REPLICATION SLAVE ON

statement, 95
granularity, monitoring, 228
groups

binary log group commits, 75–76
MySQL Cluster, 159

gtid command, 125–126
gtid_mode variable, 72, 212
gtid-mode variable, 220
GTID_SUBSET function, 223
GTID_SUBTRACT function, 223
GTIDs (global transaction identifiers)

mysqlfailover, 130
mysqlrpladmin, 122–126
overview, 71–75
system variables, 220–221

H
HA (high availability), 80, 102
have_dynamic_loading variable,

45, 217
have_openssl variable, 51
have_ssl variable, 51
health command, 122–126
Heartbeat daemon, 148
high availability (HA), 80, 102
host_name-relay-bin.index file, 26
hostnames for virtual servers, 251

I
IDENTIFIED BY clause, 84
identifying problems, 4–6
implementation

Galera Cluster for MySQL, 175
monitoring, 236

inconsistencies
data, 28, 32
schemas, 28–31

Incremental State Transfer (IST), 167
independent arbitrators in

Galera, 174
independent community users, 151
index command, 185
.index extension, 16
info command, 185
InnoDB

system variables, 218–219
transaction logs, 14

innodb_autoinc_lock_mode variable,
218–219

innodb_doublewrite variable, 219
innodb_flush_log_at_trx_commit

variable, 39, 187, 218
innodb_locks_unsafe_for_binlog

variable, 218
innodb_support_xa variable, 219
InnoTop command, 236
INSTALL PLUGIN command, 45
installation

Galera Cluster for MySQL,
159–161

manager software, 134–135
MySQL Sandbox, 245–247
node software, 133–134
plugin, 44–48
Tungsten Replicator, 178–180,

186–188
virtual servers, 253–255
VirtualBox, 249

interpreting replication information,
15–27

IP addresses
Galera Cluster for MySQL, 165
virtual, 91–93, 133, 147–148
virtual servers, 250, 252

iptables, 88
IST (Incremental State Transfer), 167

J
Java Virtual Machine (JVM) memory

usage, 195–196
JavaScript Object Notation

(JSON), 180
joiner nodes in MySQL Cluster, 158

K
Karlsson, Anders, 150
Kindahl, Mats, 203

10-Index.indd 262 9/6/12 5:48 PM

	 Index	 263

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

L
lag, replication, 35

causes, 36
improving and minimizing, 37–41
MySQL error log, 37

Last_Errno variable, 3
Last_Error variable, 3–4
Last_IO_Errno column, 24
Last_IO_Error column, 24
Last_IO_Error_Timestamp column, 25
Last_SQL_Errno column, 24
Last_SQL_Error column, 24
Last_SQL_Error_Timestamp column, 25
Linux High Availability project, 148
Linux shell scripts for monitoring, 240
list command, 185
load balancing, read and write,

76–77, 100
log-bin option, 16, 123, 244
log-bin variable, 81, 210
log_bin variable, 208
log_bin_basename variable, 210–211
log-bin-index option, 16
log_bin_index variable, 209
log-slave-updates option, 123
log-slave-updates variable, 81
log_slave_updates variable, 214
logFileSize setting, 196
logs

binary. See binary logs
error, 37, 228–229
relay, 25–27
THL, 181, 184–185

long_query_time option, 17

M
MAAS (Monitoring As A Service), 240
Maatkit, 28, 116
MAC (Media Access Control) addresses,

92, 253
management, new features, 68–75
manager software installation,

134–135
manual failover process, 88–93
MariaDB Galera Cluster, 176
MariaDB version, 76
MASTER_AUTO_POSITION clause,

72–75
Master_Bind column, 25
MASTER_DELAY attribute, 60

Master High Availability (MHA)
manager, 102

automated failover, 141–145
configuration, 136–137, 146
controlled failover, 140–141
manager software installation,

134–135
node software installation,

133–134
replication checks, 137–139
running, 139
SSH access, 135–136
stopping, 140
virtual environment, 135

Master_Host variable, 96
master.info file, 58, 98, 231–233
Master_Info_File column, 25
master-info-repository variable, 58, 121,

219, 233
master_ip_failover_script script, 146
Master_Log_File variable, 23, 97
master-master clusters, 179–180
Master_Port variable, 97
MASTER_POS_WAIT function, 223
Master Relay Logs (MRL), 181
Master_Retry_Count column, 25
Master_Server_Id column, 3, 25
master/slave setup in Tungsten Replicator,

188–189
Master_SSL_Crl column, 25
Master_SSL_Crlpath column, 25
Master_SSL_Verify_Server_Cert

column, 24
Master_User variable, 97
master_verify_checksum variable,

62, 220
masterha_check_repl command,

136–137
masterha_check_status command, 139
masters, 14–15

active server status, 84
failure simulation, 131
multi-master replication. See

multi-master replication
Tungsten Replicator, 194–195
write access, 89–90

Matsunobu, Yoshinori, 102, 133, 150
max_allowed_packet variable, 218
max_binlog_size variable, 210
Maxia, Giuseppe, 240, 245

10-Index.indd 263 9/6/12 5:48 PM

264 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Media Access Control (MAC) addresses,
92, 253

MEM (MySQL Enterprise Monitor),
236–237

meta files, monitoring, 231–233
meta tables, monitoring, 233–234
missing schema objects, 33–34
Mituzas, Domas, 150–151
MIXED setting, 27
mk-slave-prefetch tool, 150
mk-table-checksum tool, 110
MMM (Multi-Master Replication Manager

for MySQL), 102, 146–147
--monitor command, 113
Monitor for MySQL (MPM), 175
monitoring, 225

configuration, 226–227
error log, 228–229
granularity, 228
implementation, 236
meta files, 231–233
meta tables, 233–234
MySQL information, 228–234
products, 234–240
replication, 41–42
semisynchronous replication,

230–231
Monitoring As A Service (MAAS), 240
Monty Program, 152
Monty Program Knowledge Base, 176
MPM (Monitor for MySQL), 175
MPM (MySQL Performance

Monitor), 240
MRL (Master Relay Logs), 181
mtop command, 236
Multi-AZ deployment, 50
multi-master replication, 79

active/passive, 80–81
automating high availability

failovers, 102
circular replication, 100–102
configuration settings, 81–83
failover capabilities, 80
Galera Cluster for MySQL,

171–172
manual failover process, 88–93
real world usage complications,

93–94
setup, 83–85
slave servers, 94–100
verification, 86–87, 90

Multi-Master Replication Manager for
MySQL (MMM), 102, 146–147

multi-threaded slaves, 64–65, 220
my.cnf file

binary logs, 209
GTID, 72, 122
multi-threaded slaves, 64
relay logs, 26
SSL configuration requirements,

53–54, 56
ssl option, 51

MyISAM storage engine, 28
MySQL Cluster, 156–157
MySQL Enterprise Monitor (MEM),

236–237
MySQL MHA, 133–135
MySQL pairs. See multi-master

replication
MySQL Performance Monitor

(MPM), 240
mysql.plugin table, 45
MySQL proxy, 76
MySQL Replication Listener, 203
MySQL Sandbox, 107–110

configuration, 247–248
installation, 245–247
references, 248–249

MySQL server IDs, 33
mysql.slave_master_info table, 58, 98
mysql.slave_relay_log_info table, 59
MySQL Workbench. See Workbench

utilities
mysqlbinlog utility

backups, 68–70
binary log analysis, 17–19
relay logs, 25–26
row-based replication, 66–67
SSH, 136

mysqld process, 131, 166
mysqld_safe process, 131, 175
mysqldump utility, 29, 36, 136,

165–166
mysqldumpslow utility, 17
mysqlfailover utility, 130–132
mysqlnd driver, 76
mysqlreplicate utility, 118–120
mysqlrpladmin utility, 122–129
mysqlrplcheck utility, 120–122
mysqlrplshow utility, 120
Mytop command, 236

10-Index.indd 264 9/6/12 5:48 PM

	 Index	 265

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

N
Network Layer for application access, 92
new features, 58

binary log group commit, 75–76
checksums, 62–63
crash-safe slaves, 58–60
data integrity, 58
delayed replication, 60–62
load balancing, 76–77
management, 68–75
performance improvements,

63–68
no-data option, 30
Noach, Shlomi, 106
noatime attribute, 38
nobarrier attribute, 38
node fencing, 146
node servers in Tungsten Replicator,

182–184
nodes

Galera Cluster for MySQL,
166–168, 173–174

MHA, 133–134
MySQL Cluster, 158

notifications for alerts, 2–3

O
oak-get-slave-lag command, 107
oak-purge-master-logs command,

108–109
oak-show-replication-status command,

107–108
object consistency in schemas, 9
Online Transaction Processing (OLTP)

application, 157
Openark kit, 106–109
operation confirmation in Galera Cluster

for MySQL, 168–171
options, configuration and

implementation, 10–11

P
passive/standby servers, 83
passwords

root, 254
slave servers, 98

patches, 151–152
pedantic option, 119
Percona Replication Manager (PRM),

148–149

Percona Toolkit, 28, 109–116, 152
Percona XtraDB Cluster, 175–176
performance

binary logs, 75–76
improvements, 63–68

permissions
security issues, 10
setting up, 118–119
SSL, 54
write access, 90

persistent connections, 93
pid-file, 26
Plugin Architecture (PIA), 238
plugin installation, 44–48
poller.php script, 238
prefetch, replication, 149–150
privileges

SSL, 54–58
system variables, 221
virtual servers, 251

PRM (Percona Replication Manager),
148–149

problems
identifying, 4–6
rectifying, 6–8

product monitoring, 234–240
PROMPT command, 8
pt-heartbeat utility, 42, 113–114
pt-query-digest utility, 17
pt-slave-delay utility, 114
pt-slave-find utility, 114–116
pt-table-checksum utility, 110–112
pt-table-sync utility, 112
purge command, 185
PURGE LOGS statement, 20–21, 108,

210, 222

R
RAID configuration, 40
raw option, 69
RBR (row-based replication), 27, 65–68
read and write load balancing,

76–77, 100
read-from-remote-master option, 69
read-from-remote-server option, 69
Read_Master_Log_Pos column, 23, 91
read_only variable, 214

bypassing, 221
for data consistency, 32
write access, 88–90

10-Index.indd 265 9/6/12 5:48 PM

266 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

read-only variable, 81
real world usage complications, 93–94
rectifying problems, 6–8
recurse option, 120
relay_log variable, 26, 213
Relay_Log_File variable, 24, 26
relay_log_index variable, 26, 213
relay-log.info file, 58–59, 233
relay-log-info-repository variable, 59,

220, 233
Relay_Log_Position variable, 24, 26
relay_log_purge variable, 214
relay-log-recovery variable, 214
relay logs, 25–27
Relay_Master_Log_File variable, 24
RELEASE_LOCK statement, 158
remote binary log backups, 68–70
REPLACE command, 112
replicate_do_db variable, 82, 213
replicate_ignore variable, 213
replicate-ignore-db variable, 32, 38, 82
Replicate_Ignore_Server_ids variable,

3, 25
replicate-ignore-table variable, 32, 38
replicate-wild variable, 38
replication advisors in MEM, 236–237
Replication Booster, 150
replication overview

architecture review, 14–15
common errors, 33–35
configuration options and

variables, 10–11
consistency, 27–32
functions, 223
interpreting information, 15–27
issues, 10
lag, 35–41
monitoring, 41–42
new features. See new features
problems, 13
securing, 50–58
semisynchronous. See

semisynchronous replication
statements, 222
synchronous, 49–50
user security, 10

report-host option, 107–108, 120
report_host variable, 214
REQUIRE SSL clause, 54–56, 217
reset command, 122, 126–127

RESET MASTER statement, 222
RESET SLAVE statement, 222
restricting write access, 88–90
results-file option, 69
Retrieved_Gtid_Set column, 25
Rolling Schema Upgrade (RSU)

method, 175
root password, 254
Round Robin Database (RRD)

format, 238
row-based replication (RBR), 27,

65–68
ROW setting, 27
rows, duplicate, 34–35
rpl_semi_sync_master_clients

variable, 231
rpl_semi_sync_master_enabled variable,

46–47, 215
rpl_semi_sync_master_status variable,

48–49
rpl_semi_sync_master_timeout variable,

46, 48, 215
rpl_semi_sync_master_trace_level

variable, 215
rpl_semi_sync_master_wait_no_slave

variable, 215
rpl_semi_sync_slave_enabled

variable, 215
rpl_semi_sync_slave_trace_level

variable, 216
RRD (Round Robin Database)

format, 238
RSU (Rolling Schema Upgrade)

method, 175
rsync method, 165–168
rsync_wan method, 165

S
SBR (statement-based replication), 27,

31–32
ScaleARC product, 204
ScaleDB product, 204
schemas

inconsistencies, 9, 28–31
missing objects, 33–34
validation, 31–32

Schemasync tool, 29
SchoonerSQL replication, 49, 203
Schwartz, Baron, 28
secondary_check_script script, 146

10-Index.indd 266 9/6/12 5:48 PM

	 Index	 267

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Seconds_Behind_Master variable, 3, 41,
49, 96, 107, 240

security, 10
SSL. See SSL
system variables, 216–217

security certificates, 51–53
semisynchronous replication, 36, 44

monitoring, 230–231
operation, 48–49
plugin installation, 44–48
system variables, 215–216

Sennhauser, Oli, 175, 240
server-id variable, 81
server_id variable, 33, 208
server-uuid variable, 71
server_uuid variable, 219
servers

active, 83–85
slave. See slave servers
system variables, 217–219
virtual, 135, 249–255

Service Logs in Tungsten Replicator, 181
SET GLOBAL binlog_format

statement, 27
SET GLOBAL read_only statement, 488
SET GLOBAL rpl_semi_sync_master_

timeout statement, 46
SET GLOBAL SLAVE_SKIP_SQL_

COUNTER statement, 222
SET SESSION statement, 31–32, 222
SET SQL_LOG_BIN statement, 9, 221
SET SQL_SLAVE_SKIP_COUNTER

statement, 221
sharding, 41, 156
SHOW BINARY LOGS statement,

69, 229
SHOW BINLOG EVENTS statement,

212, 222
SHOW BINLOG EVENTS IN

statement, 18
SHOW CREATE TABLE statement,

4–5, 130
SHOW FULL PROCESSLIST statement, 61
SHOW GLOBAL STATUS statement, 230
SHOW GLOBAL STATUS LIKE statement,

29, 47
SHOW GLOBAL VARIABLES

statement, 210
SHOW GLOBAL VARIABLES LIKE

statement, 47, 215
SHOW GRANTS FOR statement, 56

SHOW MASTER LOGS statement,
20–21, 222

SHOW MASTER STATUS statement,
18, 222

active servers, 84–85
description, 229
multi-master replication, 89–91
overview, 22
row-based replication, 66–67

SHOW MASTER STATUS OUTPUT
statement, 97

SHOW PLUGINS statement, 222
SHOW PROCESSLIST statement, 90
SHOW RELAYLOG EVENTS

statement, 222
SHOW SLAVE HOSTS statement,

107, 222
SHOW SLAVE STATUS statement, 222

active servers, 84–85
Cacti, 240
delayed replication, 61
description, 229–230
failover position, 96–97
GTIDs, 73–75
lag, 33–34, 41–42
missing schema objects, 33–34
multi-master replication, 89–91
MySQL Server IDs, 33
mysqlreplicate, 119
mysqlrpladmin, 123
Openark kit, 107
overview, 2–4, 22–25
real-time monitoring, 257
schema validation, 32
skipped errors, 6–7
UUIDs, 71

SHOW STATUS LIKE statement, 230
SHOW VARIABLES LIKE statement,

45, 50
SHOW WARNINGS statement, 72
shutdown_script script, 146
simple_services tool, 183
simulating master failures, 131
single point of failure (SPOF), 148–149
skip-dump-date option, 30
skip method, 165
skip-slave-start option, 56, 88
skip_slave_start variable, 214
slave_exec_mode variable, 11, 82,

213–214
Slave_IO_Running variable, 24, 96

10-Index.indd 267 9/6/12 5:48 PM

268 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

slave_master_info table, 60
slave-max-allowed-packet variable, 214
slave_parallel_workers variable,

36, 64, 220
slave_relay_log_info table, 60
slave servers, 14–15

crash-safe, 58–60
multi-master replication, 94–100
multi-threaded, 64–65
system variables, 219–220

slave-skip-errors option, 34–35
slave_skip_errors variable, 213
Slave_SQL_Running variable, 3–4, 24, 96
Slave_SQL_Running_State variable,

25, 61
slave_sql_verify_checksum variable,

63, 220
slave_worker_info variable, 64
SNMP information, 238
socket.ssl_cert option, 174
socket.ssl_key option, 174
software releases for MySQL Sandbox,

246–247
SPOF (single point of failure), 148–149
SQL commands and functions, 221–223
SQL_Delay variable, 25, 61
SQL_LOG_BIN variable, 32
SQL_Remaining_Delay variable, 25, 61
SQL_SLAVE_SKIP_COUNTER variable,

6–7
SQL_THREAD variable, 61
ss_get_mysql_stats.php script, 240
SSH access, 135–136
SSL

configuration requirements, 53–54
preparing for, 50–51
security certificates, 51–53
user privilege requirements, 54–58

ssl variable, 51, 216
ssl-ca variable, 216
ssl-cert variable, 216
ssl-key variable, 216
SST (state snapshot transfer), 164–168
start command for mysqlrpladmin, 122
start_all command, 248
START SLAVE statement, 57, 73, 222
stat tool, 18
state snapshot transfer (SST), 164–168
state variable, 193
statement-based replication (SBR),

27, 31–32

STATEMENT setting, 27
static-SERVICE-NAME.properties file, 181
status checks in Tungsten Replicator, 180,

189–190
stop command for mysqlrpladmin, 122
stop_all command, 248
stop-never option, 69–70
STOP SLAVE statement, 37, 222
STOP SLAVE SQL_THREAD statement,

4, 36
stoppage verification for Tungsten

Replicator, 192
streams, replication, 84–85
sudo privileges

Tungsten Replicator, 178
virtual servers, 251

switchover command, 122, 127–129
sync_binlog variable, 40, 75, 187, 210
sync_relay_log variable, 214
sync_relay_log_info variable, 214
synchronous replication, 49–50
system monitoring products, 235
system variables, 10–11, 208

5.6 replication, 219–221
binary logging, 208–212
replication behavior, 212–215
security, 216–217
semisynchronous replication,

215–216
servers, 217–219
user privileges, 221

T
templates in Cacti, 238–239
temporary table processing, 10
test environment, 243

configuration, 244–245
MySQL Sandbox, 245–249
testing and verifying replication,

255–258
virtual servers, 249–255

testing
Tungsten Replicator, 190–192
Tungsten Sandbox, 182

Thalmann, Lars, 203
THL (Transaction History Logs), 181,

184–185
thl command, 184–185
thold plugin, 238
threads in multi-threaded slaves, 64–65
threshold alerts, 238

10-Index.indd 268 9/6/12 5:48 PM

	 Index	 269

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

to-last-log option, 69
TOI (Total Order Isolation) method, 175
tools, 105

cluster management, 147–149
failover managers. See failover

managers
Maatkit, 116
Openark kit, 106–109
patches and variants, 151–152
Percona toolkit, 109–116
replication prefetch, 149–150

topologies, 101–102
topology option, 179
Total Order Isolation (TOI) method, 175
Transaction History Logs (THL), 181,

184–185
transaction logs, 14
trepctl-progress tool, 183
trepctl services, 183–184
troubleshooting incidents, 241
TRUNCATE TABLE command, 60
tsb-mm directory, 180
Tuckfield, Paul, 149
tungsten.cfg file, 180
Tungsten Replicator, 176

binary logs, 19
characteristics, 201
configuration, 41, 195–196
Continuent Tungsten, 202
direct replication mode, 199–201
environment, 180–186
failover, 193–195
failure verification, 192–193
fan-in replication, 196–199
features, 177
help and information, 202
installation, 41, 178–180, 186–188
master servers, 10
master/slave setup, 188–189
prerequisites, 178
references, 177
status check, 189–190
stoppage verification, 192
synchronous replication, 49
testing, 190–192

Tungsten Replicator Control Utility, 184
Tungsten Sandbox, 178–180

cleaning up, 185
documentation, 186
examples, 186
testing, 182

U
UNIQUE KEY clause, 4
Universally Unique Identifiers (UUIDs)

description, 71
system variables, 219

update command, 113
upgrades, lag from, 36
usage complications, 93–94
user privileges

SSL, 54–58
system variables, 221
virtual servers, 251

user security, 10
users, configuring, 84
UUID function, 223
UUID_SHORT function, 223
UUIDs (Universally Unique Identifiers)

description, 71
system variables, 219

V
validation, schema, 31–32
variables. See system variables
variants, 151–152
verbose option, 179
verification, 255–258

applications, 87
multi-master replication, 86–87, 90
Tungsten Replicator clusters,

194–195
Tungsten Replicator failure,

192–193
Tungsten Replicator stoppage, 192
write access, 88–89

virtual IP (VIP) addresses, 91–93, 133,
147–148

virtual servers
installation, 253–255
MHA, 135
test environment, 249–255

VirtualBox, 249–250

W
watch syntax, 257
Widenius, Michael “Monty”, 152
Workbench utilities, 29, 116–118

documentation, 118
mysqlfailover, 130–132
mysqlreplicate, 118–120

10-Index.indd 269 9/6/12 5:48 PM

270 	 Effective MySQL: Replication Techniques in Depth

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

Workbench utilities (cont.)
mysqlrpladmin, 122–129
mysqlrplcheck, 120–122
mysqlrplshow, 120

wrapper.conf file, 181
write access, 88–90
wsrep, 157

installation, 159–161
MySQL configuration, 162–164

wsrep_cluster_address variable, 162–164,
166, 172

wsrep_cluster_name variable, 172
wsrep_node_address variable, 172
wsrep_node_name variable, 172
wsrep_provider variable, 164, 172
wsrep_provider_options variable, 172

wsrep_slave_threads variable, 172
wsrep_sst_auth variable, 165
wsrep_sst_method variable,

164–165, 172
wsrep_sst_mysqldump variable, 166
wsrep_sst_receive_address variable, 165

X
Xeround product, 204
xtrabackup method, 165
XtraDB storage engine, 175

Z
Zabbix tool, 175

10-Index.indd 270 9/6/12 5:48 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

10-Index.indd 271 9/6/12 5:48 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

10-Index.indd 272 9/6/12 5:48 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

•	 	Up-to-date	information	on	Oracle	Database,	Oracle	Application	Server,		
Web	development,	enterprise	grid	computing,	database	technology,		
and	business	trends

•	 Third-party	news	and	announcements

•	 	Technical	articles	on	Oracle	and	partner	products,	technologies,		
and	operating	environments

•	 Development	and	administration	tips

•	 Real-world	customer	stories

If there are other Oracle users at
your location who would like to
receive their own subscription to
Oracle Magazine, please photo-
copy this form and pass it along.

Three easy ways to subscribe:

Web
Visit	our	Web	site	at oracle.com/oraclemagazine	
You’ll	find	a	subscription	form	there,	plus	much	more

Fax
Complete	the	questionnaire	on	the	back	of	this	card		
and	fax	the	questionnaire	side	only	to	+1.847.763.9638

Mail
Complete	the	questionnaire	on	the	back	of	this	card		
and	mail	it	to P.O. Box 1263, Skokie, IL 60076-8263

1

2

3

FREE SUBSCRIPTIONGET
Y O U R

TO oracle magazine
oracle magazine is essential gear for today’s information technology professionals.

Stay informed and increase your productivity with every issue of oracle magazine.

Inside each free bimonthly issue you’ll get:

Copyright © 2008, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

10-Index.indd 273 9/6/12 5:48 PM

Oracle_Flash / Effective MySQL: Replication Techniques in Depth / Bradford / 186-8

WHAT IS THE PRIMARY BUSINESS ACTIVITY
OF YOUR FIRM AT THIS LOCATION? (check
one only)

o 01 Aerospace and Defense Manufacturing
o 02 Application Service Provider
o 03 Automotive Manufacturing
o 04 Chemicals
o 05 Media and Entertainment
o 06 Construction/Engineering
o 07 Consumer Sector/Consumer Packaged

Goods
o 08 Education
o 09 Financial Services/Insurance
o 10 Health Care
o 11 High Technology Manufacturing, OEM
o 12 Industrial Manufacturing
o 13 Independent Software Vendor
o 14 Life Sciences (biotech, pharmaceuticals)
o 15 Natural Resources
o 16 Oil and Gas
o 17 Professional Services
o 18 Public Sector (government)
o 19 Research
o 20 Retail/Wholesale/Distribution
o 21 Systems Integrator, VAR/VAD
o 22 Telecommunications
o 23 Travel and Transportation
o 24 Utilities (electric, gas, sanitation, water)
o 98 Other Business and Services _________

WHICH OF THE FOLLOWING BEST DESCRIBES
YOUR PRIMARY JOB FUNCTION?
(check one only)

CORPORATE MANAGEMENT/STAFF
o 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
o 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

o 03 Sales/Marketing Management
(VP/Director/Manager)

o 04 Computer Systems/Operations
Management
(CIO/VP/Director/Manager MIS/IS/IT, Ops)

IS/IT STAFF
o 05 Application Development/Programming

Management
o 06 Application Development/Programming

Staff
o 07 Consulting
o 08 DBA/Systems Administrator
o 09 Education/Training
o 10 Technical Support Director/Manager
o 11 Other Technical Management/Staff
o 98 Other

WHAT IS YOUR CURRENT PRIMARY OPERATING
PLATFORM (check all that apply)

o 01 Digital Equipment Corp UNIX/VAX/VMS
o 02 HP UNIX
o 03 IBM AIX
o 04 IBM UNIX
o 05 Linux (Red Hat)
o 06 Linux (SUSE)
o 07 Linux (Oracle Enterprise)
o 08 Linux (other)
o 09 Macintosh
o 10 MVS
o 11 Netware
o 12 Network Computing
o 13 SCO UNIX
o 14 Sun Solaris/SunOS
o 15 Windows
o 16 Other UNIX
o 98 Other
99 o None of the Above

DO YOU EVALUATE, SPECIFY, RECOMMEND,
OR AUTHORIZE THE PURCHASE OF ANY OF
THE FOLLOWING? (check all that apply)

o 01 Hardware
o 02 Business Applicat ions (ERP, CRM, etc.)
o 03 Applicat ion Development Tools
o 04 Database Products
o 05 Internet or Int ranet Products
o 06 Other Sof tware
o 07 Middleware Products
99 o None of the Above

IN YOUR JOB, DO YOU USE OR PLAN TO PUR-
CHASE ANY OF THE FOLLOWING PRODUCTS?
(check all that apply)

SOFTWARE
o 01 CAD/CAE/CAM
o 02 Collaboration Software
o 03 Communications
o 04 Database Management
o 05 File Management
o 06 Finance
o 07 Java
o 08 Multimedia Authoring
o 09 Networking
o 10 Programming
o 11 Project Management
o 12 Scientific and Engineering
o 13 Systems Management
o 14 Workflow

HARDWARE
o 15 Macintosh
o 16 Mainframe
o 17 Massively Parallel Processing

o 18 Minicomputer
o 19 Intel x86(32)
o 20 Intel x86(64)
o 21 Network Computer
o 22 Symmetric Multiprocessing
o 23 Workstation Services

SERVICES
o 24 Consulting
o 25 Education/Training
o 26 Maintenance
o 27 Online Database
o 28 Support
o 29 Technology-Based Training
o 30 Other
99 o None of the Above

WHAT IS YOUR COMPANY’S SIZE?
(check one only)

o 01 More than 25,000 Employees
o 02 10,001 to 25,000 Employees
o 03 5,001 to 10,000 Employees
o 04 1,001 to 5,000 Employees
o 05 101 to 1,000 Employees
o 06 Fewer than 100 Employees

DURING THE NEXT 12 MONTHS, HOW MUCH
DO YOU ANTICIPATE YOUR ORGANIZATION
WILL SPEND ON COMPUTER HARDWARE,
SOFTWARE, PERIPHERALS, AND SERVICES FOR
YOUR LOCATION? (check one only)

o 01 Less than $10,000
o 02 $10,000 to $49,999
o 03 $50,000 to $99,999
o 04 $100,000 to $499,999
o 05 $500,000 to $999,999
o 06 $1,000,000 and Over

WHAT IS YOUR COMPANY’S YEARLY SALES
REVENUE? (check one only)

o 01 $500, 000, 000 and above
o 02 $100, 000, 000 to $500, 000, 000
o 03 $50, 000, 000 to $100, 000, 000
o 04 $5, 000, 000 to $50, 000, 000
o 05 $1, 000, 000 to $5, 000, 000

WHAT LANGUAGES AND FRAMEWORKS DO
YOU USE? (check all that apply)

o 01 Ajax o 13 Python
o 02 C o 14 Ruby/Rails
o 03 C++ o 15 Spring
o 04 C# o 16 Struts

o 05 Hibernate o 17 SQL
o 06 J++/J# o 18 Visual Basic
o 07 Java o 98 Other
o 08 JSP
o 09 .NET
o 10 Perl
o 11 PHP
o 12 PL/SQL

WHAT ORACLE PRODUCTS ARE IN USE AT YOUR
SITE? (check all that apply)

ORACLE DATABASE
o 01 Oracle Database 11g
o 02 Oracle Database 10g
o 03 Oracle9i Database
o 04 Oracle Embedded Database

(Oracle Lite, Times Ten, Berkeley DB)
o 05 Other Oracle Database Release

ORACLE FUSION MIDDLEWARE
o 06 Oracle Applicat ion Server
o 07 Oracle Por tal
o 08 Oracle Enterpr ise Manager
o 09 Oracle BPEL Process Manager
o 10 Oracle Ident ity Management
o 11 Oracle SOA Suite
o 12 Oracle Data Hubs

ORACLE DEVELOPMENT TOOLS
o 13 Oracle JDeveloper
o 14 Oracle Forms
o 15 Oracle Repor ts
o 16 Oracle Designer
o 17 Oracle Discoverer
o 18 Oracle BI Beans
o 19 Oracle Warehouse Builder
o 20 Oracle WebCenter
o 21 Oracle Applicat ion Express

ORACLE APPLICATIONS
o 22 Oracle E-Business Suite
o 23 PeopleSof t Enterpr ise
o 24 JD Edwards Enterpr iseOne
o 25 JD Edwards World
o 26 Oracle Fusion
o 27 Hyperion
o 28 Siebel CRM

ORACLE SERVICES
o 28 Oracle E-Business Suite On Demand
o 29 Oracle Technology On Demand
o 30 Siebel CRM On Demand
o 31 Oracle Consult ing
o 32 Oracle Educat ion
o 33 Oracle Suppor t
o 98 Other
99 o None of the Above

YOU MUST ANSWER ALL 10 QUESTIONS BELOW.

1

2

3

4

5

6

7

8

9

08
01
40
04

s i g n a t u r e (r e q u i r e d) d a t e

x
From time to time, Oracle Publishing allows our partners
exclusive access to our e-mail addresses for special promo-
tions and announcements. To be included in this program,
please check this circle. If you do not wish to be included, you
will only receive notices about your subscription via e-mail.

Oracle Publishing allows sharing of our postal mailing list with
selected third parties. If you prefer your mailing address not to
be included in this program, please check this circle.

If at any time you would like to be removed from either mailing list, please contact
Customer Service at +1.847.763.9635 or send an e-mail to oracle@halldata.com.
If you opt in to the sharing of information, Oracle may also provide you with
e-mail related to Oracle products, services, and events. If you want to completely
unsubscribe from any e-mail communication from Oracle, please send an e-mail to:
unsubscribe@oracle-mail.com with the following in the subject line: REMOVE [your
e-mail address]. For complete information on Oracle Publishing’s privacy practices,
please visit oracle.com/html/privacy/html

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

Want your own FREE subscription?

Yes, please send me a FREE subscription Oracle Magazine. No.

Would you like to receive your free subscription in digital format instead of print if it becomes available? Yes No

To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date
it (incomplete cards cannot be processed or acknowledged). You can also fax your application to
+1.847.763.9638. Or subscribe at our Web site at oracle.com/oraclemagazine

10

10-Index.indd 274 9/6/12 5:48 PM

	Cover
	About the Authors
	About the Technical Editors

	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Conventions
	About MySQL
	Open Source Licenses
	Common Technical Abbreviations
	Code Examples
	References

	Chapter 1: The Five Minute DBA
	The 2 a.m. Alert Notification
	Show Slave Status

	Identifying the Problem
	Show Create Table

	Rectifying the Problem
	SQL_Slave_Skip_Counter

	Addressing the Underlying Cause
	Rectifying the Problem Correctly

	Understanding Replication Issues
	User Security
	Configuration Options and Variables

	Conclusion

	Chapter 2: Diagnosing Common Replication Problems
	MySQL Replication Architecture Review
	Interpreting Replication Information
	Binary Logs
	Show Master Logs
	Show Master Status
	Show Slave Status
	Relay Logs

	Replication Consistency
	Identifying Data Inconsistencies
	Identifying Schema Inconsistencies
	Causes of Data Inconsistency

	Common Replication Errors
	MySQL Server ID
	Missing Schema Objects
	Ignoring Duplicate Rows

	Understanding Replication Lag
	Primary Causes of Lag
	The MySQL Error Log
	Simple Techniques to Improve and Minimize Lag
	Advanced Techniques to Improve and Minimize Lag

	Monitoring Replication
	Conclusion

	Chapter 3: Improving Standard Replication Features
	Extending Asynchronous Behavior
	Semisynchronous Replication
	Synchronous Replication

	Securing Replication with SSL
	Making MySQL SSL Ready

	New Replication Features
	New and Improved Data Integrity
	New Performance Improvements for Replication
	New Replication Management Features

	Balancing Read and Write Load
	Conclusion

	Chapter 4: Using Multi-Master Replication
	MySQL Replication Failover Capabilities
	Active/Passive Multi-Master Replication
	Required Multi-Master Configuration Settings
	Optional Multi-Master Configuration Settings
	Other Configuration Variables to Consider
	Example Configuration
	Replication Setup
	Multi-Master Replication Verification
	Manual Failover Process
	Real World Usage Complications
	Additional Slave Servers
	Read and Write Load Balancing

	Circular Replication
	Other Replication Topologies

	Automating High Availability Failovers
	Conclusion

	Chapter 5: MySQL Replication Tools
	Various MySQL Toolkits
	Openark Kit
	Percona Toolkit
	MySQL Workbench Utilities

	Replication Failover Managers
	MySQL MHA
	MMM
	Flipper
	Cluster Control

	Cluster Management
	Percona Replication Manager (PRM)

	Replication Prefetch
	MySQL Patches and Variants
	Independent Community Users
	Commercial Organizations

	Conclusion

	Chapter 6: Extending Replication for Practical Needs
	Highly Requested Replication Features
	MySQL Cluster

	Galera Cluster for MySQL
	Current Limitations
	References
	Installation
	Percona XtraDB Cluster
	MariaDB Galera Cluster
	Galera Wrap-Up

	Tungsten Replicator
	Features
	References
	Prerequisites
	Installation with Tungsten Sandbox
	Manual Tungsten Installation
	Alternative Tungsten Deployments
	Unique Characteristics
	Continuent Tungsten
	Continuent Wrap-Up

	SchoonerSQL
	MySQL Replication Listener
	MySQL in the Cloud
	Amazon RDS for MySQL
	Google Cloud SQL

	Other Offerings
	Conclusion

	Chapter 7: MySQL Configuration Options
	About MySQL System Variables
	Binary Logging
	MySQL Replication
	Semisynchronous Replication
	Security

	MySQL Server Variables
	InnoDB Variables

	MySQL 5.6 Features
	Universally Unique Identifier (UUID)
	Crash-Safe Slaves
	Replication Checksums
	Multi-Threaded Slaves
	Global Transaction Identifier (GTID)

	User Privileges
	SQL Commands and Functions
	Binary Log Statements
	Replication Statements
	Replication Related Functions

	Conclusion

	Chapter 8: Monitoring Replication
	Types of Monitoring
	MySQL Configuration
	Monitoring Granularity

	Important MySQL Information
	MySQL Error Log
	Show Master Status
	Show Slave Status
	Show Global Status
	Meta Files
	Meta Tables

	Monitoring Products
	Dedicated Monitoring Products
	System Monitoring Products
	The Implementation of Monitoring
	MySQL Enterprise Monitor
	Cacti
	MySQL Performance Monitor (MPM)
	Poor Man’s Replication Monitor

	Troubleshooting Replication Incidents
	Conclusion

	Appendix: A MySQL Replication Test Environment
	Manual Steps to Configure MySQL Replication
	Using MySQL Sandbox
	MySQL Sandbox Installation
	MySQL Software Releases
	Replication Setup with MySQL Sandbox
	References

	Using Virtual Servers
	VirtualBox Installation

	Testing and Verifying MySQL Replication
	Conclusion

	Index

